Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

User Tools

Site Tools


book:chap6:lagrange

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
book:chap6:lagrange [2022/01/31 15:40] abrilbook:chap6:lagrange [2022/02/14 14:05] (current) abril
Line 1: Line 1:
 ====== 6. Integrable Dynamics ====== ====== 6. Integrable Dynamics ======
  
-<WRAP group> +<WRAP right #fig_girl-on-swing 115pt
-<WRAP third column #fig_EXP-dropletExplosion> +{{girl-on-swing.png}} 
-{{Laser_impact_on_a_drop.jpg}} +[[https://commons.wikimedia.org/wiki/File:Sketch_by_Marguerite_Martyn_of_a_girl_standing_on_a_swing_in_a_bathing_suit_getting_dry_from_the_breeze,_1914.png}{wikimedia/public domain Marguerite Martyn1914]]\\ 
- +Figure 6.1The point-particle idealization of girl on a swing is the mathematical pendulum of Figures 1.2 and 1.3.
-Figure 5.1: Impact of a laser pulse on a microdrop of opaque liquid that is thus blown up;  +
-[[http://link.aps.org/doi/10.1103/PhysRevApplied.3.044018 |Klein, et al, Phys. Rev. Appl. 3 (2015) 044018]] +
-</WRAP> +
- +
-<WRAP third column #fig_EXP-clackers+
-{{Mensen_met_een_klik_klak_Amsterdam_Bestanddeelnr_924-8383.jpg}} +
- +
-Figure 5.2: Girl playing with clackers.  +
-[[https://commons.wikimedia.org/wiki/File:Mensen_met_een_klik_klak_Amsterdam,_Bestanddeelnr_924-8383.jpg |Punt/AnefoAmsterdam 1971]], [[https://creativecommons.org/licenses/ |CC0]] +
-</WRAP> +
- +
-<WRAP third column #EXP-reachTennisBall> +
-{{Gluten_free_speed_-_Flickr_-_chascow.jpg}} +
- +
-Figure 5.3Man running to return tennis ball. +
-[[https://commons.wikimedia.org/wiki/File:Gluten_free_speed_-_Flickr_-_chascow.jpg |Charlie Cowins from Belmont, NC, USA]], [[https://creativecommons.org/licenses/by/2.0 |CC by 2.0]] +
-</WRAP>+
 </WRAP> </WRAP>
  
 +In [[book:chap5:spatial-extension|Chapter 5]] we considered objects that consist of a mass points
 +with fixed relative positions, like a flying and spinning ping-pong
 +ball. Rather than providing a description of each individual mass
 +element, we established equations of motion for their center of mass
 +and the orientation of the body in space. From the perspective of
 +theoretical mechanics the fixing of relative positions is a constraint
 +to their motion, just as the ropes of a swing enforces a motion on
 +a one-dimensional circular track, rather than in two dimensions.
 +The deflection angle θ of the pendulum, and the center of mass and
 +orientation of the ball are examples of generalized coordinates that
 +automatically take into account the constraints.\\
  
-In [[book:chap4:eom-ode|Chapter 4]] we discussed the motion of point particles. +In this chapter we discuss how to set up generalized coordinates 
-However, in our environment the spatial extension of particles in crucial+and how to find the associated equations of motionThe discussion 
-Physical objects always keep a minimum distance due to their spatial extension. +will be driven by examplesThe examples will be derived from the 
-When they had zero extension, +realm of integrable dynamicsThese are systems where conservation laws can be used to break down the dynamics into separate problems that can be interpreted as motion with a single degree of freedom.\\
-one could neither blow up water droplets by impact with a laser ([[#fig_EXP-dropletExplosion |Figure 5.1]]),  +
-nor work clackers ([[#fig_EXP-clackers |Figure 5.2]]) or hit a ball with a tennis racket ([[#fig_EXP-reachTennisBall |Figure 5.3]]). +
-Even giving spin to a ball only works due to the distance between the surface of the racket +
-and the center of the ball.+
  
-At the end of this chapter we will be able to discuss the evolution of balls with spin, +At the end of the chapter you know why coins run away rolling 
-and their reflections from flat surfaces. +on their edge, and how the speed of a steam engine was controlled 
-Why is spin of so much importance in table tennis? +by mechanical device. Systems where the dynamics is not integrable will subsequently be addressed in Chapter 7.
-How can wingman score a goal in Handball, +
-even when the goal keeper is fully blocking the direct path to the goal?((See [[https://en.wikipedia.org/wiki/Handball#Formations|Wikipedia's description of Handball formations]] and this [[https://de.wikipedia.org/wiki/Kreisl%C3%A4ufer_(Handball)#/media/Datei:Bertrand_Gille_02.jpg|picture of an attack by Bertrand Gille]], the IHF World Player of the Year 2002.))+
  
 ---- ----
  
-  * [[ 5.1 Motivation and outline 5.1 Motivation and outline: How do particles collide?]] +  * [[ 6.1 Motivation and Outline |6.1 Motivation and Outline: How to deal with constraint motion?]] 
-  * [[ 5.2 Collisions of particles 5.2 Collisions of hard-ball particles]] +  * [[ 6.2 Lagrange formalism |6.2 Lagrange formalism]] 
-  * [[ 5.3 Volume integrals 5.3 Volume integrals — A professor falling through Earth]] +  * [[ 6.3 Dynamics with one degree of freedom |6.3 Dynamics with one degree of freedom]] 
-  * [[ 5.4 Center of mass and spin 5.4 Center of mass and spin of extended objects]] +  * [[ 6.4 Several DOF and conservation laws |6.4 Several degrees of freedom and conservation laws]] 
-  * [[ 5.5 Bodies with internal degrees of freedom 5.5 Bodies with internal degrees of freedom: Revisiting mobiles]] +  * [[ 6.5 Dynamics of 2-particle systems |6.5 Dynamics of 2-particle systems]] 
-  * [[ 5.6 Worked example 5.6 Worked exampleReflection of balls]] +  * [[ 6.6 Worked problems |6.6 Worked problemsspinning top and running wheel]] 
-  * [[ 5.7 Problems | 5.7 Problems]]+  * [[ 6.7 Problems |6.7 Problems]]
  
  
book/chap6/lagrange.1643640036.txt.gz · Last modified: 2022/01/31 15:40 by abril