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Homework Exercises 10

A PDF-file of your solution to the problems 9.1 – 9.3 should uploaded to your Moodle

account

by Sunday, January 31 (with a grace time till Monday at noon).

The parts marked by ?? are suggestions for further exploration that will be followed

up in the seminars. They should not be handed in with your solution.

Problems

Problem 10.1. Evolution of a particle in a Mexican-hat potential

We explore the motion of a particle of mass m in a rotation-symmetric potential

Φ(r) =
mA

4
r2 (r2 − 2 r2

0)

The particle evolves in a plane where its position is specified by the polar coordinates (r, θ).

a) Sketch the potential. Where are its maxima and minima?

b) Determine the Lagrange function for this problem, and determine the equations

of motion for θ(t) and r(t).

Bonus. The angular momentum and the energy of the particle are conserved.

How do you see this without calculation based on the Lagrange function?

c) Determine a frequency ω, a length scale ` and a constant K, such that

d2r̂

d(ωt)2
= r̂ − r̂3 +

K

r̂3

where r̂ denotes the dimensionless (scalar) distance

with r̂(t) =
r(t)

`
.

In the following we discuss the dimensionless equations, where we absorb ω into

the time scale and drop the hat to avoid clutter in the equations.
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d) Multiply the equation of motion by ṙ, and rewrite it in the form

E =
ṙ2

2ω2
+ Veff(r) with Veff(r) =

r4

4
− r2

2
+

K

2 r2
.

e) Sketch the effective potential Veff(r) and the phase portrait of the motion for

K > 0.

Bonus. Why is it necessary to give a separate discussion of K = 0?

Problem 10.2. Foucault Pendulum

A pendulum of mass M that is suspended at a chord of length ` in a constant gravity

field with acceleration −gẑ. We choose Cartesian coordinates for the description of

its motion such that the pendulum is at rest in the origin of the coordinate system.

The mass of the chord is negligible as compared to its mass such that ` is the distance

between the pendulum fulcrum and its center of mass.

a) Assume that the pendulum moves in an inertial frame, and that it is performing

oscillations with a small amplitude A around its rest position. Sketch the setup.

b) We describe the motion of the pendulum now by only following its x and y

coordinate. Determine the kinetic energy T and potential energy V of the

pendulum as function of x and y.

c) Perform a Taylor expansion of T and V for small x/` and y/` to show that

T ' M

2

(
ẋ2 + ẏ2

)
, V ' Mg

2`

(
x2 + y2

)
.

What are the leading order corrections to this equation? Under which condition

is it admissible to disregard this correction?

d) Show that the equations

ẍ = −g
`
x , ÿ = −g

`
y .

provide a faithful description for the motion of the pendulum.

Sketch the solutions in phase space.

Provide the solution for pendulum that is released with zero velocity from a

position (x0, y0).
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? e) What is the qualitative difference between the solutions here, and those obtained

for the spherical pendulum?

f) We explore now how the motion of the pendulum changes when one accounts for

[Peter Mercator, Public Domain, wikimedia]

the motion of Earth that is spinning with

frequency Ω. To this end we take into

account the additional forces acting on

the pendulum when it is set up at the

latitude φ (see sketch to the left). Let the

directions x̂, ŷ, and ẑ be oriented towards

East, North, and radially outwards from

the Earth center. Determine the explicit

form of these vectors in terms of the anges

λ and φ defined in the sketch.

g) Due to the Earth rotation the coordinate vectors x̂, ŷ, and ẑ are explicitly time

dependent. Verify that this time dependence can be expressed in terms of a

cross procduct

dx̂

dt
= Ω× x̂

dŷ

dt
= Ω× ŷ

dẑ

dt
= Ω× ẑ

where Ω is a vector oriented from the Earth center to the North pole whose

absolute value amounts the Earth rotation frequency. Consequently, we also

have λ = |Ω| (t − t0), and φ is constant for a pendulum at a fixed position on

the Earth surface.

