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Die Philosophie steht in diesem großen Buch geschrieben, dem
Universum, das unserem Blick ständig offen liegt. Aber das Buch
ist nicht zu verstehen, wenn man nicht zuvor die Sprache erlernt
und sich mit den Buchstaben vetraut gemacht hat, in denen es
geschrieben ist. Es ist in der Sprache der Mathematik geschrieben,
und deren Buchstaben sind Kreise, Dreiecke und andere geometrische
Figuren, ohne die es dem Menschen unmöglich ist, ein einziges
Wort davon zu verstehen; ohne diese irrt man in einem dunklen
Labyrinth herum.

Galileo Galilei, Il Saggiatore, 1623

Die Mathematik ist das Instrument, welches die Vermittlung
bewirkt zwischen Theorie und Praxis, zwischen Denken und
Beobachten: sie baut die verbindende Brücke und gestaltet sie im-
mer tragfähiger. Daher kommt es, daß unsere ganze gegenwärtige
Kultur, soweit sie auf der geistigen Durchdringung und Dienst-
barmachung der Natur beruht, ihre Grundlage in der Mathematik
findet.

David Hilbert, Ansprache "‘Naturerkennen und Logik"’ am 8.9.1930

während des Kongresses der Vereinigung deutscher Naturwissenschafter

und Mediziner

Insofern sich die Sätze der Mathematik auf die Wirklichkeit
beziehen, sind sie nicht sicher, und insofern sie sicher sind, beziehen
sie sich nicht auf die Wirklichkeit.

Albert Einstein Festvortrag "‘Geometrie und Erfahrung"’ am 27.1.1921

vor der Preußischen Akademie der Wissenschaften





Preface
Die ganzen Zahlen hat der liebe Gott geschaffen,

alles andere ist Menschenwerk.
Leopold Kronecker

Almost 400 years ago Galilei Galileo expressed the credo of
modern sciences: The language of mathematics is the appropri-
ate instrument to decode the secrets of the universe. Arguably the
fruits of this enterprise are more visible today than they have ever
been in the past. Mathematical models are the cornerstone of mod-
ern science and engineering. They provide the tools for optimizing
engines, and the technology for data and communication sciences.
No car will run, no plane will fly, no cell phone ring without the
technical equipment and the software to make it run. Moreover,
again and again the challenges of physics models inspired the de-
velopment of new mathematics. Physics and mathematics take
complementary perspectives: Mathematicians strive for a logically
stringent representation of the structure of theories and models.
Physicists adopt mathematics as a tool to speak about and better
understand nature:

The present Lecture Notes are developed to accompany courses on
“Theoretical Mechanics” for physics freshmen in the international



vi Theoretical Mechanics and Mathematical Methods

physics program and for students in the teacher education program
of the Universität Leipzig. The course addresses mechanics prob-
lems to introduce the students to concepts and strategies aiming at
a quantitative description of observations.

To meet that aim the lectures strive to meet several purposes:

a) They introduce the concept of a mathematical model, its predic-
tions, and how they relate to observations.

b) They present strategies adopted to develop a model, to explore
its predictions, to falsify models, and to refine them based on
comparison to observations.

c) They introduce mathematical concepts used in this enterprise:
dimensional analysis, non-dimensionalization, complex numbers,
vector calculus, and ordinary differential equations.

d) They provide an introduction to Newtonian and Lagrangian
Mechanics.

Our approach to mathematical concepts is strongly biased to de-
veloping skills to apply mathematical tools in a modeling context,
rather than striving for mathematical rigor. For the latter we point

© Jürgen Vollmer — 2021-02-12 04:11:40+01:00

http://www.uni-leipzig.de


Preface vii

out potential pitfalls based on physical examples, and refer students
to maths classes.

The material is organized in chapters that address subsequent
mathematical and physical topics. Each chapter is introduced by add reading plan

a physics illustration problem. Then, we develop and discuss rele-
vant new concepts. Subsequently, we provide a worked examples.
One of them will be the solution of the problem sketched in the
introduction. At the end of each section we provide problems:

a. quickies to test conceptual understanding and highlight the
new concepts. At times they involve a small twist or highlight
pitfalls.

b. exercises to gain practice in employing the concepts.
At the end of chapter further problems are given:
c. more elaborate exercises where the new concepts are used to

discuss non-trivial problems.
d. exercises that provide complementary insight based on

Python and Sage programs
e. teasers with challenging problems. Typically these exercises

require a non-trivial combination of different concepts that have
been introduced in earlier chapters.

At the end of the chapter we recommend additional literature
and provide an outlook for further reading.

I am grateful to Robin Barta, Lennart Buchwald, Fabian Giese,
Kolya Lettl, Menna Noufal, Annemarie Wenzel, and Maurice Ze-
uner for feedback on the notes.

