Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

User Tools

Site Tools


book:chap2:2.7_the_inner_product

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
book:chap2:2.7_the_inner_product [2022/04/01 21:01] jvbook:chap2:2.7_the_inner_product [2024/12/03 23:28] (current) jv
Line 32: Line 32:
  
 b)  linearity in the first argument:  b)  linearity in the first argument: 
-$\langle c \\mathbf v \mid \mathbf w \rangle = c \; \langle \mathbf v \mid \mathbf w \rangle$ \\ +$\langle c \odot \mathbf v \mid \mathbf w \rangle = c \; \langle \mathbf v \mid \mathbf w \rangle$ \\ 
-and $\langle \mathbf u \mathbf v \mid \mathbf w \rangle = \langle \mathbf u \mid \mathbf w \rangle + \langle \mathbf v \mid \mathbf w \rangle$\\+and $\langle \mathbf u \oplus \mathbf v \mid \mathbf w \rangle = \langle \mathbf u \mid \mathbf w \rangle + \langle \mathbf v \mid \mathbf w \rangle$\\
  
 c)  positivity:  c)  positivity: 
Line 41: Line 41:
 $\langle \mathbf v \mid \mathbf v \rangle = 0 \;\Leftrightarrow\;  \mathbf v = \mathbf 0$\\ $\langle \mathbf v \mid \mathbf v \rangle = 0 \;\Leftrightarrow\;  \mathbf v = \mathbf 0$\\
  
-For a vector space over $\mathbb{C}$ the requirement a) is replaced by+For a vector space over $\mathbb{C}$ the inner product returns a complex number, and the constant $c$ is a complex number. 
 +Moreover, the requirement a) is replaced by
  
 a)  conjugate symmetry:  a)  conjugate symmetry: 
 $\langle \mathbf v \mid \mathbf w \rangle = \overline{\langle \mathbf w \mid \mathbf v \rangle}$ $\langle \mathbf v \mid \mathbf w \rangle = \overline{\langle \mathbf w \mid \mathbf v \rangle}$
  
-and the constant $c$ is a complex number.+such that $\langle \mathbf v \mid \mathbf v \rangle$ is a real number.
 </WRAP> </WRAP>
  
Line 58: Line 59:
 Conjugate symmetry and linearity for the first argument imply the following relations for the second argument Conjugate symmetry and linearity for the first argument imply the following relations for the second argument
 \begin{align*} \begin{align*}
-    \langle \mathbf v \mid c \\mathbf w \rangle +    \langle \mathbf v \mid c \odot \mathbf w \rangle 
-    &= \overline{\langle c \\mathbf w \mid \mathbf v \rangle}+    &= \overline{\langle c \odot \mathbf w \mid \mathbf v \rangle}
     = \bar{c} \;\overline{\langle \mathbf w \mid \mathbf v \rangle}     = \bar{c} \;\overline{\langle \mathbf w \mid \mathbf v \rangle}
     = \bar{c} \; \langle \mathbf v \mid \mathbf w \rangle     = \bar{c} \; \langle \mathbf v \mid \mathbf w \rangle
 \end{align*} \end{align*}
 \begin{align*}  \begin{align*} 
-    \langle \mathbf u \mid \mathbf v \\mathbf w \rangle +    \langle \mathbf u \mid \mathbf v \oplus \mathbf w \rangle 
-    &= \overline{\langle \mathbf v \mathbf w \mid \mathbf u \rangle}+    &= \overline{\langle \mathbf v \oplus \mathbf w \mid \mathbf u \rangle}
     = \overline{\langle \mathbf v \mid \mathbf u \rangle} + \overline{\langle \mathbf w \mid \mathbf u \rangle}     = \overline{\langle \mathbf v \mid \mathbf u \rangle} + \overline{\langle \mathbf w \mid \mathbf u \rangle}
     = \langle \mathbf u \mid \mathbf v \rangle + \langle \mathbf u \mid \mathbf w \rangle     = \langle \mathbf u \mid \mathbf v \rangle + \langle \mathbf u \mid \mathbf w \rangle
 \end{align*} \end{align*}
-  
 </wrap> </wrap>
  
Line 110: Line 110:
     c^2 = a^2 + b^2 - 2\,a\,b\,\cos\theta     c^2 = a^2 + b^2 - 2\,a\,b\,\cos\theta
 \end{align*} \end{align*}
-Let now $a$, $b$, and $c$ be the length of the vectors $\mathbf a$, $\mathbf b$ and $\mathbf c = \mathbf - \mathbf b$,+Let now $a$, $b$, and $c$ be the length of the vectors $\mathbf a$, $\mathbf b$ and $\mathbf c = \mathbf - \mathbf a$,
 as shown in [[#fig_scalarProductCosSetup |Figure 2.13]]. as shown in [[#fig_scalarProductCosSetup |Figure 2.13]].
 Then we have Then we have
Line 116: Line 116:
     a^2 + b^2 - 2\,a\,b\,\cos\theta     a^2 + b^2 - 2\,a\,b\,\cos\theta
     &= c^2 = \mathbf c \cdot \mathbf c     &= c^2 = \mathbf c \cdot \mathbf c
 +      = (\mathbf b - \mathbf a) \cdot  (\mathbf b - \mathbf a)
       = (\mathbf a - \mathbf b) \cdot  (\mathbf a - \mathbf b)       = (\mathbf a - \mathbf b) \cdot  (\mathbf a - \mathbf b)
     \\     \\
     &= \mathbf a \cdot \mathbf a - 2\, \mathbf a \cdot \mathbf b + \mathbf b \cdot \mathbf b     &= \mathbf a \cdot \mathbf a - 2\, \mathbf a \cdot \mathbf b + \mathbf b \cdot \mathbf b
       = a^2 + b^2 - 2\, \mathbf a \cdot \mathbf b       = a^2 + b^2 - 2\, \mathbf a \cdot \mathbf b
-    \\+    \\[2mm]
     \Rightarrow\quad     \Rightarrow\quad
-    \mathbf a \cdot \mathbf b = |\mathbf a| \, |\mathbf b| \, \cos\theta+    \mathbf a \cdot \mathbf b &= |\mathbf a| \, |\mathbf b| \, \cos\theta
     \\     \\
 \end{align*} \end{align*}
book/chap2/2.7_the_inner_product.1648839686.txt.gz · Last modified: 2022/04/01 21:01 by jv