book:chap2:2.2_sets
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
book:chap2:2.2_sets [2021/10/26 11:48] – abril | book:chap2:2.2_sets [2024/10/26 13:02] (current) – jv | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | [[forcestorques|2. Balancing Forces and Torques]] | ||
+ | * [[ 2.1 Motivation and Outline| 2.1 Motivation and outline: forces are vectors ]] | ||
+ | * ** 2.2 Sets ** | ||
+ | * [[ 2.3 Groups| 2.3 Groups ]] | ||
+ | * [[ 2.4 Fields| 2.4 Fields ]] | ||
+ | * [[ 2.5 Vector spaces| 2.5 Vector spaces ]] | ||
+ | * [[ 2.6 Physics application balancing forces| 2.6. Physics application: | ||
+ | * [[ 2.7 The inner product | 2.7 The inner product]] | ||
+ | * [[ 2.8 Cartesian coordinates | 2.8 Cartesian coordinates]] | ||
+ | * [[ 2.9 Cross products --- torques| 2.9 Cross products — torques ]] | ||
+ | * [[ 2.10 Worked example Calder' | ||
+ | * [[ 2.11 Problems| 2.11 Problems ]] | ||
+ | * [[ 2.12 Further reading| 2.12 Further reading ]] | ||
+ | |||
+ | ---- | ||
+ | |||
===== 2.2 Sets ===== | ===== 2.2 Sets ===== | ||
Line 99: | Line 115: | ||
|$ A \Leftrightarrow B $ | 1 | 0 | 0 | 1 | $A$ is equivalent to $B$ | | |$ A \Leftrightarrow B $ | 1 | 0 | 0 | 1 | $A$ is equivalent to $B$ | | ||
|$ A \lor \lnot B $ | 1 | 0 | 1 | 1 | $A$ or not $B$ | | |$ A \lor \lnot B $ | 1 | 0 | 1 | 1 | $A$ or not $B$ | | ||
- | |$ \lnot A \land B | + | |$ \lnot A \land B |
|$ A \land \lnot B | |$ A \land \lnot B | ||
Table 2.1: List of the results of different junctors acting on two statements $A$ and $B$. | Table 2.1: List of the results of different junctors acting on two statements $A$ and $B$. | ||
Line 321: | Line 337: | ||
<WRAP group> | <WRAP group> | ||
<WRAP half column> | <WRAP half column> | ||
- | * **a)** $\quad\lbrace A, B \rbrace \quad {{ \Box}} \quad \lbrace A, B, C \rbrace$, | + | * **a)** $\quad\lbrace A, B \rbrace \quad {{ \Box}} \quad \lbrace A, B, C \rbrace$, |
* **c)** $\quad\lbrace \emptyset \rbrace \quad {\Box} \quad \emptyset$, | * **c)** $\quad\lbrace \emptyset \rbrace \quad {\Box} \quad \emptyset$, | ||
* **e)** $\quad A \quad { \Box} \quad \lbrace A, B, C \rbrace$, | * **e)** $\quad A \quad { \Box} \quad \lbrace A, B, C \rbrace$, | ||
* **g)** $\quad\lbrace A, C, D \rbrace \setminus \lbrace A, B \rbrace \;\Box\; \lbrace A, B, C \rbrace$, | * **g)** $\quad\lbrace A, C, D \rbrace \setminus \lbrace A, B \rbrace \;\Box\; \lbrace A, B, C \rbrace$, | ||
</ | </ | ||
- | |||
<WRAP half column> | <WRAP half column> | ||
* **b)** $\lbrace A \rbrace \quad { \Box} \quad B$, | * **b)** $\lbrace A \rbrace \quad { \Box} \quad B$, | ||
- | * **d)** $\lbrace \lbrace A \rbrace \rbrace \quad { \Box} \lbrace \lbrace A \rbrace, \lbrace B \rbrace \rbrace$, | + | * **d)** $\lbrace \lbrace A \rbrace \rbrace \quad { \Box} |
* **f)** $\lbrace A, C, D \rbrace \cap \lbrace A, B \rbrace \, {\Box} \, \lbrace A, B, C, D \rbrace$, | * **f)** $\lbrace A, C, D \rbrace \cap \lbrace A, B \rbrace \, {\Box} \, \lbrace A, B, C, D \rbrace$, | ||
* **h)** $\lbrace A, C, D \rbrace \cup \lbrace A, B \rbrace \quad { \Box} \quad A$. | * **h)** $\lbrace A, C, D \rbrace \cup \lbrace A, B \rbrace \quad { \Box} \quad A$. | ||
</ | </ | ||
</ | </ | ||
+ | |||
+ | ++++ Solution: | | ||
+ | <WRAP group> | ||
+ | <WRAP half column> | ||
+ | * **a)** $\quad \lbrace A, B \rbrace \quad \subset \quad \lbrace A, B, C \rbrace$, | ||
+ | * **c)** $\quad \lbrace \emptyset \rbrace \quad {\ni} \quad \emptyset \, , \quad$ or $\quad \lbrace \emptyset \rbrace \quad {\supset} \quad \emptyset$ | ||
+ | * **e)** $\quad A \quad { \in} \quad \lbrace A, B, C \rbrace$, | ||
+ | * **g)** $\quad\lbrace A, C, D \rbrace \setminus \lbrace A, B \rbrace \; | ||
+ | </ | ||
+ | <WRAP half column> | ||
+ | * **b)** $\lbrace A \rbrace \quad { \not\ni} \quad B$, | ||
+ | * **d)** $\lbrace \lbrace A \rbrace \rbrace \quad { \subset } \lbrace \lbrace A \rbrace, \lbrace B \rbrace \rbrace$, | ||
+ | * **f)** $\lbrace A, C, D \rbrace \cap \lbrace A, B \rbrace \, {\subset} \, \lbrace A, B, C, D \rbrace$, | ||
+ | * **h)** $\lbrace A, C, D \rbrace \cup \lbrace A, B \rbrace \quad { \ni} \quad A$. | ||
+ | </ | ||
+ | </ | ||
+ | ++++ | ||
</ | </ | ||
Line 344: | Line 376: | ||
- Provide $\lbrack 1; 17 \rbrack \cap \rbrack 0; 5 \lbrack$ as a single interval. | - Provide $\lbrack 1; 17 \rbrack \cap \rbrack 0; 5 \lbrack$ as a single interval. | ||
- | - Provide $[-1, 4] \backslash [1, 2[$ as union of two intervals. | + | - Provide $[-1; 4] \backslash [1; 2[$ as union of two intervals. |
</ | </ | ||
+ | ++++ Solutions: | | ||
+ | - | ||
+ | - $[-1; 4] \backslash [1; 2[ = [-1, 1[ \cup [2; 4]$ | ||
+ | ++++ | ||
+ | |||
---- | ---- | ||
Line 361: | Line 398: | ||
Example: | Example: | ||
</ | </ | ||
+ | ++++ Solutions: | | ||
+ | - True: When a number can be divided by $2$, then it can also be divided by $6$. | ||
+ | - True: When a number can be divided by $2$ and by $3$, then it can also be divided by $6$. | ||
+ | - False: Assume that $a > 1$ and $b > 1$. Then $a\cdot b \in T(a\cdot b)$, while it can not be in $T(a)$ and $T(b)$ since $a\cdot b > a$ and $a\cdot b > b$, respectively. | ||
+ | ++++ | ||
~~DISCUSSION|Questions, | ~~DISCUSSION|Questions, |
book/chap2/2.2_sets.1635241729.txt.gz · Last modified: 2021/10/26 11:48 by abril