� h) We take the Earth cente of the origin of the coordinate system, and write the

position of the pendulum weight as

q(t) = R ẑ(Ωt) + x(t) x̂(Ωt) + y(t) ŷ(Ωt)

Vertical motion will again be beglected such that R is constant. The frequency

of the pendulum is much faster than Ω. Therefore, we also neglect terms of

order Ω2. Show that the equation derived in d) picks then up additional terms

as follows
ẍ = −g

`
x+ Ω ẏ sinφ

ÿ = −g
`
y − Ω ẋ sinφ

This linear ODE can be solved along the lines that we discussed in previous
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lectures. However, there is a special symmetry in the equation that can be

exploited to find the solution in a much more elegant way:

i) Consider the complex variable z = x + iy,1 and demonstrate that its equation

of motion is a complex homogeneous linear ODE

z̈ +
g

`
z + Ω ż sinφ = 0

j) Consider the Ansatz z(t) = A exp(pt) with constant complex numbers p and A

to solve the equation of motion. There will be two choices p± that solve the

equation.

? k) Determine the solution for an initial condition where the pendulum is released

at rest from the position (x0, 0).

Demonstrate that the solution describes a pendulum that is swinging in a

plane which is slowly rotating around the vertical axis. Determine the rotation

frequency.

Problem 10.3. Flight of a dumbbell

We explore the flight of a dumbbell under the

influence of gravity g in our three-dimensional

space. The dumbbell is idealized as two

particles of masses m1 and m2. They positions

q1(t) and q2(t) will be kept at a fixed distance

` by a bar of negliglible mass. We denote the

center of mass of the dumbbell as Q and the

relative coordinate as ` = q2 − q1.

a) We express the relation between (Q, `) and the positions qi, i ∈ {1, 2} as

qi = Q + αi `. Determine the real numbers αi, i ∈ {1, 2}.

b) Show that the kinetic energy and the potential energy of the dumbbell have the

form

1Beware the font: The complex variable z must not be confused with the vertical coordinate z!
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T =
M

2
Q̇2 +

µ

2
˙̀ 2
,

V = −Mg ·Q + Φ(`)

where Φ(`) is a potential that will generate the force fixing the distance of the

masses to the value `. How do M and µ depend on m1 and m2?

c) Show that
Q̈ = g

How does the trajectory of the center of mass of the dumbbell look like when

the dumbbell is thrown at time t0 from a position Q0 with a velocity V0?

d) Show that

µ ῭ = −ˆ̀ · ∇Φ(`) with ˆ̀ =
`

`
.

e) Show that the energy E = µ ˙̀2
/2+Φ(`) and the angular momentum L = µ`× ˙̀

are constants of the motion of the dumbbell.

� f) Write the rotational motion of the dumbbell as ˙̀ = Ω×` with a constant vector

Ω. Verify by explicit calculations that this ansatz fulfills the requirements on

the conservation of the distance between the masses, the energy and the angular

momentum.

g) Provide the position of the masses q1(t) and q2(t) for the initial conditions

provided in (c), some fixed Ω, and `0.

Self Test

Problem 10.4. Spring on rails

We consider a cart that moves without friction

on a horizontal track. It has mass M , and at

time t it is located at position x(t). On the cart

we attach a weight of mass m to a spring with

spring constant k. It oscillates without friction

in the track direction, and its displacement

from the rest position is denoted as `(t).
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a) Determine the kinetic energy of the cart, the kinetic energy of the weight, and

the potential energy due to the tension of the spring.

Provide the resulting Lagrange function for the oscillator on the cart.

b) Identify the equation of motion for x, and show that it leads to a conserved

quantity of the form

P = α ẋ+ β ˙̀

How do α and β depend on the parameters m, M , and k?

c) Determine the x-component Q of the center of the system. Which interpretation

does this provide for the result of part (c)?

* d) In the following we work in the center of mass frame. Show by and explicit

calculation that the Lagrangian can then be written as

L =
a

2
Q̇2 +

b

2
˙̀2 +

c

2
`2

How do a, b and c depend on the parameters m, M , and k?

* e) Can you provide the values of a, b, and c without calculation?

f) Determine and solve the equations of motion, and provide the explicit expressions

Q(t), x(t), and `(t) for the following setting: initially the spring is stretched to

a value `0, and the system does not move. How will it evolve when it is released

at time t0?

* g) Discuss the frequency of the oscillations for the limiting cases m�M and

m�M : Which physical argument provides these frequencies without calculation?

