Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

User Tools

Site Tools


book:chap5:5.3_volume_integrals

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
book:chap5:5.3_volume_integrals [2022/01/04 19:15] – [5.3.2 Change of variables] abrilbook:chap5:5.3_volume_integrals [2022/01/04 20:29] (current) abril
Line 1: Line 1:
-FIXME draft with missing figures and references :!: 
- 
 ===== 5.3  Volume integrals — A professor falling through Earth  ===== ===== 5.3  Volume integrals — A professor falling through Earth  =====
 <WRAP #section_VolumeMassDensity></WRAP> <WRAP #section_VolumeMassDensity></WRAP>
Line 127: Line 125:
  
  
-<WRAP box round>**Example 5.2** <wrap em>Volume of a sphere</wrap> \\ +<WRAP box round #bsp_VolumeIntegral>**Example 5.2** <wrap em>Volume of a sphere</wrap> \\ 
 The volume of a three-dimensional sphere $S$ with center at the origin and radius $R$ is The volume of a three-dimensional sphere $S$ with center at the origin and radius $R$ is
 \begin{align*}  \begin{align*} 
Line 260: Line 258:
 </WRAP> </WRAP>
  
-<WRAP box round>**Example 5.3** <wrap em>Integration volumes</wrap> \\ +<WRAP box round #bsp_IntegrationVolumes>**Example 5.3** <wrap em>Integration volumes</wrap> \\ 
  
 **a)** //polar coordinates// **a)** //polar coordinates//
Line 321: Line 319:
 a physics professor and its environment. a physics professor and its environment.
 In the absence of interaction with other matter the professor will freely fall towards the center of Earth, In the absence of interaction with other matter the professor will freely fall towards the center of Earth,
-accelerated by a force that arises as sum of the mass elements constituting Earth (see\cref{fig:FallingThroughEarth}).+accelerated by a force that arises as sum of the mass elements constituting Earth (see [[#fig_FallingThroughEarth |Figure 5.10]]).
 For the professor of mass $m$ at position $\mathbf q_P$ and the mass element at position $\mathbf q_e$ this force amounts to For the professor of mass $m$ at position $\mathbf q_P$ and the mass element at position $\mathbf q_e$ this force amounts to
 $\mathbf F(\mathbf q_P, \mathbf q_e) = -\nabla ( m \, \rho(\mathbf q_e) \, G ) / \left\lvert \mathbf q_P - \mathbf q_e \right\rvert$. $\mathbf F(\mathbf q_P, \mathbf q_e) = -\nabla ( m \, \rho(\mathbf q_e) \, G ) / \left\lvert \mathbf q_P - \mathbf q_e \right\rvert$.
Line 327: Line 325:
 Then, the force on the professor takes the form Then, the force on the professor takes the form
  
-<WRAP right id=fig_FallingThroughEarth> +<WRAP 120pt right #fig_FallingThroughEarth> 
-{{./Sketch/FallingThroughEarth.png}} +{{FallingThroughEarth.png}} 
- +Figure 5.10: Initially positioned at the upper right (yellow), the professor will fall down (red),
-Initially positioned at the upper right (yellow), the professor will fall down (red),+
 and eventually pop out at the other side and return (green). and eventually pop out at the other side and return (green).
 </WRAP> </WRAP>
  
