book:chap2:2.7_the_inner_product
Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
book:chap2:2.7_the_inner_product [2021/11/06 14:09] – created abril | book:chap2:2.7_the_inner_product [2024/12/03 23:28] (current) – jv | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | [[forcestorques|2. Balancing Forces and Torques]] | ||
+ | * [[ 2.1 Motivation and Outline| 2.1 Motivation and outline: forces are vectors ]] | ||
+ | * [[ 2.2 Sets| 2.2 Sets ]] | ||
+ | * [[ 2.3 Groups| 2.3 Groups ]] | ||
+ | * [[ 2.4 Fields| 2.4 Fields ]] | ||
+ | * [[ 2.5 Vector spaces| 2.5 Vector spaces ]] | ||
+ | * [[ 2.6 Physics application balancing forces| 2.6. Physics application: | ||
+ | * ** 2.7 The inner product ** | ||
+ | * [[ 2.8 Cartesian coordinates | 2.8 Cartesian coordinates]] | ||
+ | * [[ 2.9 Cross products --- torques| 2.9 Cross products — torques ]] | ||
+ | * [[ 2.10 Worked example Calder' | ||
+ | * [[ 2.11 Problems| 2.11 Problems ]] | ||
+ | * [[ 2.12 Further reading| 2.12 Further reading ]] | ||
+ | |||
+ | ---- | ||
+ | |||
===== 2.7 The inner product ===== | ===== 2.7 The inner product ===== | ||
Line 16: | Line 32: | ||
b) linearity in the first argument: | b) linearity in the first argument: | ||
- | $\langle c \, \mathbf v \mid \mathbf w \rangle = c \; \langle \mathbf v \mid \mathbf w \rangle$ \\ | + | $\langle c \odot \mathbf v \mid \mathbf w \rangle = c \; \langle \mathbf v \mid \mathbf w \rangle$ \\ |
- | and $\langle \mathbf u + \mathbf v \mid \mathbf w \rangle = \langle \mathbf u \mid \mathbf w \rangle + \langle \mathbf v \mid \mathbf w \rangle$\\ | + | and $\langle \mathbf u \oplus |
c) positivity: | c) positivity: | ||
Line 25: | Line 41: | ||
$\langle \mathbf v \mid \mathbf v \rangle = 0 \; | $\langle \mathbf v \mid \mathbf v \rangle = 0 \; | ||
- | For a vector space over $\mathbb{C}$ the requirement a) is replaced by | + | For a vector space over $\mathbb{C}$ |
+ | Moreover, | ||
a) conjugate symmetry: | a) conjugate symmetry: | ||
$\langle \mathbf v \mid \mathbf w \rangle = \overline{\langle \mathbf w \mid \mathbf v \rangle}$ | $\langle \mathbf v \mid \mathbf w \rangle = \overline{\langle \mathbf w \mid \mathbf v \rangle}$ | ||
- | and the constant | + | such that $\langle \mathbf v \mid \mathbf v \rangle$ is a real number. |
</ | </ | ||
Line 42: | Line 59: | ||
Conjugate symmetry and linearity for the first argument imply the following relations for the second argument | Conjugate symmetry and linearity for the first argument imply the following relations for the second argument | ||
\begin{align*} | \begin{align*} | ||
- | \langle \mathbf v \mid c \, \mathbf w \rangle | + | \langle \mathbf v \mid c \odot \mathbf w \rangle |
- | &= \overline{\langle c \, \mathbf w \mid \mathbf v \rangle} | + | &= \overline{\langle c \odot \mathbf w \mid \mathbf v \rangle} |
= \bar{c} \; | = \bar{c} \; | ||
= \bar{c} \; \langle \mathbf v \mid \mathbf w \rangle | = \bar{c} \; \langle \mathbf v \mid \mathbf w \rangle | ||
\end{align*} | \end{align*} | ||
\begin{align*} | \begin{align*} | ||
- | \langle \mathbf u \mid \mathbf v + \, \mathbf w \rangle | + | \langle \mathbf u \mid \mathbf v \oplus \mathbf w \rangle |
- | &= \overline{\langle \mathbf v + \mathbf w \mid \mathbf u \rangle} | + | &= \overline{\langle \mathbf v \oplus |
= \overline{\langle \mathbf v \mid \mathbf u \rangle} + \overline{\langle \mathbf w \mid \mathbf u \rangle} | = \overline{\langle \mathbf v \mid \mathbf u \rangle} + \overline{\langle \mathbf w \mid \mathbf u \rangle} | ||
= \langle \mathbf u \mid \mathbf v \rangle + \langle \mathbf u \mid \mathbf w \rangle | = \langle \mathbf u \mid \mathbf v \rangle + \langle \mathbf u \mid \mathbf w \rangle | ||
\end{align*} | \end{align*} | ||
- | |||
</ | </ | ||
Line 94: | Line 110: | ||
c^2 = a^2 + b^2 - 2\, | c^2 = a^2 + b^2 - 2\, | ||
\end{align*} | \end{align*} | ||
- | Let now $a$, $b$, and $c$ be the length of the vectors $\mathbf a$, $\mathbf b$ and $\mathbf c = \mathbf | + | Let now $a$, $b$, and $c$ be the length of the vectors $\mathbf a$, $\mathbf b$ and $\mathbf c = \mathbf |
as shown in [[# | as shown in [[# | ||
Then we have | Then we have | ||
Line 100: | Line 116: | ||
a^2 + b^2 - 2\, | a^2 + b^2 - 2\, | ||
&= c^2 = \mathbf c \cdot \mathbf c | &= c^2 = \mathbf c \cdot \mathbf c | ||
+ | = (\mathbf b - \mathbf a) \cdot (\mathbf b - \mathbf a) | ||
= (\mathbf a - \mathbf b) \cdot (\mathbf a - \mathbf b) | = (\mathbf a - \mathbf b) \cdot (\mathbf a - \mathbf b) | ||
\\ | \\ | ||
&= \mathbf a \cdot \mathbf a - 2\, \mathbf a \cdot \mathbf b + \mathbf b \cdot \mathbf b | &= \mathbf a \cdot \mathbf a - 2\, \mathbf a \cdot \mathbf b + \mathbf b \cdot \mathbf b | ||
= a^2 + b^2 - 2\, \mathbf a \cdot \mathbf b | = a^2 + b^2 - 2\, \mathbf a \cdot \mathbf b | ||
- | \\ | + | \\[2mm] |
\Rightarrow\quad | \Rightarrow\quad | ||
- | \mathbf a \cdot \mathbf b = |\mathbf a| \, |\mathbf b| \, \cos\theta | + | \mathbf a \cdot \mathbf b &= |\mathbf a| \, |\mathbf b| \, \cos\theta |
\\ | \\ | ||
\end{align*} | \end{align*} |
book/chap2/2.7_the_inner_product.1636204152.txt.gz · Last modified: 2021/11/06 14:09 by abril