Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

User Tools

Site Tools


book:chap5:5.3_volume_integrals

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
book:chap5:5.3_volume_integrals [2022/01/04 18:55] – [5.3.1 Determine volume and mass by volume integrals] abrilbook:chap5:5.3_volume_integrals [2022/01/04 20:29] (current) abril
Line 1: Line 1:
-FIXME draft with missing figures and references :!: 
- 
 ===== 5.3  Volume integrals — A professor falling through Earth  ===== ===== 5.3  Volume integrals — A professor falling through Earth  =====
 <WRAP #section_VolumeMassDensity></WRAP> <WRAP #section_VolumeMassDensity></WRAP>
Line 127: Line 125:
  
  
-<WRAP box round>**Example 5.2** <wrap em>Volume of a sphere</wrap> \\ +<WRAP box round #bsp_VolumeIntegral>**Example 5.2** <wrap em>Volume of a sphere</wrap> \\ 
 The volume of a three-dimensional sphere $S$ with center at the origin and radius $R$ is The volume of a three-dimensional sphere $S$ with center at the origin and radius $R$ is
 \begin{align*}  \begin{align*} 
Line 146: Line 144:
  
 ==== 5.3.2  Change of variables  ==== ==== 5.3.2  Change of variables  ====
-<WRAP id=ssection_integrationVolume />+<wrap #ssection_integrationVolume></wrap>
  
 The shape of a circle with center at the origin and radius $R$ The shape of a circle with center at the origin and radius $R$
-can much easier be described by polar coordinates rather than Cartesian coordinates+can much easier be described by polar coordinates rather than Cartesian coordinates((In order to avoid confusion with the radius of the circle  
-\footnote{In order to avoid confusion with the radius of the circle  +the radial coordinate of the polar coordinates is here denoted as $\rho$.)): $\{ (\rho, \theta) \in \mathbb R^+ \times [0,2\pi) \; : \; \rho < R \}$.
-the radial coordinate of the polar coordinates is here denoted as $\rho$.}\   +
-$\{ (\rho, \theta) \in \mathbb R^+ \times [0,2\pi) \; : \; \rho < R \}$.+
 To take advantage of this simplification we have to introduce a transformation of the integration coordinates To take advantage of this simplification we have to introduce a transformation of the integration coordinates
 from Cartesian to polar coordinates. from Cartesian to polar coordinates.
-A heuristic guess based on \cref{fig:PolarIntegrationVolume} suggests+A heuristic guess based on [[#fig_PolarIntegrationVolume|Figure 5.9]] suggests
 that a volume element $\mathrm{d} x\, \mathrm{d} y$ at the position $(x,y)=(\rho\,\cos\theta, \rho\,\sin\theta)$ that a volume element $\mathrm{d} x\, \mathrm{d} y$ at the position $(x,y)=(\rho\,\cos\theta, \rho\,\sin\theta)$
 should be replaced by $\rho \, \mathrm{d}\theta\, \mathrm{d} \rho$. should be replaced by $\rho \, \mathrm{d}\theta\, \mathrm{d} \rho$.
 One readily verifies that this is a reasonable choice by working out the area of the circle with radius $R$: One readily verifies that this is a reasonable choice by working out the area of the circle with radius $R$:
  
-<WRAP right id=fig_PolarIntegrationVolume> +<WRAP 120pt right #fig_PolarIntegrationVolume> 
-{{./Sketch/PolarIntegrationVolume.png}} +{{PolarIntegrationVolume.png}} 
- +Figure 5.9: Integration volume for polar coordinates.
-Integration volume for polar coordinates.+
 </WRAP> </WRAP>
  
