Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

User Tools

Site Tools


book:chap2:2.3_groups

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
book:chap2:2.3_groups [2022/04/01 20:25] jvbook:chap2:2.3_groups [2023/10/22 12:53] (current) jv
Line 32: Line 32:
   * **a) **  The set is //closed//:  $\quad \forall g_1, g_2 \in G : g_1 \circ g_2 \in G$.   * **a) **  The set is //closed//:  $\quad \forall g_1, g_2 \in G : g_1 \circ g_2 \in G$.
   * **b) **  The set has a //neutral element//:  $\quad \exists e \in G \; \forall g \in G: e \circ g = g$.   * **b) **  The set has a //neutral element//:  $\quad \exists e \in G \; \forall g \in G: e \circ g = g$.
-  * **c) **  Each element has an //inverse element//:   $\quad \forall g \in G \; \exists i \in G : \circ = e$.+  * **c) **  Each element has an //inverse element//:   $\quad \forall g \in G \; \exists i \in G : \circ = e$.
   * **d) **  The operation $\circ$ is //associative//:   $\quad \forall g_1, g_2, g_3 \in G : ( g_1 \circ g_2 ) \circ g_3 = g_1 \circ ( g_2 \circ g_3 )$.   * **d) **  The operation $\circ$ is //associative//:   $\quad \forall g_1, g_2, g_3 \in G : ( g_1 \circ g_2 ) \circ g_3 = g_1 \circ ( g_2 \circ g_3 )$.
 </WRAP> </WRAP>
Line 96: Line 96:
 </WRAP> </WRAP>
  
 +/*
 <WRAP box round #Example_210>**Example 2.10** <wrap em>Non-commutative groups: edit text fields</wrap> \\ <WRAP box round #Example_210>**Example 2.10** <wrap em>Non-commutative groups: edit text fields</wrap> \\
 We consider the text fields of a fixed length $n$ in an electronic form. We consider the text fields of a fixed length $n$ in an electronic form.
Line 116: Line 117:
 \end{align*} \end{align*}
 </WRAP> </WRAP>
 +*/
  
 <wrap lo>**Remark 2.7.**  Notations and additional properties: <wrap lo>**Remark 2.7.**  Notations and additional properties:
Line 131: Line 132:
 ==== 2.3.3 Self Test ==== ==== 2.3.3 Self Test ====
  
-<wrap #groupSelftest-01 > Problem 2.4: ** Checking group axioms **\\+<WRAP #groupSelftest-01 > Problem 2.4: ** Checking group axioms **\\
 Which of the following sets are groups? Which of the following sets are groups?
  
-<WRAP> +   -  $( \mathbb{N}, + )$ 
-  -  $( \mathbb{N}, + )$ +   -  $( \mathbb{Z}, + )$ 
-  -  $( \mathbb{Z}, + )$ +   -  $( \mathbb{Z}, \cdot )$ 
-  -  $( \mathbb{Z}, \cdot )$ +   -  $( \{+1, -1\}, \cdot )$ 
-  -  $( \{+1, -1\}, \cdot )$ +   -  $( \{ 0 \}, + )$ 
-  -  $( \{ 0 \}, + )$ +   -  :!: $( \{ 1, \dots, 12 \}, \oplus )$ where $\oplus$ refers to adding as we do it on a clock, e.g. $10 \oplus 4 = 2$.
-  -  :!: $( \{ 1, \dots, 12 \}, \oplus )$+
 </WRAP> </WRAP>
- 
-where $\oplus$ in 6) revers to adding as we do it on a clock, e.g. $10 \oplus 4 = 2$.</wrap> 
  
