Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

User Tools

Site Tools


book:chap4:4.5_linear_odes

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
book:chap4:4.5_linear_odes [2024/02/01 00:48] – fix typo jvbook:chap4:4.5_linear_odes [2024/02/01 00:50] (current) – polish English jv
Line 168: Line 168:
  
 **1.  Two real roots**\\ **1.  Two real roots**\\
-In this case $\gamma^2 > 4\,k/m$ such that $\lambda_\pm \in \mathbb{R}_-$.  +In this case $\gamma^2 > 4\,k/m$, and $\lambda_\pm \in \mathbb{R}_-$.  
-The motion of the oscillator is described by+Hence, the motion of the oscillator is described by
 \begin{align*} \begin{align*}
   x(t) =  A_+ \; \mathrm{e}^{ \lambda_+ \, (t-t_0) } + A_- \; \mathrm{e}^{ \lambda_- \, (t-t_0) }   x(t) =  A_+ \; \mathrm{e}^{ \lambda_+ \, (t-t_0) } + A_- \; \mathrm{e}^{ \lambda_- \, (t-t_0) }
 \end{align*} \end{align*}
 which is a real-valued function for amplitudes $A_\pm \in \mathbb{R}$. which is a real-valued function for amplitudes $A_\pm \in \mathbb{R}$.
-The solution for the initial conditions $x(t_0) = x_0$ and $\dot x(t_0)=v_0$ +Moreover, the solution for the initial conditions $x(t_0) = x_0$ and $\dot x(t_0)=v_0$ 
-is then found by solving the equations+is found by solving the equations
 \begin{align*} \begin{align*}
   \left .   \left .
book/chap4/4.5_linear_odes.1706744919.txt.gz · Last modified: 2024/02/01 00:48 by jv