Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

User Tools

Site Tools


book:chap2:2.4_fields

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
book:chap2:2.4_fields [2021/10/26 23:23] jvbook:chap2:2.4_fields [2024/11/09 10:12] (current) jv
Line 1: Line 1:
 +[[forcestorques|2. Balancing Forces and Torques]]
 +  * [[  2.1 Motivation and Outline| 2.1 Motivation and outline: forces are vectors ]]
 +  * [[  2.2 Sets| 2.2 Sets ]]
 +  * [[  2.3 Groups| 2.3 Groups ]]
 +  * ** 2.4 Fields **
 +  * [[  2.5 Vector spaces| 2.5 Vector spaces ]]
 +  * [[  2.6 Physics application balancing forces| 2.6.  Physics application: balancing forces]]
 +  * [[  2.7 The inner product | 2.7 The inner product]]
 +  * [[  2.8 Cartesian coordinates | 2.8 Cartesian coordinates]]
 +  * [[  2.9 Cross products --- torques| 2.9 Cross products — torques ]]
 +  * [[ 2.10 Worked example Calder's mobiles| 2.10 Worked example: Calder's mobiles ]]
 +  * [[ 2.11 Problems| 2.11 Problems ]]
 +  * [[ 2.12 Further reading| 2.12 Further reading ]]
 +
 +----
 +
 ===== 2.4 Fields ===== ===== 2.4 Fields =====
  
Line 62: Line 78:
 </WRAP> </WRAP>
  
-<WRAP box round>**Example 2.13** <wrap em>Complex numbers are a field</wrap> \\+<WRAP box round #bsp_field_complex_numbers >**Example 2.13** <wrap em>Complex numbers are a field</wrap> \\
 a) The sum of two complex numbers $z_1 = x_1 + \mathrm{i} y_1$ and \\ a) The sum of two complex numbers $z_1 = x_1 + \mathrm{i} y_1$ and \\
 $z_2 = x_2 + \mathrm{i} y_2$ amounts to $z_2 = x_2 + \mathrm{i} y_2$ amounts to
Line 78: Line 94:
     & = ( x_1 + \mathrm{i} y_1 ) \cdot ( x_2 + \mathrm{i} y_2 )     & = ( x_1 + \mathrm{i} y_1 ) \cdot ( x_2 + \mathrm{i} y_2 )
     \\     \\
-    & = x_1 \, x_2 + \mathrm{i} y_1 \, x_2 + \mathrm{i} y_1 \, x_2 + \mathrm{i}^2 \, y_1\, y_2)+    & = x_1 \, x_2 + x_1\, (\mathrm{i} y_2) (\mathrm{i} y_1\, x_2 + (\mathrm{i} y_1)\, (\mathrm{i} y_2)
     \\     \\
-    &= ( x_1\, x_2 - y_1\,y_2 ) + \mathrm{i} \, (y_1 \, x_2 x_1 \, y_2)+    &= ( x_1\, x_2 - y_1\,y_2 ) + \mathrm{i} \, (x_1 \, y_2 y_1 \, x_2)
 \end{align*} \end{align*}
 Checking the group axioms based on this representation of the complex numbers is tedious. Checking the group axioms based on this representation of the complex numbers is tedious.
book/chap2/2.4_fields.1635283382.txt.gz · Last modified: 2021/10/26 23:23 by jv