I am eager to receive further feedback. It is crucial for the devel-
opment of this project to learn about typos, inconsistencies, con-
fusing or incomplete explanations, and suggestions for additional
material (contents as well as links to papers, books and internet re-
sources) that should be added in forthcoming revisions. Everybody
who is willing to provide feedback will be invited to a coffee in
Café Corso.
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1
Basic Principles

-Ilhador-/wikimedia, Public domain

At the end of this chapter we will be able to estimate the speed of a
Tsunami wave.

https://commons.wikimedia.org/wiki/File:Tsunami2.JPG


2 1. Basic Principles

1.1 Basic notions of mechanics

Definition 1.1: System

A mechanical system is comprised of particles labeled by an
index i∈I, that have masses mi, reside at the positions xi,
and move with velocities vi.

Remark 1.1. We say that the system has N particles when I =

{1, . . . , N}. �

Remark 1.2. The arrows indicate here that xi describes a position in
space. For a D-dimensional space one needs D numbers1to specify
the position, and xi may be thought of as a vector in RD. We say
that xi is a D-vector. �

1 Strictly speaking we do not only need
numbers, but must also indicate the
adopted units. Remark 1.3. In order to emphasize the close connection between

positions and velocities, the latter will also be denoted as ẋ. �

Example 1.1: A piece of chalk

We wish to follow the trajectory of a piece of chalk through
the lecture hall. In order to follow its position and orienta-
tion in space, we decide to model it as a set of two masses
that are localized at the tip and at the tail of the chalk. The
positions of these two masses x1 and x2 will both be vectors
in R3. For instance we can indicate the shortest distance to
three walls that meet in one corner of the lecture hall. In this
model we have N = 2 and D = 3.

Definition 1.2: Degrees of Freedom (DOF)

A system with N particles whose positions are described by
D-vectors has D N degrees of freedom (DOF).

Remark 1.4. Note that according to this definition the number of
DOF is a property of the model. For instance, the model for the
piece of chalk has D N = 6 DOF. However, the length of the piece
of chalk does not change. Therefore, one can find an alternative
description that will only evolve 5 DOF. (We will come back to this
in due time.) �

Definition 1.3: State Vector

The position of all particles can be written in a single state
vector, q, that specifies the positions of all particles. Its com-
ponents are called coordinates.

Remark 1.5. For a system with N particles whose positions are
specified by D-dimensional vectors, xi = (xi,1, . . . , xi,D), the vector q
takes the form q = (x1,1, . . . , x1,D, x2,1, . . . , x2,D, . . . , xN,1, . . . , xN,D),
which comprises the coordinates x1,1, . . . , xN,D). For conciseness we
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1.1. Basic notions of mechanics 3

will also write q = (x1, . . . , xN). The vector q has DOF number of
entries, and hence q ∈ RDN . �

Remark 1.6. The velocity associated to q will be denoted as q̇ =

(ẋ1, . . . , ẋN). �

Definition 1.4: Phase Vector

The position and velocities of all particles form the phase
vector, Γ = (q, q̇).

Definition 1.5: Trajectory

The trajectory of a system is described by specifying the time
dependent functions

xi(t), vi(t), i = 1, . . . , N

or q(t), q̇(t)

or Γ(t)

Definition 1.6: Initial Conditions (IC)

For t ∈ [t0, ∞) the trajectory is uniquely determined by its
initial conditions (IC) for the positions xi(t0) and velocities
vi(t0), i.e. the point Γ(t0) in phase space.

Remark 1.7. This definition expresses that the future evolution of
a system is uniquely determined by its ICs. Such a system is called
deterministic. Mechanics addresses the evolution of determinis-
tic systems. At some point in your studies you might encounter
stochastic dynamics where different rules apply. �

based on Atalanta, creativecommons,
CC BY-SA 3.0
Figure 1.1: Initial conditions for
throwing a javelin, cf. Example 1.2.

Example 1.2: Throwing a javelin

The ICs for the flight of a javelin specify where it is released,
x0, when it is thrown, the velocity v0 at that point of time,
and the orientation of the javelin. In a good trial the initial
orientation of the javelin is parallel to its initial velocity v0,
as shown in Figure 1.1

Remark 1.8. In repeated experiments the ICs will be (slightly) differ-
ent, and one observes different trajectories.

1. A seasoned soccer player will hit the goal in repeated kicks.
However, even a professional may miss occasionally.

2. A bicycle involves a lot of mechanical pieces that work to-
gether to provide a predictable riding experience.

3. A lottery machine involves a smaller set of pieces than a bike,
but it is constructed such that unnoticeably small differences of
initial conditions give rise to noticeably different outcomes. The
outcome of the lottery can not be predicted, in spite of best efforts
to select identical initial conditions. �
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4 1. Basic Principles

Definition 1.7: Constant of Motion

A function of the positions xi and velocities vi is called a
constant of motion, when it does not evolve in time.