-\begin{align} \label{eq:professor-totForce}+<wrap #eq_professor-totForce></wrap> 
 +\begin{align}
   \mathbf F_{\text{tot}}   \mathbf F_{\text{tot}}
-  &= - \int_{\mathbb R^3}  \mathrm{d}^3 q \: \nabla \frac{ m \, \rho(\mathbf q_e) \, G }{ \left\lvert \mathbf q_P - \mathbf q_e \right\rvert }+  &= - \int_{\mathbb R^3}  \mathrm{d}^3 q \: \nabla \frac{ m \, \rho(\mathbf q_e) \, G }{ \left\lvert \mathbf q_P - \mathbf q_e \right\rvert } \tag{5.3.1}
   \\   \\
-  &= -   m \, \rho \, G \; \nabla  \int_{\text{Earth}}  \mathrm{d}^3 q \; \frac{1}{ \sqrt{ q_P^2 + q_e^2 - 2\, q_P \, q_e \, \cos\theta } }+  &= -   m \, \rho \, G \; \nabla  \int_{\text{Earth}}  \mathrm{d}^3 q \; \frac{1}{ \sqrt{ q_P^2 + q_e^2 - 2\, q_P \, q_e \, \cos\theta } } \tag{5.3.2}
 \end{align} \end{align}
 where $\theta$ is the angle between the two vectors $\left\lvert \mathbf q_P \right\rvert$ and $\left\lvert \mathbf q_e \right\rvert$, where $\theta$ is the angle between the two vectors $\left\lvert \mathbf q_P \right\rvert$ and $\left\lvert \mathbf q_e \right\rvert$,
Line 370: Line 368:
 $g = MG/R = 4\pi\,\rho\,R^2\,G/3$. $g = MG/R = 4\pi\,\rho\,R^2\,G/3$.
 The professor moves under the influence of a //harmonic// central force, The professor moves under the influence of a //harmonic// central force,
-as studied in\cref{quest:CoordTrafos,quest:ODE-12,quest:Conservation-08}+as studied in 
-After a while (\cf\cref{quest:volIntegral-professor}) he reappears at the very same spot where he started,\+[[book:chap4:4.6_the_center_of_mass_cm_inertial_frame #quest_CoordTrafos |Problem 4.19]], 
 +[[book:chap4:4.9_solving_odes_by_coordinate_transformations #quest_ODE-12 |Problem 4.21]] and 
 +[[book:chap4:4.10_problems #quest_Conservation-08 |Problem 4.30]]! 
 + 
 +After a while (cf [[book:chap5:5.7_problems #quest_volIntegral-professor |Problem 5.12]]) he reappears at the very same spot where he started,
 except that Earth moved on while he was under way. except that Earth moved on while he was under way.
  
  
 ==== 5.3.4 Self Test ==== ==== 5.3.4 Self Test ====
- 
-----  
  
 <wrap #quest_volIntegral-parallelogram > Problem 5.5: </wrap>** Area of a parallelogram ** <wrap #quest_volIntegral-parallelogram > Problem 5.5: </wrap>** Area of a parallelogram **
Line 396: Line 396:
 describes a sphere of radius  $R$. describes a sphere of radius  $R$.
 The volume  $V$ of a solid of revolution are given by the integral The volume  $V$ of a solid of revolution are given by the integral
-\begin{align}\label{eq:revolutionSolidVolume+ 
-    V = \pi \; \int \mathrm{d} x \: \left( f(x) \right)^2+<wrap #eq_revolutionSolidVolume></wrap> 
 +\begin{align} 
 +    V = \pi \; \int \mathrm{d} x \: \left( f(x) \right)^2 \tag{5.3.3}
 \end{align} \end{align}
  
-  -  Sketch the function  $f(x) = \sqrt{R^2 - x^2}$ +  -  Sketch the function  $f(x) = \sqrt{R^2 - x^2}$ and verify that the solid of revolution is indeed a sphere. 
-and verify that the solid of revolution is indeed a sphere. +  -  Determine the volume of the sphere based on the given equation Compare you calculation and the result to the calculation given in [[#bsp_VolumeIntegral |Example 5.2]]
-  -  Determine the volume of the sphere based on the given equation+  -  Show that the volume integral for a solid of revolution provides [[#eq_revolutionSolidVolume |Equation 5.3.3]]  when one adopts cylindrical coordinates.
-Compare you calculation and the result to the calculation given in \Example{VolumeIntegral}+
-  -  Show that the volume integral for a solid of revolution provides  +
-\cref{eq:revolutionSolidVolume}  +
-when one adopts cylindrical coordinates.+
  
    
Line 426: Line 424:
 \\ \\
 Determine the Jacobi matrix and its determinant for the transformation Determine the Jacobi matrix and its determinant for the transformation
-from Cartesian to spherical coordinates, \cf\Example{IntegrationVolumes}c).+from Cartesian to spherical coordinates, cf [[#bsp_IntegrationVolumes |Example 5.3 c)]].
  
  
 ~~DISCUSSION~~  ~~DISCUSSION~~ 
  
book/chap5/5.3_volume_integrals.1641320158.txt.gz · Last modified: 2022/01/04 19:15 by abril