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from a Quasiexact Algorithm
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We employ a novel algorithm using a quasiexact embedded-cluster matching technique as minimization
method within a genetic algorithm to reliably obtain numerically exact ground states of the Edwards-
Anderson XY spin-glass model with bimodal coupling distribution for square lattices of up to 28� 28
spins. Contrary to previous conjectures, the ground state of each disorder replica is nondegenerate up to a
global O(2) rotation. The scaling of spin and chiral defect energies induced by applying several different
sets of boundary conditions exhibits strong crossover effects. This suggests that previous calculations have
yielded results far from the asymptotic regime. The novel algorithm and the aspect-ratio scaling technique
consistently give �s � �0:308�30� and �c � �0:114�16� for the spin and chiral stiffness exponents,
respectively.
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Since the suggestion by Edwards and Anderson (EA) to
capture the essence of spin-glass behavior in a class of
simple lattice models 30 years ago [1], the quest for their
understanding has spurred an enormous research effort [2].
EA considered the Hamiltonian

H � �
X

hiji

JijSi � Sj; (1)

with O(n) spins Si on a regular lattice with quenched, ran-
dom, and frustrated nearest-neighbor interactions Jij. Al-
though substantial progress has been made in recent years
in understanding Ising and vector spin glasses in finite
dimensions D, mostly by the development and application
of sophisticated numerical techniques, we still lack an
undisputed theory of the spin-glass phase [2]. Because of
its relative simplicity, by far the most work has been
devoted to the Ising spin glass [2]. However, much less
advance has been made on models with continuous spins
which are often more relevant to real materials [2].

The properties of the spin-glass phase in the EA
model are described by a scaling theory of the associated
zero-temperature fixed point [3]. The corresponding
renormalization-group (RG) picture considers the scaling
of the width of the distribution of random couplings,
PL�Jij�, with the coarse-graining length scale L, J�L� �
JL�s , defining the spin stiffness exponent �s. Depending on
whether �s > 0 or �s < 0, the spin-glass phase is stable or
unstable against thermal fluctuations, respectively. Follow-
ing a suggestion by Banavar et al. and McMillan [4], the
scaling of J�L� can be inferred from monitoring the de-
pendence of the energy of droplet or domain-wall excita-
tions induced by a change of boundary conditions (BCs),
giving rise to the name ‘‘domain-wall RG’’ (DWRG)
method. For cases where �s < 0, and thus the spin-glass
transition temperature Tg � 0, such as for the EA Ising
model in two dimensions (2D) [2], �s also determines the
critical behavior with the spin-glass correlation length
06=96(9)=097206(4)$23.00 09720
diverging as �� T��s for T # 0, where �s � �1=�s [3].
Furthermore, unless exact ground-state degeneracies oc-
cur, as for the Ising model with bimodal P�Jij� [3], �s is the
only nontrivial exponent, while the critical exponent � is
simply 2�D when �s < 0 [3]. Consequently, 2D models
offer a crucial test bench for our understanding of spin
glasses at low temperatures.

Twenty years of research since the original DWRG work
of Morris et al. [5] have not been able to settle a number of
persistent controversies concerning the ground-state prop-
erties of the 2DXY spin glass. Firstly, it has been suggested
that the ground state may possess nontrivial extensive
degeneracies when P�Jij� is a discrete bimodal distribution
[6–8]. Secondly, it was realized early [9] that the rotational
symmetry of the XY spin glass is accompanied by a Z2

symmetry originating from the difference between proper
and improper O(n) rotations [10]. It has been suggested
that the resulting Ising-like chirality variables may de-
couple from the rotational degrees of freedom, leading to
different critical behavior for the spin and chiral variables
[11]. For D � 2, where Tg � 0, this would entail distinct
spin and chiral stiffness exponents, �s � �1=�s and �c �
�1=�c, respectively. Finally, and most noteworthy, pre-
vious Monte Carlo (MC) [6] and DWRG studies [5,12,13]
have yielded rather inconsistent values for �s. This might
be partly explained by the difficulty in obtaining ground-
state configurations of the model. Parallel alignment of the
spins to their local molecular fields hi �

