book:chap2:2.7_the_inner_product
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
book:chap2:2.7_the_inner_product [2022/04/22 23:46] – jv | book:chap2:2.7_the_inner_product [2024/12/03 23:28] (current) – jv | ||
---|---|---|---|
Line 41: | Line 41: | ||
$\langle \mathbf v \mid \mathbf v \rangle = 0 \; | $\langle \mathbf v \mid \mathbf v \rangle = 0 \; | ||
- | For a vector space over $\mathbb{C}$ the requirement a) is replaced by | + | For a vector space over $\mathbb{C}$ |
+ | Moreover, | ||
a) conjugate symmetry: | a) conjugate symmetry: | ||
$\langle \mathbf v \mid \mathbf w \rangle = \overline{\langle \mathbf w \mid \mathbf v \rangle}$ | $\langle \mathbf v \mid \mathbf w \rangle = \overline{\langle \mathbf w \mid \mathbf v \rangle}$ | ||
- | and the constant | + | such that $\langle \mathbf v \mid \mathbf v \rangle$ is a real number. |
</ | </ | ||
Line 109: | Line 110: | ||
c^2 = a^2 + b^2 - 2\, | c^2 = a^2 + b^2 - 2\, | ||
\end{align*} | \end{align*} | ||
- | Let now $a$, $b$, and $c$ be the length of the vectors $\mathbf a$, $\mathbf b$ and $\mathbf c = \mathbf | + | Let now $a$, $b$, and $c$ be the length of the vectors $\mathbf a$, $\mathbf b$ and $\mathbf c = \mathbf |
as shown in [[# | as shown in [[# | ||
Then we have | Then we have | ||
Line 115: | Line 116: | ||
a^2 + b^2 - 2\, | a^2 + b^2 - 2\, | ||
&= c^2 = \mathbf c \cdot \mathbf c | &= c^2 = \mathbf c \cdot \mathbf c | ||
+ | = (\mathbf b - \mathbf a) \cdot (\mathbf b - \mathbf a) | ||
= (\mathbf a - \mathbf b) \cdot (\mathbf a - \mathbf b) | = (\mathbf a - \mathbf b) \cdot (\mathbf a - \mathbf b) | ||
\\ | \\ | ||
&= \mathbf a \cdot \mathbf a - 2\, \mathbf a \cdot \mathbf b + \mathbf b \cdot \mathbf b | &= \mathbf a \cdot \mathbf a - 2\, \mathbf a \cdot \mathbf b + \mathbf b \cdot \mathbf b | ||
= a^2 + b^2 - 2\, \mathbf a \cdot \mathbf b | = a^2 + b^2 - 2\, \mathbf a \cdot \mathbf b | ||
- | \\ | + | \\[2mm] |
\Rightarrow\quad | \Rightarrow\quad | ||
- | \mathbf a \cdot \mathbf b = |\mathbf a| \, |\mathbf b| \, \cos\theta | + | \mathbf a \cdot \mathbf b &= |\mathbf a| \, |\mathbf b| \, \cos\theta |
\\ | \\ | ||
\end{align*} | \end{align*} |
book/chap2/2.7_the_inner_product.1650663997.txt.gz · Last modified: 2022/04/22 23:46 by jv