Remark 1.9. For a given initial conditions a constant of motion
takes the same value for the full trajectory. However, it may take
different values for different trajectories, i.e. different choices of
initial conditions. �

Example 1.3: Length of a piece of chalk

During the flight the positions x1 and x2 of the piece of chalk
will change. However, the length L of the piece of chalk will
not, and at any given time it can be determined from x1

and x2. Hence, L is a constant of motion that takes the same
value for all trajectories of the piece of chalk.

Example 1.4: Energy conservation for the piece of chalk

We will see that the sum of the potential and the kinetic en-
ergy is conserved during the flight of the piece of chalk. This
sum, the total energy E, is a constant of motion. The poten-
tial energy depends on the position and the kinetic energy is
a function of the velocity. Trajectories that start at the same
position with different speed will therefore have different
total energy. Hence, E is a constant of motion that can take
different value for different trajectories of the piece of chalk.

Definition 1.8: Parameter

In addition to the ICs the trajectories will depend on parame-
ters of the system. Their values are fixed for a given system.

Example 1.5: A piece of chalk

For the piece of chalk the trajectory will depend on whether
the hall is the Theory Lecture Hall in Leipzig, a briefing
room in a ship during a heavy storm, or the experimental
hall of the ISS space station. To the very least one must spec-
ify how the gravitational acceleration acts on the piece of
chalk, and how the room moves in space.

Remark 1.10. The set of parameters that appear in a model depends
on the choices that one makes upon setting up the experiment. For
instance

Beckham’s banana kicks can only be understood when one ac-
counts for the impact of air friction on the soccer ball.

Air friction will not impact the trajectory of a small piece of talk
that I through into the dust bin.
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1.1. Basic notions of mechanics 5

By adopting a clever choice of the parameterization the trajec-
tory of the piece of chalk can be described in a setting with 5 DOF.
The length of the piece of chalk will appear as a parameter in that
description. �

Definition 1.9: Physical Quantities

Positions, velocities and parameters are physical quantities
that are characterized by at least one number and a unit.

in 3. length or duration?

Example 1.6: Physical Quantities

1. The mass, M, of a soccer ball can be fully characterized by
a number and the unit kilogram (kg), e.g. M ≈ 0.4 kg.
2. The length, L, of a piece of chalk can be fully char-
acterized by a number and the unit meter (m), e.g.
L ≈ 7× 10−2 m.
3. The duration, T, of a year can be characterized by a num-
ber and the unit second, e.g. T ≈ π × 107 s.
4. The speed, v, of a car can be fully characterized by a num-
ber and the unit, e.g. v ≈ 42 km h−1.
5. A position in a D-dimensional space can fully be charac-
terized by D numbers and the unit meter.
6. The velocity of a piece of chalk flying through the lec-
ture hall can be characterized by three numbers and the
unit m/s. However, one is missing information in that case
about its rotation.

Remark 1.11. Analyzing the units of the parameters of a system
provides a fast way to explore and write down functional depen-
dencies. When doing so, the units of a physical quantity Q are
denoted by [Q]. For instance for the length L of the piece of chalk,
we have [L] = m. For a dimensionless quantity d we write [d] = 1.
�

Example 1.7: Changing units

Suppose we wish to change units from km/h to m/s. A
transparent way to do this for the speed of the car in the
example above is by multiplications with one

v = 72
km
h

1 h
3.6× 103 s

1× 103 m
1 km

=
72
3.6

m s−1 = 20 m s−1

Definition 1.10: Dynamics

The characterization of all possible trajectories for all admis-
sible ICs is called dynamics of a system.
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6 1. Basic Principles

1.1.1 Self Test

Problem 1.1. The degrees of freedom of a frisbee

a) How would you describe the position of a frisbee in space?

b) How many degrees of freedom does your parameterization
involve?

c) Are there constants of motion in your description?

d) Specify at least three parameters required for the description.

Problem 1.2. Useful numbers and unit conversions

a) Verify that

• one nano-century amounts to π seconds,

• a colloquium talk at our Physics Department must not run
take longer than a micro-century,

• a generous thumb-width amounts to one atto-parsec.

b) The Physics Handbook of Nordling and Österman (2006) de-
fines a beard-second, i. e. the length an average beard grows in
one second, as 10 nm. In contrast, Google Calculator uses a value
of only 5 nm. I prefer the one where the synodic period of the
moon amounts to a beard-inch. Which one will that be?

c) In the furlong–firkin–fortnight (FFF) unit system one furlong per
fortnight amounts to the speed of a tardy snail (1 centimeter per
minute to a very good approximation), and one micro-fortnight
was used as a delay for user input by some old-fashioned com-
puters (it is equal to 1.2096 s). Use this information to determine
the length of one furlong.