P
jJijSj is a

necessary condition for metastability of the system (1).
However, due to the broad spectrum of an exponential
number of metastable states, the resulting commonly
used [5,12] iterative spin-quench algorithm [14] almost
never yields a ground-state configuration. Additionally,
experience with the simpler 2D Ising case shows that
finite-size corrections as well as the dependence on the
chosen pair of boundary conditions are generically large
[15,16]. Hence it seems likely that the observed inconsis-
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FIG. 1 (color online). Histogram H�E� of minimum energies
obtained from repeated runs using the spin-quench method
[diagonally hatched bars (green online)], simulated annealing
[solid bars (blue online)] and the genetic embedded-matching
technique [horizontally hatched bars (red online)] for a single
disorder realization fJijg of system size 24� 24. The insets show
blowups of the region around the true ground state. The genetic
matching was run here with a small population of N 0 � 64
replica; for N 0 � 256, all runs converge to the rightmost bar of
the top inset.

PRL 96, 097206 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
10 MARCH 2006
tencies for the XY model to date are due to system-size
restrictions, improper finite-size scaling analyses, and limi-
tations in probing the true ground-state behavior.

Toulouse noted that the ground-state problem for the 2D
Ising spin glass on a planar graph can be transformed to a
minimization problem for the total length of energy strings
on the dual lattice, connecting pairs of frustrated pla-
quettes, i.e., graph faces containing an odd number of
negative bonds [17,18]. It was later realized [19] that this
constitutes a minimum-weight perfect matching problem,
which is well-known in graph theory and can be solved in
polynomial time, such that the ground state of large 2D
Ising spin-glass systems can be found exactly. In contrast,
the XY model ground-state problem is seemingly not poly-
nomial. However, in this Letter we propose that a partial
solution can be found in polynomial time by an embedding
of Ising variables into the continuous spins, allowing us to
obtain new results addressing the controversies alluded to
above. This embedding is achieved by choosing a random
direction r in spin space to decompose the spins as Si�
Ski �S

?
i ��Si �r�r�S

?
i . A reflection Ri�r� of Si along the

plane defined by r maps Ski !�S
k
i and S?i !S

?
i . Hence,

with respect to these local reflections the Hamiltonian (1)
decomposes as H �H r;k �H r;? with H r;k �

�
P
hi;ji

~Jrij �
r
i �
r
j, and

~Jrij � JijjSi � rjjSj � rj; �ri � sgn�Si � r�: (2)

Thus, since the Ri�r� merely induce an inversion �ri !
��ri , the O(n) model Hamiltonian (1) is formally identified
with that of an Ising model, if spin changes are restricted to
the reflections Ri�r�. One can then proceed as follows:
decompose the O(n) spins Si with respect to r and find
the corresponding Ising ground state using the matching
technique [19]. This corresponds to a reflection of some of
the Si and thus a new valid O(n) model configuration. With
H r;? being invariant, this embedded ground-state search
decreases the total energy of (1) or leaves it constant. The
full O(n) symmetry can then be statistically recovered by
sequential minimizations for a series r1; r2; r3; . . . of ran-
dom directions. We call this procedure ‘‘embedded match-
ing.’’ If (1) is in a ground state, all the embedded Ising
systems must be in (one of) their respective ground state(s)
as well. However, stationarity of the process of successive
embedded Ising-like matching minimization steps does not
guarantee global minimum energy for the system (1) [20].
Thus, the corresponding artificial dynamics exhibits meta-
stability, however with far less metastable states than the
local spin-quench method [20]. For further improvement,
and to find true ground states with high reliability, the
embedded-matching procedure is inserted as a minimiza-
tion step into a specially tailored genetic algorithm [20].
Generally speaking, in a genetic algorithm a population of
N 0 candidate ground-state configurations is being itera-
tively optimized by mixing or ‘‘crossing over’’ the ‘‘ge-
netic material’’ of different candidate ground states and
09720
eliminating the less well adapted instances [21]. To achieve
reasonable performance, this crossover operation has to be
chosen appropriately. Specifically, we are guided by the
direct (visual) inspection of the spin configurations from
different metastable states obtained by the embedded-
matching technique. There, due to the local spin rigidity,
the predominant differences consist of (proper or im-
proper) O(n) rotations of rigid domains. Hence, to preserve
the high level of optimization already obtained inside of
domains at intermediate stages of the evolution, new off-
spring configurations are produced by randomly exchang-
ing these (automatically determined) domains instead of
single spins between the parent replica. Full details of the
algorithm will be presented elsewhere [20] (for a related
method for the Ising case see Ref. [22]). This ‘‘genetic
embedded-matching’’ (GEM) approach works very reli-
ably already for small N 0 as shown in Fig. 1. There, we
compare the histograms of energies of metastable states
found from statistically independent runs for the same 	J
disorder configuration fJijg of a 24� 24 system using
either the simple spin-quench approach [14], the simulated
annealing method, or the GEM technique. The first two
methods give broad distributions of energies, whereas on
this scale, the GEM always seems to yield the same energy,
which is clearly below the range of energies regularly
found by the other approaches. Only on examining the
histograms at much higher resolution, do the GEM data
get resolved into a small series of sharp peaks, correspond-
ing to different energy levels, cf. the upper inset of Fig. 1.
On increasing N 0 from N 0 � 64, chosen for the runs in
Fig. 1, to N 0 � 256, the peaks displayed in the inset all
6-2
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FIG. 2 (color online). Log-log plot of the average domain-wall
energies 
j�Ej�J for three sets of boundary conditions on square
lattices as a function of system size L. The lines are fits of the
form 
j�Ej�J � L

