This is an old revision of the document!
Table of Contents
Appendix
\begin{align} \label{eq:times} 1 \, \text{year} \simeq \pi \times 10^7 \, \text{s} \end{align}
A.1 Solar System
The solar system has $1.0014$ solar masses, which amounts to about $2 \times 10^{30}\, \, \text{kg}$. The Earth-Sun distance is $1 \, \text{AU} \simeq 500 \, \text{light second} \simeq 1.5 \times 10^{11}\, \, \text{m}$.
object | Sun | Mecury | Venus | Earth | Mars | Jupiter | Saturn | Uranus | Neptun |
---|---|---|---|---|---|---|---|---|---|
distance | $0.005$ | $0.387098$ | $0.723332$ | $1$ | $1.523679$ | $5.2044$ | $9.5826$ | $19.2184$ | $30.11$ |
radius | $109$ | $0.3829$ | $0.9499$ | $1$ | $0.533$ | $11.209$ | $9.449 $ | $4.007$ | $3.883$ |
mass | $333,000$ | $0.055$ | $0.815$ | $1$ | $0.107$ | $317.8$ | $95.159$ | $14.536$ | $17.147$ |
period | $0.240846$ | $0.615198$ | $1$ | $2.1354$ | $11.862$ | $29.4571$ | $84.0205$ | $164.8$ |
Properties of Sun and planets of our solar system, provided in multiples of the Earth values. The distance referes to the semi-major axis in AU. For the sun the distance denotes the sun surface, i.e., its radius. }
object | Moon | Ceres | Pluto | Eris |
---|---|---|---|---|
distance | $0.00257$ | $2.769$ | $39.482$ | $67.864$ |
radius | $0.2727$ | $0.073$ | $0.1868$ | $0.1825$ |
mass | $0.0123$ | $0.00016$ | $0.00218$ | $0.0028$ |
period | $0.08085$ | $4.61$ | $247.94$ | $559.07$ |
Properties of the Moon and dwarf planets of our solar system. The properties of the Moon refer to its distrance to and period around Earth. Ceres is the largest object in the meteorite belt between Mars and Jupiter. Eris is a dwarf planet in the Kuiper belt that is larger in mass than Pluto.
speed constants
\begin{align} \text{speed of light} && c_L &= 3 \times 10^{8} \text{m/s} \\ \text{speed of sound} && c_S &= 300 \text{m/s} \end{align}
masses
\begin{align} \text{masses of electron} && m_e &= 9 \times 10^{-31} \text{kg} \\ \text{masses of proton} && m_p &= 1 \times 10^{-27} \text{kg} \\ \text{masses of neutron} && m_n &= 1,6 \times 10^{-27} \text{kg} \\ \text{masses of hydrogen atom} && m_{hydrogen} &= 1,6 \times 10^{-27} \text{kg} \\ \\ \text{masses of earth} && m_{earth} &= 6 \times 10^{24} \text{kg} \\ \text{masses of sun} && m_{sun} &= 2 \times 10^{30} \text{kg} \\ \end{align}
densities
\begin{align} \text{density of water} && \rho_{water} &= 1000 \text{kg/m}^{3} \\ \text{density of air} && \rho_{air} &= 1 \: \text{kg/m}^{3} \\ \\ \text{density of earth} && \rho_{earth} &= 5,51 \: \text{g/cm}^{3} \\ \text{density of moon} && \rho_{moon} &= 3,34 \: \text{g/cm}^{3} \\ \text{density of sun} && \rho_{sun} &= 1,41 \: \text{g/cm}^{3} \\ \text{density of mars} && \rho_{mars} &= 3,3 \: \text{g/cm}^{3} \end{align}
normal constants
\begin{align} \text{normal pressure} && p_0 &= 101325 \text{pa} = 1,01325 \text{bar} \\ \text{gravitational acceleration} && g &= 9,81 \text{m/s}^2 \\ \text{gravitational acceleration on the moon} && g_{moon} &= 1,62 \text{m/s}^2 \\ \text{gravitational constant} && G &= 7 \times 10^{-11} N \times \text{m}^2 / \text{kg}^2 \end{align}