1.2 Dimensional analysis

Mathematics does not know units. Experimental physicists hate
large sets of parameters because the sampling of high-dimensional
parameter space is tiresome. A remedy to both issues is offered by
the Buckingham-Pi-Theorem. We state it here in a form accessible
with our present level of mathematical refinement. The discussion
of a more advanced formulation may appear as a homework prob-
lem later on on this course.

Theorem 1.1: Buckingham-Pi-Theorem

A dynamics with n parameters, where the positions q and
the parameters involve the three units meter, seconds and
kilogram, can be rewritten in terms of a dimensionless dynam-
ics with n − 3 parameters, where the positions ξ, velocities ζ,
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1.2. Dimensional analysis 7

and parameters πj with j ∈ {1, . . . , n− 1} are given solely by
numbers.

x(t)

z(t)
g

L
M

Figure 1.2: Pendulum discussed in
Example 1.8

Example 1.8: Non-dimensionalization for a pendulum

Let x denote the position of a pendulum of mass M that is
attached to a chord of length L and swinging in a gravita-
tional field g of strength g (see Figure 1.2).
The units of these quantities are [x] = m, [M] = kg, [L] = m,
and [g] = m/s2, respectively. The position x describes
the position of the system. Its evolution will depend (po-
tentially) on the three parameters, M, L, and g, plus the
direction of g.
In this problem we choose L as length scale and

√
L/g

as time scale. Then the dimensionless positions will be
ξ = x/L, the dimensionless velocities will be ζ = ẋ/

√
g L.

There is no way to turn M into a dimensionless parameter.
Therefore, the evolution of (ξ, ζ) can not depend on M. The
only dimensionless parameter that remains in the model is
the direction of g.

Example 1.9: Non-dimensionalization for
the flight of a piece of chalk

Let x1 and x2 denote the position of the tip and the tail of a
model for a piece of chalk, where tip and tail are associated
to masses m1 and m2. The piece of chalk has a length L. It
performs a free flight in a gravitational field with accelera-
tion g of strength g.
The units of these quantities are [xi] = m, [mi] = kg, L = m,
and [g] = m/s2, respectively. There are four parameters, n =

4, plus the direction of g.
In this problem we choose L as length scale and

√
L/g

as time scale. Then the dimensionless positions will be
ξi = xi/L, the dimensionless velocities will be ζ = ẋi/

√
g L.

The two masses m1 and m2 give rise to the dimensionless pa-
rameter π1 = m1/m2, and in three dimensions the direction
of g must be characterized by another two dimensionless
parameters.

Proof of the Buckingham-Pi-Theorem. We first look for combinations
of the parameters with the following units

m =
[
pα1

1
] [

pα2
2
]

. . . [pαn
n ]

s =
[

pβ1
1

] [
pβ2

2

]
. . .
[

pβn
n

]
kg =

[
pγ1

1
] [

pγ2
2
]

. . .
[
pγn

n
]
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8 1. Basic Principles

Each of these equations involves constraints on the exponents in or-
der to match the exponents of the three units that can be expressed
as a system of linear equations. The solvability conditions for such
systems imply that they conditions can always be met by an appro-
priately chosen set of three parameters. Without loss of generality
we denote them as p1, p2 and p3, and we have

m =
[
pα1

1
] [

pα2
2
] [

pαn
3
]

s =
[

pβ1
1

] [
pβ2

2

] [
pβn

3

]
(1.2.1)

kg =
[
pγ1

1
] [

pγ2
2
] [

pγn
3
]

Thus we use the parameters p1, . . . , p3 to remove the units from our
description. In its dimensionless form it will involve the positions
and velocities

ξ = q p−α1
1 p−α2

2 p−αn
3

ζ = q̇ pβ1−α1
1 pβ2−α2

2 pβn−αn
3

Similarly, the dimensionless form of the parameters pi of the dy-
namics are obtained by multiplying the original parameters with
appropriate powers of the expressions (1.2.1) of the units. For p1

to p3 this gives rise to one. Additional parameters will turn into
dimensionless groups of parameters that provide π1 to πn−3.

expand and provide
more examples

1.2.1 Self Test

Problem 1.3. Oscillation period of a particle attached to a spring

In a gravitational field with acceleration gMoon = 1.6 m/s2 a
particle of mass M = 100 g is hanging at a spring with spring
constant k = 1.6 kg/s2. It oscillates with period T when it is slightly
pulled downwards and released. We describe the oscillation by the
distance x(t) from its rest position.

a) Determine the dimensionless distance ξ(t),
and the associated dimensionless velocity ζ(t).

b) Provide an order-of-estimate guess of the oscillation period T.