� to the data. The black circles show the
random twist result of Ref. [13] for comparison. Some data
sets have been shifted vertically for better distinction.
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collapse onto the peak of lowest energy on the right,
corresponding to the true ground state.

As a first result we find, perhaps surprisingly, that the
ground states thus obtained for a given bimodal disorder
realization are not only identical in energy up to machine
precision (15 digits) between statistically independent
runs, but the final optimized spin configurations them-
selves are trivially related to each other by global O(n)
transformations [20]. In other words, the ground states are
unique and, in contrast to the bimodal Ising model [2], no
accidental degeneracies occur. Hence, after averaging over
disorder, the ground state is ordered and the spin correla-
tion function is constant, implying � � 0 [3]. This is in
contrast to indications by MC simulations [6,7] and
Migdal-Kadanoff calculations [8], which presumably did
not probe the true ground-state behavior.

Strong dependence of the domain-wall scaling on the
choice of BCs has been observed for the Ising spin glass
[15,23]. Further complications arise for the XY case due to
the simultaneous presence of continuous (spin) and dis-
crete (chiral) symmetries: for both periodic (P) and anti-
periodic (AP) BCs, domain walls might be forced into the
system due to the periodicity, such that the P-AP energy
difference does not directly capture the energy of single
walls. In Ref. [13], it was attempted to alleviate this prob-
lem by introducing a twist along the boundary, which is
included in the optimization process to yield ‘‘optimum
twist’’ BCs. Nevertheless, additional chiral domain walls
might still occur in the measurements of spin domain
walls. In fact, it has been found that for (quasi) one-
dimensional XY systems both P-AP and reflective BCs
asymptotically probe the chiral excitations [24]. These
problems, resulting from a periodic constraint, can be
circumvented by applying open and domain-wall (O-
DW) BCs. There, one ensures the insertion of single do-
main walls by comparing the ground state of a system with
open BCs to one where the relative orientations of spins
linked across the boundary are either rotated by an angle �
for spin domain walls or, for chiral domain walls, are
reflected along an arbitrary but common axis by introduc-
ing very strong bonds across the boundary [20,25]. In
addition, and for comparison, we consider P-AP and
random-antirandom (R-AR) BCs as well, the latter fixing
the boundary spins in random relative orientations for one
ground-state computation (R) and in relatively �-rotated
orientations for AR BCs. In all cases, the edges with
unaltered BCs are left open. Ground states are computed
for systems of up to 28� 28 spins, using 5000 disorder
realizations with Jij � 	J at equal proportions. Figure 2
shows the results for the three sets of BCs together with fits
of the asymptotically expected form 
j�Ej�J � L� to the
data, where 
��J denotes the average over disorder. The
results for P-AP BCs show a pronounced crossover from
� � �0:724�21� for L � 12 to � � �0:433�26� for L 
16, the first value being compatible with the ‘‘random
twist’’ data of Ref. [13] drawn for comparison (�s �
09720
�0:76), which are representative of previous results for
P-AP BCs and small system sizes [12]. On the other hand,
� � �0:433�26� is closer to the optimum twist result of
Ref. [13], designed to alleviate the problem of trapped
domain walls. Note that the apparent crossover length is
compatible with the length below which no metastability
occurs and the system behaves like a spherical spin glass
[5,26]. The other BCs yield less negative values already for
smaller system sizes, resulting in �s � �0:519�30� for the
R-AR combination and �s � �0:207�12� for the O-DW
BCs. The scaling of the chiral domain-wall energies from
O-DW boundaries yields an only slightly negative value
�c � �0:090�23�.