  
Line 154: Line 152:
   -  Verify that the group describes the rotations of an equilateral triangle that interchange the positions of the angles.   -  Verify that the group describes the rotations of an equilateral triangle that interchange the positions of the angles.
   -  Show that there is a bijective map $\mathrm{m}:\{n,l,r\} \to \{0,1,2\}$ with the following property:   -  Show that there is a bijective map $\mathrm{m}:\{n,l,r\} \to \{0,1,2\}$ with the following property:
- +\[  
-<WRAP centeralign> $\forall a,b \in \mathcal G : a \circ b = \bigl( \mathrm{m}(a) + \mathrm{m}(b) \bigr) \mathrm{mod} 3 \,$\\ +\forall a,b \in \mathcal G : \mathrm{m}(a \circ b= \bigl( \mathrm{m}(a) + \mathrm{m}(b) \bigr) \mathrm{mod} 3  
-</WRAP> +\] 
- +We say that the group $\mathcal G$ is isomorphic to the natural numbers with addition modulo 3.((The natural number modulo $n$ amount to $n$ classes that represent the remainder of the numbers after division by $n$.
-We say that the group $\mathcal G$ is isomorphic to the natural numbers with addition addition modulo 3.((The natural number modulo $n$ amount to $n$ classes that represent the remainder of the numbers after division by $n$.+
 For instance, for the natural numbers modulo two the $0$ represents even numbers, and the $1$ odd numbers. For instance, for the natural numbers modulo two the $0$ represents even numbers, and the $1$ odd numbers.
 Similarly, for the natural numbers modulo three the $0$ represents numbers that are divisible by three, Similarly, for the natural numbers modulo three the $0$ represents numbers that are divisible by three,
Line 178: Line 175:
  
 Figure 2.7: Reflections of equilateral triangle with respect to the three symmetry axes form a group with six elements; see [[#problem_27 |Problem 2.7]]. Figure 2.7: Reflections of equilateral triangle with respect to the three symmetry axes form a group with six elements; see [[#problem_27 |Problem 2.7]].
 +\\
 +**Watch out:** in this figure the operations are carried out from left to right: 
 +$ab$ refers here to $b$ after $a$, in contrast to the convention introduced in the beginning of the present section.
 </WRAP> </WRAP>
  
Line 185: Line 185:
 [[#DihedralD6 |Figure 2.7 ]] illustrates the effect of reflections of a triangle with respect to its three symmetry axis. All group elements can be generated by repeated action of two reflections, e.g. those denoted as $a$ and $b$ in the figure. [[#DihedralD6 |Figure 2.7 ]] illustrates the effect of reflections of a triangle with respect to its three symmetry axis. All group elements can be generated by repeated action of two reflections, e.g. those denoted as $a$ and $b$ in the figure.
  
--  Verify that the group properties, [[#defi_group |Definition 2.6]], together with the three additional requirements +   -  Verify that the group properties, [[#defi_group |Definition 2.6]], together with the three additional requirements \[ a \circ a = b \circ b = e \quad\text{and}\quad a \circ b \circ a = b \circ a \circ b \] imply that the group has exactly six elements, \[ \mathcal G = \{ e, a, b, a\circ b, b\circ a, a\circ b\circ a \} \,. \] 
- +   - Work out the group table. 
-<WRAP centeralign> +    Verify by inspection that $e$ is the neutral element for operation from the right //and// from the left. 
-$a \circ a = b \circ b = e \quad\text{and}\quad a \circ b \circ a = b \circ a \circ b+   -  Verify that the group is //not// commutative, and provide an example of a group element where the left inverse and the right inverse differ. 
-</WRAP> +    The group can also be represented in terms of a reflection and the rotations described in [[#groupSelftest-02 |Problen 2.5]]. How would the graphical representation, analogous to [[#DihedralD6 |Figure 2.7]], look like in that case.
- +
-imply that the group has exactly six elements, +
- +
-<WRAP centeralign> +
-$\mathcal G = \{ e, a, b, a\circ b, b\circ a, a\circ b\circ a \} \,.$ +
-</WRAP>+
  
-- Work out the group table.\\ 
--  Verify by inspection that $e$ is the neutral element for operation from the right //and// from the left.\\ 
--  Verify that the group is //not// commutative, and provide an example of a group element where the left inverse and the right inverse differ.\\ 
--  The group can also be represented in terms of a reflection and the rotations described in [[#groupSelftest-02 |Problen 2.5]]. How would the graphical representation, analogous to [[#DihedralD6 |Figure 2.7]], look like in that case. 
  
  
book/chap2/2.3_groups.1648837541.txt.gz · Last modified: 2022/04/01 20:25 by jv