Line 172: Line 167:
   = \pi \, R^2   = \pi \, R^2
 \end{align*} \end{align*}
-with a much easier calculation than in \Example{AreaIntegral}b).+with a much easier calculation than in [[#bsp_AreaIntegral|Example 5.1 b]].
 Formally the change of the integration volume is determined by generalizing the substitution rule for integrals, Formally the change of the integration volume is determined by generalizing the substitution rule for integrals,
-as illustrated in  \cref{fig:integral_substitution-rulefor one dimensional integrals.+as illustrated in  [[book:chap3:3.6_problems #fig_integral_substitution-rule|Figure 3.13]] for one dimensional integrals.
 In this rule the derivative $f'(x)$ account for the change of the width of the rectangles that are summed to approximate the integral. In this rule the derivative $f'(x)$ account for the change of the width of the rectangles that are summed to approximate the integral.
 In order to generalize this idea we recall from the discussion of line integrals In order to generalize this idea we recall from the discussion of line integrals
Line 200: Line 195:
 </WRAP> </WRAP>
  
-<wrap lo>** Remark 5.4. **  +<WRAP lo>** Remark 5.4. **  
 The determinant of $2\times 2$ and $3\times 3$ matrices takes the form of The determinant of $2\times 2$ and $3\times 3$ matrices takes the form of
 the (sum of) products along the diagonals from left to right the (sum of) products along the diagonals from left to right
Line 219: Line 214:
              &\; -a_{11} \, a_{23} \, a_{32} +  a_{22} \, a_{31} \, a_{13} + a_{33} \, a_{12} \, a_{21}               &\; -a_{11} \, a_{23} \, a_{32} +  a_{22} \, a_{31} \, a_{13} + a_{33} \, a_{12} \, a_{21} 
 \end{align*} \end{align*}
-These expressions are entailed by the geometric interpretation of the cross product in \cref{ssec:GeometricCrossProduct}. +These expressions are entailed by the geometric interpretation of the cross product in [[book:chap2:2.9_cross_products_---_torques|Section 2.9.2]]
- \manimpossiblecube +</WRAP>
-</wrap>+
  
 Without proof Without proof
 we provide the following general rule for calculating determinants we provide the following general rule for calculating determinants
-<WRAP box round>**Theorem 5.1 <wrap hi>Recursive calculation of determinants</wrap>** \\ + 
 +<WRAP box round>**Theorem 5.1 <wrap em>Recursive calculation of determinants</wrap>** \\ 
 Let $\mathsf A$ be a $D\times D$ matrix with $D \in \mathbb N$ Let $\mathsf A$ be a $D\times D$ matrix with $D \in \mathbb N$
 and entries $a_{ij}$ where $i,j \in \{ 1, \cdots, D \}$. and entries $a_{ij}$ where $i,j \in \{ 1, \cdots, D \}$.
Line 242: Line 237:
 Altogether this allows us to identify the factor involved in a change of the integration variables Altogether this allows us to identify the factor involved in a change of the integration variables
 as the Jacobi determinant.  as the Jacobi determinant. 
-<WRAP box round>**Theorem 5.2 <wrap hi>Jacobi matrix and determinant</wrap>** \\ + 
 +<WRAP box round>**Theorem 5.2 <wrap em>Jacobi matrix and determinant</wrap>** \\ 
 We consider a change of integration variables from the coordinates We consider a change of integration variables from the coordinates
 $\mathbf x = (x_1, x_2, \cdots, x_D)$ to $( y_1, y_2, \cdots , y_D)$ $\mathbf x = (x_1, x_2, \cdots, x_D)$ to $( y_1, y_2, \cdots , y_D)$
Line 262: Line 258:
 </WRAP> </WRAP>
  
-<WRAP box round>**Example 5.3** <wrap em>Integration volumes</wrap> \\ +<WRAP box round #bsp_IntegrationVolumes>**Example 5.3** <wrap em>Integration volumes</wrap> \\ 
  