Problem 1.4. Earth orbit around the sun

a) Light travels with a speed of c ≈ 3× 108 m s−1, and it takes 500 s
to travel from Sun to Earth. What is the Earth-Sun distance D,
i. e. one Astronomical Unit (AU) in meters?

b) The period of the trajectory of the Earth around the Sun depends
on D, on the mass M = 2× 1030 kg of the sun, and on the grav-
itational constant G = 6.7× 10−11 m3/kg s2. Estimate, based on
this information, how long it takes for the Earth to travel once
around the sun.
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1.3. Order-of-magnitude guesses 9

c) Express your estimate in terms of years. The estimate of (b) is of
order one, but still off by a considerable factor. Do you recognize
the numerical value of this factor?

d) Upon discussing the trajectory x(t) of planets around the sun
later on in this course, we will introduce dimensionless positions
of the planets ξ(t) = x(t)/L = (x1(t)/L, x2(t)/L, x3(t)/L). How
would you define the associated dimensionless velocities?

1.3 Order-of-magnitude guesses

Many physical quantities take a value close to one when they are
expressed in their “natural” dimensionless units. When the choice
is unique, then clearly it is also natural. Otherwise, the appropriate
choice is a matter of experience.

We will come back to this when we employ non-dimensionalization
in the forthcoming discussion. We demonstrate this based on a dis-
cussion of

Example 1.10: The period of a pendulum

We consider a pendulum of mass M attached at a stiff bar
of negligible mass. With this bar it is fixed to a pivot at a
distance L from the mass such that it can swing in a grav-
itational field inducing an acceleration g. In this example
we make use of the fact that the bar has fixed length L, and
describe the position of the mass by the angel θ(t) (see Fig-
ure 1.3).
As discussed in Example 1.8 the dimensionless time unit for
this problem is

√
L/g. Hence we estimate that the period T

of the pendulum is of the order of T '
√

L/g. Explicit calcu-
lations to be performed later on will reveal that this estimate
is off by a factor 2π when the amplitude is small, |θ(t)| � 1.
For large oscillation amplitudes θ0 the period will increase
further, tending to infinity when θ0 approaches π. Hence, we
conclude that

T = f (θ0)
√

L/g with f (θ0) ' 2π for θ0 � 1 .

θ(t) g

L

M

Figure 1.3: Pendulum discussed in
Example 1.10

Example 1.11: The speed of Tsunami waves

A Tsunami wave is a water wave that is generated by an
earth quake or an underwater land slide. Typical wave
lengths are of an order of magnitude λ = 100 km. They
travel through the ocean that has an average depth of about
D = 4 km, much smaller than λ. Therefore, we expect that
the wave speed vTsunami is predominantly set by the ocean
depth and the gravitational acceleration g ≈ 10 m/s2, i.e.

vTsunami ≈
√

gD = 2× 102 m/s ≈ 700 km/h

© Jürgen Vollmer — 2021-02-12 04:11:40+01:00



10 1. Basic Principles

This estimate suggests that the 2004 Indian Ocean Tsunami
traversed the distance from Indonesia to the East African
coast, L ≈ 10 000 km, in about

L
vTsunami

≈ 1× 104 km
700 km/h

=
100

7
h ≈ 15 h

This is very close to the value of 16 h reported in Wikipedia.

Example 1.12: The period of Tsunami waves

In spite of their speed and devastating power, Tsunamis are
very hard to detect on the open sea because their period T
is very long. It can be estimated as the time that the wave
needs to run once through its wavelength2

T ≈ λ

vTsunami
=

λ√
gD

=
100 km

700 km/h
=

1
7 h
≈ 10 min

Here, our estimate is too small by about a factor of three.

2 Observe that this physical argument
goes beyond the blind use of dimen-
sional analysis. The equation for T
involves the length scales λ and D in a
non-trivial combination that is set by a
physical argument.

We conclude that estimates based on dimensional analysis pro-
vide valuable insight in time scales of physical processes, even in
situations where a detailed mathematical treatment is very delicate.

1.3.1 Self Test

Problem 1.5. Printing the output of Phantom cameras

With a set of three phantom cameras one can simultaneously
follow the motion of 100 particles in a violent 3d turbulent flow.
Data analysis of the images provides particle positions with a res-
olution of 25,000 frames per second. You follow the evolution for
20 minute, print it double paged with 8 coordinates per line and
70 lines per page. A bookbinder makes 12 cm thick books from ev-
ery 1000 pages. You put these books into bookshelves with seven
boards in each shelf. How many meters of bookshelves will you
need to store your data on paper?

1.4 Problems

Problem 1.6. Water waves

The speed of waves on the ocean depends only on their wave
length L and the gravitational acceleration g ' 10 m/s2.

a) How does the speed of the waves depend on L and g?

b) Unless it is surfing, the speed of a yacht is limited by its hull
speed, i.e. the speed of a wave with wave length identical to the
length of the yacht. Estimate the top speed of a 30 ft yacht.
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c) Close to the beach the water depth H become a more important
parameter than the wave length. How does the speed of the crest
and the trough of the wave differ? What does this imply about
the form of the wave?

