Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

User Tools

Site Tools


book:chap2:2.5_vector_spaces

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
book:chap2:2.5_vector_spaces [2022/04/01 21:00] jvbook:chap2:2.5_vector_spaces [2024/11/10 20:52] (current) jv
Line 102: Line 102:
 </WRAP> </WRAP>
  
-<WRAP box round>**Example 2.16** <wrap em>$2\times 3$ matrices: summation and multiplication with a scalar</wrap> \\ +<WRAP box round>**Example 2.16** <wrap em>$3\times 2$ matrices: summation and multiplication with a scalar</wrap> \\ 
-To be specific we provide here the sum of two $2\times 3$ matrices and the multiplication by a factor of $\pi$.+To be specific we provide here the sum of two $3\times 2$ matrices and the multiplication by a factor of $\pi$.
 Let Let
 \begin{align*} \begin{align*}
Line 156: Line 156:
     \odot &: \mathbb{M}^{N\times L} \times \mathbb{M}^{L\times M}\to \mathbb{M}^{N\times M}     \odot &: \mathbb{M}^{N\times L} \times \mathbb{M}^{L\times M}\to \mathbb{M}^{N\times M}
     \\     \\
-    \forall A \in \mathbb{M}^{N\times L}, B \in \times \mathbb{M}^{L\times M} &:+    \forall A \in \mathbb{M}^{N\times L}, \: B \in \mathbb{M}^{L\times M} &:
     A \odot B = C = (c_{ij}) = \left( \sum_{k=1}^L a_{ik} b_{kj} \right)     A \odot B = C = (c_{ij}) = \left( \sum_{k=1}^L a_{ik} b_{kj} \right)
 \end{align*} \end{align*}
book/chap2/2.5_vector_spaces.1648839642.txt.gz · Last modified: 2022/04/01 21:00 by jv