-  -  //polar coordinates//+**a)** //polar coordinates//
 $(x,y) = \rho  \: (\cos\theta, \: \sin\theta)$ \\ transform as $(x,y) = \rho  \: (\cos\theta, \: \sin\theta)$ \\ transform as
 \begin{align*}  \begin{align*} 
Line 274: Line 270:
                      = \rho \, \mathrm{d}\rho \, \mathrm{d} \theta                      = \rho \, \mathrm{d}\rho \, \mathrm{d} \theta
 \end{align*} \end{align*}
-  -  //cylindrical coordinates//+ 
 +**b)** //cylindrical coordinates//
 $(x,y,z) = (\rho \cos\theta, \: \rho \sin\theta, z)$\\ transform as $(x,y,z) = (\rho \cos\theta, \: \rho \sin\theta, z)$\\ transform as
 \begin{align*}  \begin{align*} 
Line 285: Line 282:
                      = \rho \, \mathrm{d}\rho \, \mathrm{d} \theta \, \mathrm{d} z                      = \rho \, \mathrm{d}\rho \, \mathrm{d} \theta \, \mathrm{d} z
 \end{align*} \end{align*}
-  -  \text{//spherical coordinates// + 
 +**c)** //spherical coordinates// 
 $(x,y,z) = \rho \: (\sin\theta \cos\phi, \, \sin\theta \sin\phi, \, \cos\theta)$}\\ transform as $(x,y,z) = \rho \: (\sin\theta \cos\phi, \, \sin\theta \sin\phi, \, \cos\theta)$}\\ transform as
 \begin{align*}  \begin{align*} 
Line 321: Line 319:
 a physics professor and its environment. a physics professor and its environment.
 In the absence of interaction with other matter the professor will freely fall towards the center of Earth, In the absence of interaction with other matter the professor will freely fall towards the center of Earth,
-accelerated by a force that arises as sum of the mass elements constituting Earth (see\cref{fig:FallingThroughEarth}).+accelerated by a force that arises as sum of the mass elements constituting Earth (see [[#fig_FallingThroughEarth |Figure 5.10]]).
 For the professor of mass $m$ at position $\mathbf q_P$ and the mass element at position $\mathbf q_e$ this force amounts to For the professor of mass $m$ at position $\mathbf q_P$ and the mass element at position $\mathbf q_e$ this force amounts to
 $\mathbf F(\mathbf q_P, \mathbf q_e) = -\nabla ( m \, \rho(\mathbf q_e) \, G ) / \left\lvert \mathbf q_P - \mathbf q_e \right\rvert$. $\mathbf F(\mathbf q_P, \mathbf q_e) = -\nabla ( m \, \rho(\mathbf q_e) \, G ) / \left\lvert \mathbf q_P - \mathbf q_e \right\rvert$.
Line 327: Line 325:
 Then, the force on the professor takes the form Then, the force on the professor takes the form
  
-<WRAP right id=fig_FallingThroughEarth> +<WRAP 120pt right #fig_FallingThroughEarth> 
-{{./Sketch/FallingThroughEarth.png}} +{{FallingThroughEarth.png}} 
- +Figure 5.10: Initially positioned at the upper right (yellow), the professor will fall down (red),
-Initially positioned at the upper right (yellow), the professor will fall down (red),+
 and eventually pop out at the other side and return (green). and eventually pop out at the other side and return (green).
 </WRAP> </WRAP>
  