Problem 1.7. Golf on Moon and Earth

snapshot retrieved from a NASA movie

In the end of the Apollo14 mission, on February 6, 1971, astro-
nauts Alan Shepard and Ed Mitchell modified discarded equipment
to perform sport on Moon: Mitchell threw a scoop handle as if
it were a javelin (see the Apollo14 Lunar surface journal of the
NASA). Shepard attached a golf club head to a handle of a sample
tool, and hit two golf balls that still reside on Moon. Rumours tell
that the golf balls went “miles and miles and miles”.

a) According to Newton’s laws of gravity the gravitational accel-
eration amounts to G M/R2, where G is a constant, M the mass
of the planet or moon, and R its radius. The Earth radius is four
times larger than the one of Moon. Estimate the gravitational
acceleration gM on Moon.
Hint: The acceleration on the Earth surface is g = 10 m s−1.

b) In contrast to what you have found in a) the gravetational accel-
eration on Moon is about one sixth of the value on Earth. Use
this difference to estimate the difference of the average density of
the Moon and of Earth.

c) On Earth a long-distance golf shot can go a few hundred meters.
By which factor does this distance increase on Moon?

d) Assume that the shot on Earth can go for 500 m, when one ne-
glects friction due to the Earth atomosphere. Estimate the release
velocity of the shot and its time of flight.

e) How long will the golf ball go on Moon, and how long will it
fly?

1.4.1 Proofs

1.5 Further reading

The first chapter of Großmann (2012) provides a clear and concise
introduction to basic calculus with an emphasis on applications to
physics problems.

Morin (2014, 2007) provides an excellent introduction to problem
solving strategies in physics and dimensional analysis.
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2
Balancing Forces and Torques

In Chapter 1 we observed that positions and velocities of parti-
cles are specified by indicating their unit, magnitude and direc-
tions. Hence, they are vectors. In the present chapter we learn how
vectors are defined in mathematics, and how they are used and
handled in physics. In order to provide a formal definition we in-
troduce a number of mathematical concepts, like groups, that will
be revisited in forthcoming chapters. As first important application
we deal with balancing forces and torques.

Mobile (sculpture) in the style of Alexander Calder
Andrew Dunn / wikimedia CC BY-SA 2.0

At the end of this chapter we will be able to determine how a mo-
bile hangs from the ceiling.

https://en.wikipedia.org/wiki/Alexander_Calder
https://commons.wikimedia.org/wiki/File:Mobile_(sculpture)_in_the_style_of_Alexander_Calder.jpg
https://creativecommons.org/licenses/by-sa/2.0


14 2. Balancing Forces and Torques

2.1 Motivation and outline: forces are vectors

In mechanics we use vectors to describe forces, displacements and
velocities. A displacement describes the relative position of two
points in space, and the velocity can be thought of as a distance
divided by the time needed to go from the initial to the final point.
(A mathematically more thorough definition will be given in Chap-
ter 3.) For forces it is of paramount importance to indicate in which
direction they are acting. Similarly, in contrast to speed, a velocity
can not be specified in terms of a number with a unit, e.g. 5 m/s.
By its very definition one also has to specify the direction of mo-
tion. Finally, also a displacement involves a length specification and
a direction.

x
y

cartesian

θR

polar

Figure 2.1: The displacement of the
red point from the bottom left corner
to the the middle of the page can
either be specified by the direction θ
and the distance R (polar coordinates,
top), or by the distances x and y along
the sides of the paper (Cartesian
coordinates, bottom).

Example 2.1: Displacement of a red dot from the lower left
corner to the middle of a paper

This displacement is illustrated in Figure 2.1. It can either
be specified in terms of the distance R of the point from the
corner and the angle θ of the line connecting the points and
the lower edge of the paper (i.e. the direction of the point).
Alternatively, it can be given in terms of two distances (x, y)
that refer to the length x of a displacement along the edge
of the paper and a displacement y in the direction vertical to
the edge towards the paper. This can be viewed as result of
two subsequent displacements indicated by gray arrows.

add more explanation

In three dimensions, one has to adopt a third direction out of
the plane used for the paper, and hence three numbers, to specify a
displacements—or indeed any other vector.

displacement velocity force
x = (x1, x2, x3) v = (v1, v2, v3) F = ( f1, f2, f3)

unit [x] = m [v] = m s−1 [F] = kg m/s2

magnitude |x| =
√

x2
1 + x2

2 + x2
3 |v| =

√
v2

1 + v2
2 + v2

3 |F| =
√

f 2
1 + f 2

2 + f 2
3

direction x̂ = x/|x| v̂ = v/|v| F̂ = F/|F|

A basic introduction of mechanics can be given based on this
heuristic account of vectors. However, for the thorough exposition
that serve as a foundation of theoretical physics a more profound
mathematical understanding of vectors is crucial. Hence, a large
part of this chapter will be devoted to mathematical concepts.

