book:chap2:2.5_vector_spaces
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
book:chap2:2.5_vector_spaces [2021/10/30 00:26] – [2.5.1 Self Test] jv | book:chap2:2.5_vector_spaces [2024/11/10 20:52] (current) – jv | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | [[forcestorques|2. Balancing Forces and Torques]] | ||
+ | * [[ 2.1 Motivation and Outline| 2.1 Motivation and outline: forces are vectors ]] | ||
+ | * [[ 2.2 Sets| 2.2 Sets ]] | ||
+ | * [[ 2.3 Groups| 2.3 Groups ]] | ||
+ | * [[ 2.4 Fields| 2.4 Fields ]] | ||
+ | * ** 2.5 Vector spaces ** | ||
+ | * [[ 2.6 Physics application balancing forces| 2.6. Physics application: | ||
+ | * [[ 2.7 The inner product | 2.7 The inner product]] | ||
+ | * [[ 2.8 Cartesian coordinates | 2.8 Cartesian coordinates]] | ||
+ | * [[ 2.9 Cross products --- torques| 2.9 Cross products — torques ]] | ||
+ | * [[ 2.10 Worked example Calder' | ||
+ | * [[ 2.11 Problems| 2.11 Problems ]] | ||
+ | * [[ 2.12 Further reading| 2.12 Further reading ]] | ||
+ | |||
+ | ---- | ||
+ | |||
===== 2.5 Vector spaces ===== | ===== 2.5 Vector spaces ===== | ||
Line 86: | Line 102: | ||
</ | </ | ||
- | <WRAP box round> | + | <WRAP box round> |
- | To be specific we provide here the sum of two $2\times | + | To be specific we provide here the sum of two $3\times |
Let | Let | ||
\begin{align*} | \begin{align*} | ||
Line 140: | Line 156: | ||
\odot &: \mathbb{M}^{N\times L} \times \mathbb{M}^{L\times M}\to \mathbb{M}^{N\times M} | \odot &: \mathbb{M}^{N\times L} \times \mathbb{M}^{L\times M}\to \mathbb{M}^{N\times M} | ||
\\ | \\ | ||
- | \forall A \in \mathbb{M}^{N\times L}, B \in \times | + | \forall A \in \mathbb{M}^{N\times L}, \: B \in \mathbb{M}^{L\times M} &: |
A \odot B = C = (c_{ij}) = \left( \sum_{k=1}^L a_{ik} b_{kj} \right) | A \odot B = C = (c_{ij}) = \left( \sum_{k=1}^L a_{ik} b_{kj} \right) | ||
\end{align*} | \end{align*} | ||
Line 240: | Line 256: | ||
\end{align*} | \end{align*} | ||
- | * 1. Let the action $\circ$ | + | * 1. Let the action $\circ$ |
* 2. Show that the group has five non-trivial elements $s_1, \dots s_5$ that are self inverse: | * 2. Show that the group has five non-trivial elements $s_1, \dots s_5$ that are self inverse: | ||
Line 257: | Line 273: | ||
\end{align*} | \end{align*} | ||
- | **Hint: ** The action of the matrix on the vector defined as follows | + | ++++ $\quad\quad\quad$Hint: | $\qquad\qquad\quad$ |
+ | The action of the matrix on the vector | ||
\begin{align*} | \begin{align*} | ||
(v_1, v_2) \circ \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} | (v_1, v_2) \circ \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} | ||
Line 265: | Line 282: | ||
| | ||
\end{align*} | \end{align*} | ||
+ | ++++ | ||
* 5. What is the geometric interpretation of the group $M$? Illustrate the action of the group elements in terms of transformations of a suitably chosen geometric object. | * 5. What is the geometric interpretation of the group $M$? Illustrate the action of the group elements in terms of transformations of a suitably chosen geometric object. |
book/chap2/2.5_vector_spaces.1635546378.txt.gz · Last modified: 2021/10/30 00:26 by jv