Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

User Tools

Site Tools


book:chap6:6.1_motivation_and_outline

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
book:chap6:6.1_motivation_and_outline [2022/02/01 11:58] – created abrilbook:chap6:6.1_motivation_and_outline [2022/04/15 15:41] (current) – [6.0.1 Self Test] jv
Line 37: Line 37:
 <WRAP box round #bsp_LagrangeParameterizationPendulum>**Example 6.1** <wrap em>Generalized coordinates for a pendulum</wrap> \\  <WRAP box round #bsp_LagrangeParameterizationPendulum>**Example 6.1** <wrap em>Generalized coordinates for a pendulum</wrap> \\ 
 We describe the position of the mass in a mathematical pendulum by the angle $\theta(t)$, We describe the position of the mass in a mathematical pendulum by the angle $\theta(t)$,
-as introduced in [[book:chap1:1.3_order-of-magnitude_guesses #bsp_pendulum-omg |Example 1.10]].+as introduced in [[book:chap1:1.3_order-of-magnitude_guesses#bsp_pendulum-omg|Example 1.10]].
 The position of the mass in the 2D pendulum plane is thus described by the vector The position of the mass in the 2D pendulum plane is thus described by the vector
 \begin{align*} \begin{align*}
Line 53: Line 53:
       \hat{\boldsymbol\theta}(\theta(t)) =  \begin{pmatrix} \cos\theta(t) \\ \sin\theta(t) \end{pmatrix}       \hat{\boldsymbol\theta}(\theta(t)) =  \begin{pmatrix} \cos\theta(t) \\ \sin\theta(t) \end{pmatrix}
 \end{align*} \end{align*}
 +</WRAP>
 +<wrap lo>** Remark 6.1. ** 
 Note that $\hat{\mathbf R}(\theta)$ and $\hat{\boldsymbol\theta}(\theta)$ are orthonormal vectors Note that $\hat{\mathbf R}(\theta)$ and $\hat{\boldsymbol\theta}(\theta)$ are orthonormal vectors
 that describe the position of the mass in terms of polar coordinates that describe the position of the mass in terms of polar coordinates
 rather than fixed-in-space Cartesian coordinates. rather than fixed-in-space Cartesian coordinates.
 +</wrap>
 +
 +<WRAP box round #Thm_Uvectors4polarCoordinates>**Theorem 6.1** <wrap em>Basis vectors for polar coordinates</wrap> \\
 +Let $\{ \hat{\boldsymbol x}, \hat{\boldsymbol z}\}$ be a basis of $\mathbb R^2$, and 
 +$(R,\theta)$ be the polar coordinates((The choice of the axes and the angle reflects the notations adopted in [[:book:chap1:1.2_dimensional_analysis #fig_pendulum-nodim|Figure 1.2]] and [[:book:chap1:1.3_order-of-magnitude_guesses #fig_pendulum-omg|Figure 1.3]].))
 +associated to a point with cartesian coordinates $(x,z)$.
 +Then
 +  *  $R = \sqrt{x^2+z^2}$ is the distance of the point from the origin
 +  *  $\theta = -\arctan(x/z)$ the angle with respect to $-\hat{\boldsymbol z}$,
 +We denote the vector from the origin to $(R,\theta)$ as $R \: \hat{\boldsymbol R}(\theta)$.
 +Then the following statements hold
 +  -  $\hat{\boldsymbol R}(\theta)$ is a normal vector at the position $(R,\theta)$ of a circle $\mathsf{C}_R$ with center at the origin at radius $R$.
 +  -  $\hat{\boldsymbol \theta} = \partial_\theta \hat{\boldsymbol R}$ is a vector tangential to $\mathsf{C}_R$ at the position $(R, \theta)$.
 +  -  $\partial_\theta \hat{\boldsymbol \theta} = - \hat{\boldsymbol R}$.
 +  -  For every $\theta \in [0, 2\pi)$ the vectors $\{ \hat{\boldsymbol R}(\theta), \hat{\boldsymbol  \theta}(\theta)\}$ form an orthonormal basis of  $\mathbb R^2$.
 </WRAP> </WRAP>
  