Outline

In the first part of this chapter we introduce the mathematical no-
tions of sets and groups that are needed to provide a mathemati-
cally sound definition of a vector space. Sets are the most funda-
mental structure of mathematics. It denotes a collection of elements,
e.g., numbers like the digits of our number system {1, 2, . . . , 9} or
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the set of students in my class. Mathematical structures refer to
sets where the elements obey certain additional properties, like in
groups and vector spaces. They are expressed in terms of operations
that take one or several elements of the set, and return a result that
may or may not be part of the given set. When an operation f takes
an element of a set A and returns another element of A we write
f : A → A. When an operation ◦ takes two elements of a set A and
returns a single element of A we write1 ◦ : A× A → A. Equipped 1 Here A× A is the set, (a1, a2), of all

pairs of elements a1, a2 ∈ A. Further
details will be given in Definition 2.3
below.

with the mathematical tool of vectors we will explore the physi-
cal concepts of forces and torques, and how they are balanced in
systems at rest.

2.2 Sets

In mathematics and physics we often wish to make statements
about a collection of objects, numbers, or other distinct entities.

Definition 2.1: Set

A set is a gathering of well-defined, distinct objects of our
perception or thoughts.
An object a that is part of a set A is an element of A;
we write a ∈ A.
If a set M has a finite number n of elements we say that its
cardinality is n. We write |M| = n.

Remark 2.1. Notations and additional properties:

a) When a set M has a finite number of elements, e.g., +1 and −1,
one can specify the elements by explicitly stating the elements,
M = {+1,−1}. In which order they are states does not play a
role, and it also does not make a difference when elements are
provided several times. In other words the set M of cardinality
two can be specified by any of the following statements

M = {−1,+1} = {+1,−1} = {−1, 1, 1, 1, } = {−1, 1,+1,−1}

b) If e is not an element of a set M, we write e 6∈ M. For instance
−1 ∈ M and 2 6∈ M.

c) There is exactly one set with no elements, i. e. with cardinality
zero. It is denoted as empty set, ∅.

�

Example 2.2: Sets

• Set of capitals of German states:

AC = {Berlin, Bremen, Hamburg, Stuttgart, Mainz, Wies-
baden, München, Magdeburg, Saarbrücken, Potsdam,
Kiel, Hannover, Dresden, Schwerin, Düsseldorf, Erfurt}
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16 2. Balancing Forces and Torques

• Set of small letters in German:

AL = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v,
w, x, y, z, ä, ö, ü, ß}

• Set of month with 28 days:2

AM = {January, February, March, April, May, June, July,
August, September, October, November, December}

The cardinalities of these sets are
|AC| = 16, |AL = 30|, and |AM| = 12.

2 Most of them have even more days.

Example 2.3: Sets of sets

A set can be an element of a set. For instance the set

M = {1, 3, {1, 2}}

has three elements 1, 3 and {1, 2} such that |M| = 3, and

1 ∈ M , {1, 2} ∈ M , 2 6∈ M {1} /∈ M .

Often it is bulky to list all elements of a set. In obvious cases
we use ellipses such as AL = {a, b, c, . . . , z, ä, ö, ü, ß} for the set
given in Example 2.2. Alternatively, one can provide a set M by
specifying the properties A(x) of its elements x in the following
form

M︸︷︷︸
The set M

=︸︷︷︸
contains

{︸︷︷︸
all elements

x︸︷︷︸
x,

:︸︷︷︸
with :

A(x)︸ ︷︷ ︸
properties . . .

}.

where the properties specify one of several properties of the ele-
ments. The properties are separated by commas, and must all be
true for all elements of the set.

Example 2.4: Set definition by property

The set of digits D = {1, 2, 3, 4, 5, 6, 7, 8, 9} can also be
defined as follows D = {1, . . . , 9} = {x : 0 < x ≤ 9, x ∈ Z}.
In the latter definition Z denotes the set of all integer num-
bers.

In order to specify the properties in a compact form we use logi-
cal junctors as short hand notation. In the present course we adopt
the notations not ¬, and ∧, or ∨, implies⇒, and is equivalent⇔
for the relations indicated in 2.1.

The definition of the digits in Example 2.4 entails that all ele-
ments of D are also numbers in Z: we say that D is a subset of Z.

3 Some authors use ⊂ instead of ⊆,
and ( to denote proper subsets.

Definition 2.2: Subset and Superset

The set M1 is a subset of M2, if all elements of M1 are also
contained in M2. We write3M1 ⊆ M2. We denote M2 then as
superset of M1, writing M2 ⊇ M1.
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Table 2.1: List of the results of different
junctors acting on two statements A
and B. Here 0 and 1 indicate that a
statement is wrong or right, respec-
tively. In the rightmost column we
state the contents of the expression
in the left column in words. The final
three lines provide examples of more
complicated expressions.