Problem 10.5. The cylinder pendulum

We consider a pendulum that is built by attaching a chord

to a cylinder (e.g. a broom stick), wrapping it a few times

around the cylinder, and attaching a mass m to the loose

end of the chord. When the mass oscillates, the length

of the chord is changing because it is wrapped around the

cylinder. We describe the position where the chord touches

the cylinder by the angle θ. For θ = 0 the chord is entirely
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wrapped around the cylinder, and the mass will be located at the position (R, 0).

a) Let L(θ) be the length of the chord from the cylinder to the mass, as indicated

in the figure. Argue that L(θ) is proportional to θ! What is the proportionality

constant? What are admissible values for θ?

b) Employing polar coordinates based on the angle θ, where the chord touches the

cylinder, we write the position of the mass as

q(t) = qR R̂(θ) + qθ θ̂(θ)

How do qR and qR depend on θ and on the parameters of the problem when we

assume that the chord is stretched between the cylinder and the mass (cf. (h)!).

c) Show that q̇ = c θ θ̇ R̂

with some real constant c. How is c related to the parameters?

d) Determine the kinetic energy, the potential energy, and the Lagrange function.

e) Determine the equation of motion for θ.

f) What are the fixed points of the dynamics? Provide a physical argument for

their stability (no calculation!).

g) What are the values of the potential energy right at the unstable fixed points?

Use (only!) this information to sketch the phase-space trajectories starting

from unstable fixed points in the interval 0 < θ < 7π. Complete the phase-

space portrait of the dynamics by adding trajectories that reside in the vicinity

of the stable fixed points.

*h) Mark the region in the phase space where the assumption of (b), that the chord

is stretched, is not justified.
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Bonus Problem

Problem 10.6. Wind Systems on Earth

[Mormegil, CC BY-SA 3.0, creativecommons]

On length scales beyond 100 km the mean

horizontal wind on Earth is significantly

influenced by the Coriolis force. One

consequence is expressed by Buys Ballot’s

law, which was taught to Naval Cadets as:

“In the Northern Hemisphere, if you turn your back to the wind, the low pressure

center will be to your left and somewhat toward the front.” (Aerology for Pilots,

McGraw-Hill, 1943, pg 43)

In the following we explore how the Coriolis force shapes the main wind systems on

Earth, and how the Buys Ballot’s law comes about.

a) At the equator warm air rises and moves to towards the poles at high altitudes,

while cool air moves towards the equator along the ground. We say that the

rise of air induces a low pressure region that is sucking air towards the equator.

The mean flow is deflected by the Coriolis force. In the vicinity of the equator

this gives rise to trade winds.

From which direction will the winds coming from the North and from the South

approach the equator?

b) The velocity, i.e. the speed and the direction, of the flow will no longer change

when the acceleration of the wind by the pressure gradient and by the Coriolis

force balance (geostrophic wind). We consider the Euler equation for the

momentum-balance of fluid flow to explore this relation

%
du

dt
= −∇P

In this equation % is the mass density of air, u is the flow velocity, and P is

the pressure. The equation holds in inertial systems and when the viscosity

of the fluid may be neglected. The latter condition holds for the atmosphere.

The former condition entails that the time derivative must be augmented by

the Coriolis force when adopting a coordinate system that is co-moving with

the Earth surface. Demonstrate that condition for a stationary flow velocity u
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amounts then to

∇P = −2%Ω× u

Here, Ω is the angular velocity of Earth.

c) Determine the pressure difference over a distance of 1000 km when air is moving

at a (mean) horizontal speed of 50 km/h. How does the pressure difference

depend on latitude? What is the relation between the direction of the pressure

gradient and the flow velocity?

Hint: Air has a density of about % ' 1.3 kg/m3.

d) Consider now the flow along the equator. How does the pressure change upon

motion to the West and to the East, respectively? What does this tell about

the stability of the wind? Why is this argument incomplete at best and wrong

if worst comes to worst?

e) High pressure and low pressure regions at mid latitudes (for instance close to

Europe) have typical diameters of 1000 km, and the predominant wind directions

are along isobars rather than in the direction of the pressure gradient. Compare

the pressure difference determined in c) with typical pressure difference of high

pressure and low pressure regions, and discuss the orientation of the flow around

the respective regions.
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