-<WRAP box round>**Example 5.1** <wrap em>Generalized coordinates for a ping-pong ball</wrap> \\+<wrap lo>** Remark 6.2. **   
 +The coordinate representation of $\hat{\boldsymbol R}(\theta)$ and $\hat{\boldsymbol  \theta}(\theta)$ in cartesian coordinates is provided in [[#bsp__LagrangeParameterizationPendulum|Example 6.2]].  
 +</wrap> 
 + 
 +<wrap lo>** Remark 6.3. **  <wrap #remark_Uvectors4polarCoordinates /> 
 +The assertions of [[#thm_Uvectors4polarCoordinates|Theorem 6.1]] also apply when the unit vectors of $\mathbb R^2$ are denoted as $\{ \hat{\boldsymbol x}, \hat{\boldsymbol y}\}$, and when the angle $\theta$ denotes the angle with respect of the $\hat{\boldsymbol x}$ axis. 
 +The different reference axis //only// changes the coordinate representation of the vectors.  
 +</wrap> 
 + 
 +<WRAP 120pt right #fig_pingPongCoordinates> 
 +{{pingPongCoordinates.png}} 
 +Figure 6.3: The position of a ball in space can be described in terms of a 3D vector $\mathbf Q$ that describes the center of the ball (red dot), 
 +angles $\theta,\phi$ that describe the orientation in space of a fixed axes in the ball (green line), 
 +and another angle $\psi$ that describes the position of point that is not on the axis (blue point). 
 +</WRAP> 
 +<WRAP box round>**Example 6.2** <wrap em>Generalized coordinates for a ping-pong ball</wrap> \\
 A ping-pong ball consists of $N$ atoms located in the three-dimensional space. A ping-pong ball consists of $N$ atoms located in the three-dimensional space.
 During a match they follow an intricate trail in the vicinity of the ping-pong players. During a match they follow an intricate trail in the vicinity of the ping-pong players.
 At any time during their motion the atoms are located on a thin spherical shell with fixed positions with respect to each other. At any time during their motion the atoms are located on a thin spherical shell with fixed positions with respect to each other.
-Rather than specifying the position of each atom one can therefore specify the position of the ball in terms of six generalized coordinates (\cref{fig:pingPongCoordinates}):+Rather than specifying the position of each atom one can therefore specify the position of the ball in terms of six generalized coordinates ([[#fig_pingPongCoordinates|Figure 6.3]]):
 Three coordinates provide its center of mass. Three coordinates provide its center of mass.
 The orientation of the ball can be provided by specifying the orientation of a body fixed axis in terms of its polar and azimuthal angle, The orientation of the ball can be provided by specifying the orientation of a body fixed axis in terms of its polar and azimuthal angle,
 and a third angle specifies the orientation of a point on its equator and a third angle specifies the orientation of a point on its equator
 when rotating the ball around the axis. when rotating the ball around the axis.
-</WRAP> 
- 
-<WRAP 120pt right #fig_pingPongCoordinates> 
-{{pingPongCoordinates.png}} 
-Figure 6.3: The position of a ball in space can be described in terms of a 3D vector $\mathbf Q$ that describes the center of the ball (red dot), 
-angles $\theta,\phi$ that describe the orientation in space of a fixed axes in the ball (green line), 
-and another angle $\psi$ that describes the position of point that is not on the axis (blue point). 
 </WRAP> </WRAP>
  
Line 98: Line 123:
 In all cases we will eventually reduce the dynamics to one-dimensional problems. In all cases we will eventually reduce the dynamics to one-dimensional problems.
 The final [[book:chap6:lagrange|Section 6.6]] deals with the relation between continuous symmetries of the dynamics and conservation laws. The final [[book:chap6:lagrange|Section 6.6]] deals with the relation between continuous symmetries of the dynamics and conservation laws.
 +
 +
 +==== 6.1.1 Self Test ====
 +
 +---- 
 +
 +<wrap #quest_setSelftest-polarCoords> Problem 6.1: </wrap>** Different reference axes for polar coordinates **
 +\\ 
 +Verify the assertions of [[#Thm_Uvectors4polarCoordinates|Theorem 6.1]] and [[#remark_Uvectors4polarCoordinates|Remark 6.3]]:
 +
 +  -  Specify the coordinate representation of $\{ \hat{\boldsymbol R}(\theta), \hat{\boldsymbol  \theta}(\theta)\}$ for the case where $\theta$ denoes the angle with respect to the positive $\hat{\boldsymbol x}$ axis.
 +  -  Verify the assertion of [[#Thm_Uvectors4polarCoordinates|Theorem 6.1]].
 +
 +---- 
 +
 +<wrap #quest_setSelftest-LagrangeDieCoordinates > Problem 6.2: </wrap>**Describing the orientation of dice**
 +\\
 +We place a die on the table such that its center lies at the origin of a 3D cartesian coordinate frame,
 +and its axes are aligned with the coordinate axes.
 +We characterize the configuration of the die by the number of dots on the faces pointing in the three positive coordinate directions. 
 +
 +  -  Show that there are 24 different possibilities to place the die.
 +  -  Determine the angles $(\theta, \phi, \psi)$ (cf [[#fig_pingPongCoordinates|Figure 6.3]])
 +that will turn a die from the configuration be $(1,2,3)$ to
 +\begin{align*} 
 +      \text{b1) } (2,3,4) &&
 +      \text{b2) } (4,6,2) &&
 +      \text{b3) } (1,3,5) &&                             
 +\end{align*}
 +
  
 ~~DISCUSSION~~ ~~DISCUSSION~~
book/chap6/6.1_motivation_and_outline.1643713090.txt.gz · Last modified: 2022/02/01 11:58 by abril