Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

User Tools

Site Tools


book:chap2:2.7_the_inner_product

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
book:chap2:2.7_the_inner_product [2022/04/22 23:46] jvbook:chap2:2.7_the_inner_product [2024/12/03 23:28] (current) jv
Line 41: Line 41:
 $\langle \mathbf v \mid \mathbf v \rangle = 0 \;\Leftrightarrow\;  \mathbf v = \mathbf 0$\\ $\langle \mathbf v \mid \mathbf v \rangle = 0 \;\Leftrightarrow\;  \mathbf v = \mathbf 0$\\
  
-For a vector space over $\mathbb{C}$ the requirement a) is replaced by+For a vector space over $\mathbb{C}$ the inner product returns a complex number, and the constant $c$ is a complex number. 
 +Moreover, the requirement a) is replaced by
  
 a)  conjugate symmetry:  a)  conjugate symmetry: 
 $\langle \mathbf v \mid \mathbf w \rangle = \overline{\langle \mathbf w \mid \mathbf v \rangle}$ $\langle \mathbf v \mid \mathbf w \rangle = \overline{\langle \mathbf w \mid \mathbf v \rangle}$
  
-and the constant $c$ is a complex number.+such that $\langle \mathbf v \mid \mathbf v \rangle$ is a real number.
 </WRAP> </WRAP>
  
Line 109: Line 110:
     c^2 = a^2 + b^2 - 2\,a\,b\,\cos\theta     c^2 = a^2 + b^2 - 2\,a\,b\,\cos\theta
 \end{align*} \end{align*}
-Let now $a$, $b$, and $c$ be the length of the vectors $\mathbf a$, $\mathbf b$ and $\mathbf c = \mathbf - \mathbf b$,+Let now $a$, $b$, and $c$ be the length of the vectors $\mathbf a$, $\mathbf b$ and $\mathbf c = \mathbf - \mathbf a$,
 as shown in [[#fig_scalarProductCosSetup |Figure 2.13]]. as shown in [[#fig_scalarProductCosSetup |Figure 2.13]].
 Then we have Then we have
Line 115: Line 116:
     a^2 + b^2 - 2\,a\,b\,\cos\theta     a^2 + b^2 - 2\,a\,b\,\cos\theta
     &= c^2 = \mathbf c \cdot \mathbf c     &= c^2 = \mathbf c \cdot \mathbf c
 +      = (\mathbf b - \mathbf a) \cdot  (\mathbf b - \mathbf a)
       = (\mathbf a - \mathbf b) \cdot  (\mathbf a - \mathbf b)       = (\mathbf a - \mathbf b) \cdot  (\mathbf a - \mathbf b)
     \\     \\
     &= \mathbf a \cdot \mathbf a - 2\, \mathbf a \cdot \mathbf b + \mathbf b \cdot \mathbf b     &= \mathbf a \cdot \mathbf a - 2\, \mathbf a \cdot \mathbf b + \mathbf b \cdot \mathbf b
       = a^2 + b^2 - 2\, \mathbf a \cdot \mathbf b       = a^2 + b^2 - 2\, \mathbf a \cdot \mathbf b
-    \\+    \\[2mm]
     \Rightarrow\quad     \Rightarrow\quad
-    \mathbf a \cdot \mathbf b = |\mathbf a| \, |\mathbf b| \, \cos\theta+    \mathbf a \cdot \mathbf b &= |\mathbf a| \, |\mathbf b| \, \cos\theta
     \\     \\
 \end{align*} \end{align*}
book/chap2/2.7_the_inner_product.1650663997.txt.gz · Last modified: 2022/04/22 23:46 by jv