Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

User Tools

Site Tools


book:chap2:2.7_the_inner_product

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
book:chap2:2.7_the_inner_product [2021/11/06 14:09] – created abrilbook:chap2:2.7_the_inner_product [2024/12/03 23:28] (current) jv
Line 1: Line 1:
 +[[forcestorques|2. Balancing Forces and Torques]]
 +  * [[  2.1 Motivation and Outline| 2.1 Motivation and outline: forces are vectors ]]
 +  * [[  2.2 Sets| 2.2 Sets ]]
 +  * [[  2.3 Groups| 2.3 Groups ]]
 +  * [[  2.4 Fields| 2.4 Fields ]]
 +  * [[  2.5 Vector spaces| 2.5 Vector spaces ]]
 +  * [[  2.6 Physics application balancing forces| 2.6.  Physics application: balancing forces]]
 +  * ** 2.7 The inner product **
 +  * [[  2.8 Cartesian coordinates | 2.8 Cartesian coordinates]]
 +  * [[  2.9 Cross products --- torques| 2.9 Cross products — torques ]]
 +  * [[ 2.10 Worked example Calder's mobiles| 2.10 Worked example: Calder's mobiles ]]
 +  * [[ 2.11 Problems| 2.11 Problems ]]
 +  * [[ 2.12 Further reading| 2.12 Further reading ]]
 +
 +----
 +
 ===== 2.7 The inner product ===== ===== 2.7 The inner product =====
  
Line 16: Line 32:
  
 b)  linearity in the first argument:  b)  linearity in the first argument: 
-$\langle c \\mathbf v \mid \mathbf w \rangle = c \; \langle \mathbf v \mid \mathbf w \rangle$ \\ +$\langle c \odot \mathbf v \mid \mathbf w \rangle = c \; \langle \mathbf v \mid \mathbf w \rangle$ \\ 
-and $\langle \mathbf u \mathbf v \mid \mathbf w \rangle = \langle \mathbf u \mid \mathbf w \rangle + \langle \mathbf v \mid \mathbf w \rangle$\\+and $\langle \mathbf u \oplus \mathbf v \mid \mathbf w \rangle = \langle \mathbf u \mid \mathbf w \rangle + \langle \mathbf v \mid \mathbf w \rangle$\\
  
 c)  positivity:  c)  positivity: 
Line 25: Line 41:
 $\langle \mathbf v \mid \mathbf v \rangle = 0 \;\Leftrightarrow\;  \mathbf v = \mathbf 0$\\ $\langle \mathbf v \mid \mathbf v \rangle = 0 \;\Leftrightarrow\;  \mathbf v = \mathbf 0$\\
  
-For a vector space over $\mathbb{C}$ the requirement a) is replaced by+For a vector space over $\mathbb{C}$ the inner product returns a complex number, and the constant $c$ is a complex number. 
 +Moreover, the requirement a) is replaced by
  
 a)  conjugate symmetry:  a)  conjugate symmetry: 
 $\langle \mathbf v \mid \mathbf w \rangle = \overline{\langle \mathbf w \mid \mathbf v \rangle}$ $\langle \mathbf v \mid \mathbf w \rangle = \overline{\langle \mathbf w \mid \mathbf v \rangle}$
  
-and the constant $c$ is a complex number.+such that $\langle \mathbf v \mid \mathbf v \rangle$ is a real number.
 </WRAP> </WRAP>
  
Line 42: Line 59:
 Conjugate symmetry and linearity for the first argument imply the following relations for the second argument Conjugate symmetry and linearity for the first argument imply the following relations for the second argument
 \begin{align*} \begin{align*}
-    \langle \mathbf v \mid c \\mathbf w \rangle +    \langle \mathbf v \mid c \odot \mathbf w \rangle 
-    &= \overline{\langle c \\mathbf w \mid \mathbf v \rangle}+    &= \overline{\langle c \odot \mathbf w \mid \mathbf v \rangle}
     = \bar{c} \;\overline{\langle \mathbf w \mid \mathbf v \rangle}     = \bar{c} \;\overline{\langle \mathbf w \mid \mathbf v \rangle}
     = \bar{c} \; \langle \mathbf v \mid \mathbf w \rangle     = \bar{c} \; \langle \mathbf v \mid \mathbf w \rangle
 \end{align*} \end{align*}
 \begin{align*}  \begin{align*} 
-    \langle \mathbf u \mid \mathbf v \\mathbf w \rangle +    \langle \mathbf u \mid \mathbf v \oplus \mathbf w \rangle 
-    &= \overline{\langle \mathbf v \mathbf w \mid \mathbf u \rangle}+    &= \overline{\langle \mathbf v \oplus \mathbf w \mid \mathbf u \rangle}
     = \overline{\langle \mathbf v \mid \mathbf u \rangle} + \overline{\langle \mathbf w \mid \mathbf u \rangle}     = \overline{\langle \mathbf v \mid \mathbf u \rangle} + \overline{\langle \mathbf w \mid \mathbf u \rangle}
     = \langle \mathbf u \mid \mathbf v \rangle + \langle \mathbf u \mid \mathbf w \rangle     = \langle \mathbf u \mid \mathbf v \rangle + \langle \mathbf u \mid \mathbf w \rangle
 \end{align*} \end{align*}
-  
 </wrap> </wrap>
  
Line 94: Line 110:
     c^2 = a^2 + b^2 - 2\,a\,b\,\cos\theta     c^2 = a^2 + b^2 - 2\,a\,b\,\cos\theta
 \end{align*} \end{align*}
-Let now $a$, $b$, and $c$ be the length of the vectors $\mathbf a$, $\mathbf b$ and $\mathbf c = \mathbf - \mathbf b$,+Let now $a$, $b$, and $c$ be the length of the vectors $\mathbf a$, $\mathbf b$ and $\mathbf c = \mathbf - \mathbf a$,
 as shown in [[#fig_scalarProductCosSetup |Figure 2.13]]. as shown in [[#fig_scalarProductCosSetup |Figure 2.13]].
 Then we have Then we have
Line 100: Line 116:
     a^2 + b^2 - 2\,a\,b\,\cos\theta     a^2 + b^2 - 2\,a\,b\,\cos\theta
     &= c^2 = \mathbf c \cdot \mathbf c     &= c^2 = \mathbf c \cdot \mathbf c
 +      = (\mathbf b - \mathbf a) \cdot  (\mathbf b - \mathbf a)
       = (\mathbf a - \mathbf b) \cdot  (\mathbf a - \mathbf b)       = (\mathbf a - \mathbf b) \cdot  (\mathbf a - \mathbf b)
     \\     \\
     &= \mathbf a \cdot \mathbf a - 2\, \mathbf a \cdot \mathbf b + \mathbf b \cdot \mathbf b     &= \mathbf a \cdot \mathbf a - 2\, \mathbf a \cdot \mathbf b + \mathbf b \cdot \mathbf b
       = a^2 + b^2 - 2\, \mathbf a \cdot \mathbf b       = a^2 + b^2 - 2\, \mathbf a \cdot \mathbf b
-    \\+    \\[2mm]
     \Rightarrow\quad     \Rightarrow\quad
-    \mathbf a \cdot \mathbf b = |\mathbf a| \, |\mathbf b| \, \cos\theta+    \mathbf a \cdot \mathbf b &= |\mathbf a| \, |\mathbf b| \, \cos\theta
     \\     \\
 \end{align*} \end{align*}
book/chap2/2.7_the_inner_product.1636204152.txt.gz · Last modified: 2021/11/06 14:09 by abril