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Homework Exercises 8

A PDF-file of your solution to the problems 8.1 — 8.3 should uploaded to your Moodle
account

by Sunday, January 17 (with a grace time till Monday at noon).

The parts marked by @ are suggestions for further exploration that will be followed

up in the seminars. They should not be handed in with your solution.

Problems

Problem 8.1. Solving linear 1st order ODEs by decomposition in eigenfunctions

a) Show that every nth order linear ODE for a vector valued function function

x(t) € R? can be written in the form of a homogenous 1st order ODE

d
—I'=AT
dt

where I' € R% and A is an appropriately chosen dn x dn matrix. The vector T’

will be denoted as phase vector.
b) Consider now the EOM of the harmonic oscillator with damping v and eigenfrequency w,

P=—vi—wx

In the following T' = (z,4)T will refer to this damped oscillator and A will

denote the 2 x 2 matrix appearing in its EOM.
¢) Determine the eigenvalues Ay of A.

d) Determine right eigenvectors {e. = (z.,v+)T} of A, i.e., the vectors

() () A () ()

Remark: It is fine when the vectors are not normalized.



e) Determine the left eigenvectors {by = ({4,v4)} of A, i.e., the vectors

(Es va) A= Ap (&4 vy)
(v ) A=A (6. v)

Remark: It is fine when the vectors are not normalized.

f) Show that

by e = (&, vy)- <z_> = and b_-ey=({, v ) <x+) =0

g% g) Verify that every vector I' € R? can be decomposed as

b, -T
bi-ei

I'=g,e; +g_e_ with ¢4 =

Remark: In g, there are only plus signs on the right-hand side, and for g_ only

minus signs.

h) The expression derived in g) holds in general. Show that one thus can express
the solution of the EOM I'(t) = AT'(t) with initial condition Ty = I'(to) as

L(t) =g Mt e, 4 gD At e with ) = =0

i) How does the solution look like specifically for the damped harmonic oscillator?

Problem 8.2. Taylor series of 2d functions
A potential ®(x), is a scalar function that depends on the position x. In general the
Taylor expansion of such a scalar function describes the change of the function for

small deviations € of the position. Specifically, for x = xy + € we have

1 1
®(x) = O(x0) + (€ 9:)P(x0) + 5 (€1 9;) (€ 0)P(x0) + 57 (€ 6i) (€ 95) (e O P(x0) + ...
Here, ¢; denotes the i-component of the vector € with respect to an orthonormal
basis €;, and 0; is the partial derivative with respect to the according coordinate x; of
X. Moreover, we use the Einstein convention that requires summation over repeated

indices, i.e., ¢ 0; is an abbreviation for ¢ 0; = ), ¢ 0; where ¢ runs of the set of



indices labeling the base vectors, and analogous statement hold for (¢; 9;) and (e J%).

0
Remark: 0;®(xo) should hence be interpreted as 9;P(x¢) = 87@(;1:1, e Ty )

a)

J X=X(
Verify that for scalar arguments € R the expression for the multi-dimensional
Taylor expansion reduces to the one for real functions that we have discussed

before.

Show that the first terms of the Taylor expansion can also be written in the
form
1
d(x) = ®(x0) + (¢ - V)P(x0) + 3 el C(xo)e+...

where the matrix C(xg) has the components ¢;;(x0) = 9;0;P(xo).

We say that the function ®(x) has an extremum at xg when V& (x) = 0.

Why is this a reasonable based on the special case where ® depends only on a
scalar argument?

What does this imply for the forces acting at the position xy when ® is interpreted

as a potential?

Verify that the left and the right eigenvectors of C are identical, up to transposition.

Why does this imply that the normalized eigenvectors span a orthonormal basis?
Show that ®(x) has a minimum at x; iff

o Vd(xy) =0, and
e all eigenvalues of C(xg) are positive.
Also provide the condition for a maximum.

What happens when there are positive and negative eigenvalues?

What does it imply when (some) eigenvalues vanish?

Consider now the two-dimensional case x € R. Sketch the contour lines of the

potential for the following situations
e VO(x)=(1,1) and C(x) = 0 for all positions x.

1 b
o V&(1,2) =0 and C(1,2) = (b 1) with

1. b>1,
2.1>b>1,
3. b< —1,
4. b= 1.



Problem 8.3. Mechanical similarity
Two solutions of a differential equations are called similar when they can be transformed
into one another by a rescaling of the time-, length- and mass-scales. We indicate the

rescaled quantities by a prime, and denote the scale factors as 7, A, and pu, respectively,
t'=rt, q; = A , m; = pm;

a) We consider a system with kinetic energy 7' = % >;miqZ, and consider a

potential that admits the following scaling
V=t NV
Show that the EOM are then invariant when one rescales time as

= p(-o)/2 \C-B)/2

Remark: Assume energy conservation for the discussion of the EOM.

b) Consider now two pendulums, V' = mgz with different masses and length of
the pendulum arms. Which factors 7, A, and p relate their trajectories? How
will the periods of the pendulums thus be related to the ratio of the mass and
the length of the arms? Which scaling do you expect based on a dimensional

analysis?

¢) What do you find for the according discussion of the periods of a mass attached

to a spring, V = k|q|?/2?

d) Discuss the period of the trajectories in the Kepler problem, V- = mMG/|q|. In
this case the dimensional analysis is tricky because the masses of the sun and
of the planet appear in the problem. What does the similarity analysis reveal

about the relevance of the mass of the planet for Kepler’s third law?
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