Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

User Tools

Site Tools


book:chap2:2.5_vector_spaces

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
book:chap2:2.5_vector_spaces [2021/11/01 01:09] – [2.5.1 Self Test] jvbook:chap2:2.5_vector_spaces [2024/11/10 20:52] (current) jv
Line 1: Line 1:
 +[[forcestorques|2. Balancing Forces and Torques]]
 +  * [[  2.1 Motivation and Outline| 2.1 Motivation and outline: forces are vectors ]]
 +  * [[  2.2 Sets| 2.2 Sets ]]
 +  * [[  2.3 Groups| 2.3 Groups ]]
 +  * [[  2.4 Fields| 2.4 Fields ]]
 +  * ** 2.5 Vector spaces **
 +  * [[  2.6 Physics application balancing forces| 2.6.  Physics application: balancing forces]]
 +  * [[  2.7 The inner product | 2.7 The inner product]]
 +  * [[  2.8 Cartesian coordinates | 2.8 Cartesian coordinates]]
 +  * [[  2.9 Cross products --- torques| 2.9 Cross products — torques ]]
 +  * [[ 2.10 Worked example Calder's mobiles| 2.10 Worked example: Calder's mobiles ]]
 +  * [[ 2.11 Problems| 2.11 Problems ]]
 +  * [[ 2.12 Further reading| 2.12 Further reading ]]
 +
 +----
 +
 ===== 2.5 Vector spaces ===== ===== 2.5 Vector spaces =====
  
Line 86: Line 102:
 </WRAP> </WRAP>
  
-<WRAP box round>**Example 2.16** <wrap em>$2\times 3$ matrices: summation and multiplication with a scalar</wrap> \\ +<WRAP box round>**Example 2.16** <wrap em>$3\times 2$ matrices: summation and multiplication with a scalar</wrap> \\ 
-To be specific we provide here the sum of two $2\times 3$ matrices and the multiplication by a factor of $\pi$.+To be specific we provide here the sum of two $3\times 2$ matrices and the multiplication by a factor of $\pi$.
 Let Let
 \begin{align*} \begin{align*}
Line 140: Line 156:
     \odot &: \mathbb{M}^{N\times L} \times \mathbb{M}^{L\times M}\to \mathbb{M}^{N\times M}     \odot &: \mathbb{M}^{N\times L} \times \mathbb{M}^{L\times M}\to \mathbb{M}^{N\times M}
     \\     \\
-    \forall A \in \mathbb{M}^{N\times L}, B \in \times \mathbb{M}^{L\times M} &:+    \forall A \in \mathbb{M}^{N\times L}, \: B \in \mathbb{M}^{L\times M} &:
     A \odot B = C = (c_{ij}) = \left( \sum_{k=1}^L a_{ik} b_{kj} \right)     A \odot B = C = (c_{ij}) = \left( \sum_{k=1}^L a_{ik} b_{kj} \right)
 \end{align*} \end{align*}
book/chap2/2.5_vector_spaces.1635725346.txt.gz · Last modified: 2021/11/01 01:09 by jv