Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

User Tools

Site Tools


book:chap3:3.2_time_derivatives_of_vectors

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
book:chap3:3.2_time_derivatives_of_vectors [2021/11/15 15:21] – [3.2 Time derivatives of vectors] abrilbook:chap3:3.2_time_derivatives_of_vectors [2021/11/18 02:03] (current) – [3.2.1 Self Test] jv
Line 85: Line 85:
     \frac{\mathrm{d}}{\mathrm{d} x} \ln  x &= x^{-1}                                          \frac{\mathrm{d}}{\mathrm{d} x} \ln  x &= x^{-1}                                     
 \end{align*} \end{align*}
-Use only the three rules for derivatives+and use only the three rules for derivatives
 \begin{align*} \begin{align*}
     \frac{\mathrm{d}}{\mathrm{d} x} \bigl( f(x) + g(x) \bigr)     \frac{\mathrm{d}}{\mathrm{d} x} \bigl( f(x) + g(x) \bigr)
Line 98: Line 98:
 to work out the following derivatives to work out the following derivatives
  
-**a)** $\displaystyle \sinh x = \frac{1}{2} \left( \mathrm{e}^x - \mathrm{e}^{-x} \right) \quad$ and $\quad \displaystyle \cosh x = \frac{1}{2} \left( \mathrm{e}^x + \mathrm{e}^{-x} \right)$\\ +<WRAP group> 
-**b)** $\cos x = \sin(\pi/2 + x) \qquad$\\ +<WRAP half column> 
-**c)** $x^a = \mathrm{e}^{a \, \ln x}$ for $a \in \mathbb{R}$ What does this imply for the derivative of $f(x) = x^{-1}$?\\+**a)** $\displaystyle \sinh x = \frac{1}{2} \left( \mathrm{e}^x - \mathrm{e}^{-x} \right) \quad$ and $\quad \displaystyle \cosh x = \frac{1}{2} \left( \mathrm{e}^x + \mathrm{e}^{-x} \right)$ 
 + 
 +**b)** $\cos x = \sin(\pi/2 + x) \qquad$ 
 + 
 +**c)** $x^a = \mathrm{e}^{a \, \ln x}$ for $a \in \mathbb{R}$. \\ 
 +$\quad$ What does this imply for the derivative of $f(x) = x^{-1}$? 
 +</WRAP> 
 + 
 +<WRAP half column>
 **d)** Use the result from c) to proof the quotient rule: **d)** Use the result from c) to proof the quotient rule:
 \begin{align*} \begin{align*}
     \frac{\mathrm{d}}{\mathrm{d} x} \frac{ f(x) }{ g(x) }     \frac{\mathrm{d}}{\mathrm{d} x} \frac{ f(x) }{ g(x) }
     = \frac{ f'(x) \, g(x) - f(x) \, g'(x) }{ \bigl( g(x) \bigr)^2 }      = \frac{ f'(x) \, g(x) - f(x) \, g'(x) }{ \bigl( g(x) \bigr)^2 } 
-\end{align*}\\ +\end{align*} \\ 
-**e)** $\displaystyle \tan x = \frac{ \sin x }{ \cos x } \quad $ and $\quad \displaystyle \tanh x = \frac{ \sinh x }{ \cosh x }$\\ +**e)** $\displaystyle \tan x = \frac{ \sin x }{ \cos x } \quad $ and $\quad \displaystyle \tanh x = \frac{ \sinh x }{ \cosh x }$ \\ 
-**e)** :!: Find the derivative of $\ln x$ solely based on+**f)** :!: Find the derivative of $\ln x$ solely based on
 $\displaystyle \frac{\mathrm{d}}{\mathrm{d} x} \mathrm{e}^x = \mathrm{e}^x$. $\displaystyle \frac{\mathrm{d}}{\mathrm{d} x} \mathrm{e}^x = \mathrm{e}^x$.
 \\ \\
- +$\quad$ ++Hint: | Use that $x = \mathrm{e}^{\ln x}$ and take the derivative of both sides.++ 
-++Hint: | Use that $x = \mathrm{e}^{\ln x}$ and take the derivative of both sides.+++</WRAP> 
 +</WRAP>
  
