Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

User Tools

Site Tools


book:chap2:2.2_sets

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
book:chap2:2.2_sets [2021/10/26 11:39] abrilbook:chap2:2.2_sets [2022/04/01 20:00] (current) jv
Line 1: Line 1:
 +[[forcestorques|2. Balancing Forces and Torques]]
 +  * [[  2.1 Motivation and Outline| 2.1 Motivation and outline: forces are vectors ]]
 +  * ** 2.2 Sets **
 +  * [[  2.3 Groups| 2.3 Groups ]]
 +  * [[  2.4 Fields| 2.4 Fields ]]
 +  * [[  2.5 Vector spaces| 2.5 Vector spaces ]]
 +  * [[  2.6 Physics application balancing forces| 2.6.  Physics application: balancing forces]]
 +  * [[  2.7 The inner product | 2.7 The inner product]]
 +  * [[  2.8 Cartesian coordinates | 2.8 Cartesian coordinates]]
 +  * [[  2.9 Cross products --- torques| 2.9 Cross products — torques ]]
 +  * [[ 2.10 Worked example Calder's mobiles| 2.10 Worked example: Calder's mobiles ]]
 +  * [[ 2.11 Problems| 2.11 Problems ]]
 +  * [[ 2.12 Further reading| 2.12 Further reading ]]
 +
 +----
 +
 ===== 2.2 Sets ===== ===== 2.2 Sets =====
  
Line 211: Line 227:
   *  //Union//:  $M_1 \bigcup M_2 = \left\{ m   \; \vert \;  m \in M_1 \lor m \in M_2 \right\}$,   *  //Union//:  $M_1 \bigcup M_2 = \left\{ m   \; \vert \;  m \in M_1 \lor m \in M_2 \right\}$,
   *  //Difference//:  $M_1 \backslash M_2 = \left\{ m   \; \vert \;  m \in M_1 \land m \notin M_2 \right\}$,   *  //Difference//:  $M_1 \backslash M_2 = \left\{ m   \; \vert \;  m \in M_1 \land m \notin M_2 \right\}$,
-  *  The //complement// of a set $M$ in a //universe// $U$ is defined for subsets $M \subseteq U$ +  *  The //complement// of a set $M$ in a //universe// $U$ is defined for subsets $M \subseteq U$ as $M^{C} = \left\{ m \in U   \; \vert \;  m \notin M \right\} = U \backslash M$. 
-as   $M^{C} = \left\{ m \in U   \; \vert \;  m \notin M \right\} = U \backslash M$. +  *  The //Cartesian product of two sets $M_1$ and $M_2$// is defined as the set of ordered pairs $(a, \, b)$ of elements $a \in M_1$ and \\ $b \in M_2$:  $\displaystyle M_1 \times M_2 = \left\{ (a, \, b)   \; \vert \;  a \in M_1, \, b \in M_2 \right\} $.
-  *  The //Cartesian product of two sets $M_1$ and $M_2$// is defined as the set of ordered pairs +
-$(a, \, b)$ of elements $a \in M_1$ and \\ $b \in M_2$:  $\displaystyle M_1 \times M_2 = \left\{ (a, \, b)   \; \vert \;  a \in M_1, \, b \in M_2 \right\} $.+
  
 A graphical illustration of the operations is provided in A graphical illustration of the operations is provided in
Line 225: Line 239:
 The set of non-female participants is  $P \backslash F$. The set of non-female participants is  $P \backslash F$.
 The set of heterosexual couples in the class is a subset of the Cartesian product $F \times M$.  The set of heterosexual couples in the class is a subset of the Cartesian product $F \times M$. 
-Furthermore, the union $F \bigcup M$ is a proper subset of$P$,  +Furthermore, the union $F \bigcup M$ is a proper subset of $P$, when there is a participant who is neither female nor male.
-when there is a participant who is neither female nor male.+
 </WRAP> </WRAP>
  
Line 238: Line 251:
  
 <WRAP box round>**Example 2.7** <wrap em>Logical quantors and properties of set elements</wrap> \\  <WRAP box round>**Example 2.7** <wrap em>Logical quantors and properties of set elements</wrap> \\ 
-Let $|m|$ denote the number of days in a month $a \in A_M$  +Let $|m|$ denote the number of days in a month $a \in A_M$ (Refer to [[#bsp_Sets|Example 2.2]]).
-(\cf [[#bsp_Sets|Example 2.2]]).+
 Then the following statements are true: Then the following statements are true:
 There is exactly one month that has exactly $28$ days:  There is exactly one month that has exactly $28$ days: 
book/chap2/2.2_sets.1635241192.txt.gz · Last modified: 2021/10/26 11:39 by abril