The above usage of multiple pairs of BCs reveals the
presence of pronounced finite-size corrections, even for the
already larger system sizes considered here compared to
previous studies [5,12,13]. Part of these corrections are due
to irrelevant scaling fields and subleading analytical terms,
giving rise to the general form 
j�Ej�J�L� � AL� �
BL�! � C=L�D=L2 � � � � . For a proper resolution of
these contributions, much larger system sizes, out of the
reach of current numerical methods, would be necessary.
Thus, we have to restrict ourselves here to a successive
omission of data points from the small-L side to extrapo-
late towards L! 1. Additional corrections, however, re-
sult from the dependence on the considered pair of BCs.
For the Ising system, it has been argued that such correc-
tions might be suppressed by considering L�M systems
(the change of BCs happening along the edges of length L)
with aspect ratios R � M=L � 1 [23]. Neglecting for the
time being the corrections listed above, the asymptotic
scaling of defect energies should then follow the form

j�Ej�J�L;M� � L�F�R� with some scaling function F.
In general, F�R� depends on the BCs applied [23].
However, there is no dependence on BCs for one-
dimensional systems [3,24], such that F�R� is independent
6-3
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FIG. 3 (color online). Aspect-ratio scaling of the stiffness
exponents �s and �c for aspect ratios R � 1, 2, and 6 as a func-
tion of 1=R. The bottom data set corresponds to fits for the fixed
R data restricted to L � 10 (see text). The solid lines show fits of
the functional form ��R� � ��R � 1� � AR=R to the data.
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of BCs in the limit R! 1 and the corresponding correc-
tions should disappear as more and more elongated sys-
tems are being considered. To investigate this, we
determined the ground states of 5000 disorder replica and
L � 4; 6; . . . ; 16 for R � 2 and L � 3; 4; . . . ; 9 for R � 6
in addition to the data for the square systems (R � 1) for
the different sets of BCs. Figure 3 shows the estimated
stiffness exponents as a function of R for P-AP and O-DW
BCs together with fits of the functional form ��R� �
��R � 1� � AR=R to the data, which is inspired by the
results for the Ising case [15,23]. The scaling corrections at
fixed R listed above are taken into account by including
only the largest lattice sizes in the fits of 
j�Ej�J � L�. For
comparison, the bottom data set of Fig. 3 shows the results
from including a fixed range of sizes L � 10 for each
aspect ratio R, thus admixing the two correction effects.
The fits result in consistent asymptotic estimates of the spin
stiffness exponent of �s�R � 1� � �0:338�20� from
P-AP BCs and of �s�R � 1� � �0:308�30� from O-DW
BCs, indicating that the asymptotic regime is indeed being
probed. The chiral exponent �c, on the other hand, depends
only weakly on R, and the asymptotic estimate �c�R �
1� � �0:114�16� is clearly different from �s.

In conclusion, we have developed a novel quasiexact
algorithm to determine the ground state of 2D O(n) spin
glasses. Considering for specificity the 2D XY spin-glass
model with bimodal distribution of random exchange cou-
plings Jij, we have shown from computations for relatively
large systems sizes that, as argued in Ref. [13], defect-wall
calculations from P-AP BCs indeed suffer from large
finite-size corrections due to the periodic constraint.
Using aspect-ratio scaling, however, they are found to
asymptotically yield the same scaling behavior as the less
ambiguous O-DW BCs showing less pronounced correc-
tions, and we quote the latter result as our final estimate,
�s � �0:308�30�. This might be compared with �s �
�0:28 for the 2D Ising case with Gaussian coupling dis-
09720
tribution [15,25]. The chiral exponent is found to be �c �
�0:114�16�, clearly different from the spin exponent �s,
indicating spin-chirality decoupling, and close to the value
�s � 0 found for the 2D bimodal Ising spin glass [25]. Yet,
no exact degeneracies as occurring in the latter case are
found here. It would be very interesting to see whether the
XY spin glass with Gaussian couplings shows a different
behavior than the 	J case considered here. The 2D Hei-
senberg spin glass is another exciting problem to explore.
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