  
Line 120: Line 129:
 In a moment we will also perform integrals to determine the work performed on a body In a moment we will also perform integrals to determine the work performed on a body
 when it is moving subject to a force. when it is moving subject to a force.
-Practice you skills by evaluating the following integrals.+Practice your skills by evaluating the following integrals. 
 + 
 +<WRAP group> 
 +<WRAP half column> 
 +**a)**   $\displaystyle \int_{-1}^1 {\mathrm{d} x}\, ( a + x )^2$ \\ 
 +**b)**   $\displaystyle \int_{-5}^5 {\mathrm{d} q}\, ( a + b\, q^3 )$ \\ 
 +**c)**   :!: $\displaystyle \int_0^B {\mathrm{d} k}\, \tanh^2( k x )$ \\ 
 +**d)**   $\displaystyle \int_0^\infty {\mathrm{d} x}\, \mathrm{e}^{-x/L}$ \\ 
 +**e)**   $\displaystyle \int_{-L}^L {\mathrm{d} y}\, \mathrm{e}^{-y/\xi}$ 
 +</WRAP> 
 +<WRAP half column> 
 +**f)**   $\displaystyle \int_{0}^L {\mathrm{d} z}\, \frac{z}{a+b\,z^2}$ \\ 
 +**g)**   $\displaystyle \int_{0}^\infty {\mathrm{d} x} \, x \, \mathrm{e}^{-x^2/(2Dt)}$ \\ 
 +**h)**   $\displaystyle \int_{-\sqrt{Dt}}^{\sqrt{Dt}} {\mathrm{d} \ell} \, \ell \, \mathrm{e}^{-\ell^2/(2Dt)}$ \\ 
 +**i)**   :!: $\displaystyle \int_{-\sqrt{Dt}}^{\sqrt{Dt}} {\mathrm{d} z}\, x \, \mathrm{e}^{-z\, x^2}$ 
 +</WRAP> 
 +</WRAP>
  
-  -  $\displaystyle \int_{-1}^1 {\mathrm{d} x}\, ( a + x )^2$ 
-  -  $\displaystyle \int_{-5}^5 {\mathrm{d} q}\, ( a + b\, q^3 )$ 
-  -  :!: $\displaystyle \int_0^B {\mathrm{d} k}\, \tanh^2( k x )$ 
-  -  $\displaystyle \int_0^\infty {\mathrm{d} x}\, \mathrm{e}^{-x/L}$ 
-  -  $\displaystyle \int_{-L}^L {\mathrm{d} y}\, \mathrm{e}^{-y/\xi}$ 
-  -  $\displaystyle \int_{0}^L {\mathrm{d} z}\, \frac{z}{a+b\,z^2}$ 
-  -  $\displaystyle \int_{0}^\infty {\mathrm{d} x} \, x \, \mathrm{e}^{-x^2/(2Dt)}$ 
-  -  $\displaystyle \int_{-\sqrt{Dt}}^{\sqrt{Dt}} {\mathrm{d} \ell} \, \ell \, \displaystyle \mathrm{e}^{-\ell^2/(2Dt)}$ 
-  -  :!: $\displaystyle \int_{-\sqrt{Dt}}^{\sqrt{Dt}} {\mathrm{d} z}\, x \, \displaystyle \mathrm{e}^{-z\, x^2}$ 
  
  
 Except for the integration variable all quantities are considered to be constant. Except for the integration variable all quantities are considered to be constant.
 \\ \\
-++Hint: | Sometimes symmetries can substantially reduce the work needed to evaluate an integral.+++++Hint: | $\quad$  
 +Sometimes symmetries can substantially reduce the work needed to evaluate an integral. 
 +++
  
  
 ~~DISCUSSION|Questions, Remarks, and Suggestions~~ ~~DISCUSSION|Questions, Remarks, and Suggestions~~
book/chap3/3.2_time_derivatives_of_vectors.1636986078.txt.gz · Last modified: 2021/11/15 15:21 by abril