-\begin{align} \label{eq:professor-totForce}+<wrap #eq_professor-totForce></wrap> 
 +\begin{align}
   \mathbf F_{\text{tot}}   \mathbf F_{\text{tot}}
-  &= - \int_{\mathbb R^3}  \mathrm{d}^3 q \: \nabla \frac{ m \, \rho(\mathbf q_e) \, G }{ \left\lvert \mathbf q_P - \mathbf q_e \right\rvert }+  &= - \int_{\mathbb R^3}  \mathrm{d}^3 q \: \nabla \frac{ m \, \rho(\mathbf q_e) \, G }{ \left\lvert \mathbf q_P - \mathbf q_e \right\rvert } \tag{5.3.1}
   \\   \\
-  &= -   m \, \rho \, G \; \nabla  \int_{\text{Earth}}  \mathrm{d}^3 q \; \frac{1}{ \sqrt{ q_P^2 + q_e^2 - 2\, q_P \, q_e \, \cos\theta } }+  &= -   m \, \rho \, G \; \nabla  \int_{\text{Earth}}  \mathrm{d}^3 q \; \frac{1}{ \sqrt{ q_P^2 + q_e^2 - 2\, q_P \, q_e \, \cos\theta } } \tag{5.3.2}
 \end{align} \end{align}
 where $\theta$ is the angle between the two vectors $\left\lvert \mathbf q_P \right\rvert$ and $\left\lvert \mathbf q_e \right\rvert$, where $\theta$ is the angle between the two vectors $\left\lvert \mathbf q_P \right\rvert$ and $\left\lvert \mathbf q_e \right\rvert$,
Line 370: Line 368:
 $g = MG/R = 4\pi\,\rho\,R^2\,G/3$. $g = MG/R = 4\pi\,\rho\,R^2\,G/3$.
 The professor moves under the influence of a //harmonic// central force, The professor moves under the influence of a //harmonic// central force,
-as studied in\cref{quest:CoordTrafos,quest:ODE-12,quest:Conservation-08}+as studied in 
-After a while (\cf\cref{quest:volIntegral-professor}) he reappears at the very same spot where he started,\+[[book:chap4:4.6_the_center_of_mass_cm_inertial_frame #quest_CoordTrafos |Problem 4.19]], 
 +[[book:chap4:4.9_solving_odes_by_coordinate_transformations #quest_ODE-12 |Problem 4.21]] and 
 +[[book:chap4:4.10_problems #quest_Conservation-08 |Problem 4.30]]! 
 + 
 +After a while (cf [[book:chap5:5.7_problems #quest_volIntegral-professor |Problem 5.12]]) he reappears at the very same spot where he started,
 except that Earth moved on while he was under way. except that Earth moved on while he was under way.
  
  
 ==== 5.3.4 Self Test ==== ==== 5.3.4 Self Test ====
- 
-----  
  
 <wrap #quest_volIntegral-parallelogram > Problem 5.5: </wrap>** Area of a parallelogram ** <wrap #quest_volIntegral-parallelogram > Problem 5.5: </wrap>** Area of a parallelogram **
Line 396: Line 396:
 describes a sphere of radius  $R$. describes a sphere of radius  $R$.
 The volume  $V$ of a solid of revolution are given by the integral The volume  $V$ of a solid of revolution are given by the integral
-\begin{align}\label{eq:revolutionSolidVolume+ 
-    V = \pi \; \int \mathrm{d} x \: \left( f(x) \right)^2+<wrap #eq_revolutionSolidVolume></wrap> 
 +\begin{align} 
 +    V = \pi \; \int \mathrm{d} x \: \left( f(x) \right)^2 \tag{5.3.3}
 \end{align} \end{align}
  
-  -  Sketch the function  $f(x) = \sqrt{R^2 - x^2}$ +  -  Sketch the function  $f(x) = \sqrt{R^2 - x^2}$ and verify that the solid of revolution is indeed a sphere. 
-and verify that the solid of revolution is indeed a sphere. +  -  Determine the volume of the sphere based on the given equation Compare you calculation and the result to the calculation given in [[#bsp_VolumeIntegral |Example 5.2]]
-  -  Determine the volume of the sphere based on the given equation+  -  Show that the volume integral for a solid of revolution provides [[#eq_revolutionSolidVolume |Equation 5.3.3]]  when one adopts cylindrical coordinates.
-Compare you calculation and the result to the calculation given in \Example{VolumeIntegral}+
-  -  Show that the volume integral for a solid of revolution provides  +
-\cref{eq:revolutionSolidVolume}  +
-when one adopts cylindrical coordinates.+
  
    
Line 426: Line 424:
 \\ \\
 Determine the Jacobi matrix and its determinant for the transformation Determine the Jacobi matrix and its determinant for the transformation
-from Cartesian to spherical coordinates, \cf\Example{IntegrationVolumes}c).+from Cartesian to spherical coordinates, cf [[#bsp_IntegrationVolumes |Example 5.3 c)]].
  
  
 ~~DISCUSSION~~  ~~DISCUSSION~~ 
  
book/chap5/5.3_volume_integrals.1641318903.txt.gz · Last modified: 2022/01/04 18:55 by abril