Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

User Tools

Site Tools


book:chap2:2.4_fields

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
book:chap2:2.4_fields [2021/10/26 23:21] jvbook:chap2:2.4_fields [2024/11/09 10:12] (current) jv
Line 1: Line 1:
 +[[forcestorques|2. Balancing Forces and Torques]]
 +  * [[  2.1 Motivation and Outline| 2.1 Motivation and outline: forces are vectors ]]
 +  * [[  2.2 Sets| 2.2 Sets ]]
 +  * [[  2.3 Groups| 2.3 Groups ]]
 +  * ** 2.4 Fields **
 +  * [[  2.5 Vector spaces| 2.5 Vector spaces ]]
 +  * [[  2.6 Physics application balancing forces| 2.6.  Physics application: balancing forces]]
 +  * [[  2.7 The inner product | 2.7 The inner product]]
 +  * [[  2.8 Cartesian coordinates | 2.8 Cartesian coordinates]]
 +  * [[  2.9 Cross products --- torques| 2.9 Cross products — torques ]]
 +  * [[ 2.10 Worked example Calder's mobiles| 2.10 Worked example: Calder's mobiles ]]
 +  * [[ 2.11 Problems| 2.11 Problems ]]
 +  * [[ 2.12 Further reading| 2.12 Further reading ]]
 +
 +----
 +
 ===== 2.4 Fields ===== ===== 2.4 Fields =====
  
Line 62: Line 78:
 </WRAP> </WRAP>
  
-<WRAP box round>**Example 2.13** <wrap em>Complex numbers are a field</wrap> \\+<WRAP box round #bsp_field_complex_numbers >**Example 2.13** <wrap em>Complex numbers are a field</wrap> \\
 a) The sum of two complex numbers $z_1 = x_1 + \mathrm{i} y_1$ and \\ a) The sum of two complex numbers $z_1 = x_1 + \mathrm{i} y_1$ and \\
 $z_2 = x_2 + \mathrm{i} y_2$ amounts to $z_2 = x_2 + \mathrm{i} y_2$ amounts to
Line 78: Line 94:
     & = ( x_1 + \mathrm{i} y_1 ) \cdot ( x_2 + \mathrm{i} y_2 )     & = ( x_1 + \mathrm{i} y_1 ) \cdot ( x_2 + \mathrm{i} y_2 )
     \\     \\
-    & = x_1 \, x_2 + \mathrm{i} y_1 \, x_2 + \mathrm{i} y_1 \, x_2 + \mathrm{i}^2 \, y_1\, y_2)+    & = x_1 \, x_2 + x_1\, (\mathrm{i} y_2) (\mathrm{i} y_1\, x_2 + (\mathrm{i} y_1)\, (\mathrm{i} y_2)
     \\     \\
-    &= ( x_1\, x_2 - y_1\,y_2 ) + \mathrm{i} \, (y_1 \, x_2 x_1 \, y_2)+    &= ( x_1\, x_2 - y_1\,y_2 ) + \mathrm{i} \, (x_1 \, y_2 y_1 \, x_2)
 \end{align*} \end{align*}
 Checking the group axioms based on this representation of the complex numbers is tedious. Checking the group axioms based on this representation of the complex numbers is tedious.
 One better adopts a representation in terms of polar coordinates, One better adopts a representation in terms of polar coordinates,
 $z_1 = R_1 \, \mathrm{e}^{\mathrm{i} \varphi_1}$ and $z_2 = R_2 \, \mathrm{e}^{\mathrm{i} \varphi_2}$ $z_1 = R_1 \, \mathrm{e}^{\mathrm{i} \varphi_1}$ and $z_2 = R_2 \, \mathrm{e}^{\mathrm{i} \varphi_2}$
-(see [[#fig_complexEuler|Figure 2.8]]) where (cf [[#groupSelftest-EulerRelation |Problem 2.10]])+(see [[#fig_complexEuler|Figure 2.8]]) where (cf [[#quest_groupSelftest-EulerRelation |Problem 2.10]])
 \begin{align*} \begin{align*}
     z_1 \cdot z_2     z_1 \cdot z_2
Line 137: Line 153:
 ==== 2.4.1 Self Test ==== ==== 2.4.1 Self Test ====
  
-<wrap #groupSelftest-fields >Problem 2.9: ** Checking field axioms **</wrap>\\+<wrap #quest_groupSelftest-fields >Problem 2.9: ** Checking field axioms **</wrap>\\
 Which of the following sets are fields?\\ Which of the following sets are fields?\\
  
Line 148: Line 164:
 ----- -----
  
-<wrap #groupSelftest-EulerRelation >Problem 2.10: ** Euler's equation and trigonometric relations **</wrap>\\+<wrap #quest_groupSelftest-EulerRelation >Problem 2.10: ** Euler's equation and trigonometric relations **</wrap>\\
 Euler's equation $\mathrm{e}^{\mathrm{i} x} = \cos x + \mathrm{i} \: \sin x$ Euler's equation $\mathrm{e}^{\mathrm{i} x} = \cos x + \mathrm{i} \: \sin x$
 relates complex values exponential functions and trigonometric functions. relates complex values exponential functions and trigonometric functions.
book/chap2/2.4_fields.1635283277.txt.gz · Last modified: 2021/10/26 23:21 by jv