A 0 0 1 1

B 0 1 0 1

¬A 1 1 0 0 not A
¬B 1 0 1 0 not B

A ∨ B 0 1 1 1 A or B
A ∧ B 0 0 0 1 A and B

A⇒ B 1 1 0 1 A implies B
A⇔ B 1 0 0 1 A is equivalent to B

A ∨ ¬B 1 0 1 1 A or not B
¬A ∧ B 0 1 0 0 not A or B
A ∧ ¬B 0 0 1 0 A and not B

The set M1 is a proper subset of M2 when at least one of
the elements of M2 is not contained in M1. In this case
|M1| < |M2|, and we write M1 ⊂ M2 or M2 ⊃ M1.

Example 2.5: Subsets

• The set of month with names that end with “ber” is a
subset of the set AM of Example 2.2

{September, October, November, December} ⊆ AM

• For the set M of Example 2.3 one has

{1} ⊆ M , {1, 3} ⊆ M , {1, 2} 6⊆ M , {2, {1, 2}} 6⊆ M .

Note that {1, 2} is an element of M. However, it is not a
subset. The last two sets are no subsets because 2 6∈ M.

Two sets are the same when they are subsets of each other.

Theorem 2.1: Equivalence of Sets

Two sets A and B are equal or equivalent, iff

(A ⊆ B) ∧ (B ⊆ A) .

Remark 2.2 (iff). In mathematics “iff” indicates that something holds
“if and only if”. Observe its use in the following two statements: A
number is an even number if it is the product of two even numbers.
A number is an even number iff it is the product of an even number
and another number. �

Remark 2.3 (precedence of operations in logical expressions.). In
logical expressions we first evaluate ∈, 6∈ and other set operations
that are used to build logical expressions. Then we evaluate the
junctor ¬ that is acting on a a single logical expression. Finally the
other junctors ∧, ∨,⇒, and⇔ are evaluated. Hence, the brackets
are not required in Theorem 2.1. �
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18 2. Balancing Forces and Torques

Proof of Theorem 2.1.
A ⊆ B implies that a ∈ A⇒ a ∈ B.
B ⊆ A implies b ∈ B⇒ b ∈ A.
If A ⊆ B and B ⊆ A, then we also have a ∈ A⇔ a ∈ B.

The description of sets by properties of its members, Exam-
ple 2.4, suggests that one will often be interested in operations on
sets. For instance the odd and even numbers are subsets of the nat-
ural numbers. Together they form this set, and one is left with the
even numbers when removing the odd numbers from the natural
numbers. Hence, we define the following operations on sets.

Figure 2.2: Intersection of two sets.

Figure 2.3: Union of two sets.

Figure 2.4: Difference of two sets.

Figure 2.5: Complement of a set.

Definition 2.3: Set Operations

For two sets M1 and M2 we define the following operations:

• Intersection: M1
⋂

M2 = {m : m ∈ M1 ∧m ∈ M2},

• Union: M1
⋃

M2 = {m : m ∈ M1 ∨m ∈ M2},

• Difference: M1\M2 = {m : m ∈ M1 ∧m /∈ M2},

• The complement of a set M in a universe U is defined for
subsets M ⊆ U as MC = {m ∈ U : m /∈ M} = U\M.

• The Cartesian product of two sets M1 and M2 is defined as
the set of ordered pairs (a, b) of elements a ∈ M1 and

b ∈ M2: M1 ×M2 = {(a, b) : a ∈ M1, b ∈ M2}.

A graphical illustration of the operations is provided in
Figures 2.2 to 2.5.

Example 2.6: Set operations: participants in my class

Consider the set of participants P in my class. The sets of
female F and male M participants of the class are proper
subsets of P with an empty intersection F

⋂
M. The set of

non-female participants is P\F. The set of heterosexual cou-
ples in the class is a subset of the Cartesian product F × M.
Furthermore, the union F

⋃
M is a proper subset of P, when

there is a participant who is neither female nor male.

Definition 2.4: Logical quantors

A logical statements S about elements a of a set A may hold

• for all elements of a set — we write: ∀a ∈ A : S

• for some elements of a set — we write: ∃a ∈ A : S

• for exactly one elements of a set — we write: ∃!a ∈ A : S
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name symbol description

natural numbers N {1, 2, 3, . . .}
natural numbers with 0 N0 N

⋃
{0}

negative numbers −N {−n : n ∈N}
even numbers 2N {2 n : n ∈N}
odd numbers 2 N− 1 {2 n− 1 : n ∈N}
integer numbers Z (−N)

⋃
N0

rational numbers Q
{

p
q : p ∈ Z, q ∈N

}
real numbers R see below
complex numbers C R + iR, where i =

√
−1

Table 2.2: Summary of important sets
of numbers.

Example 2.7: Logical quantors and properties of set ele-
ments

Let |m| denote the number of days in a month a ∈ AM

(cf. Example 2.2). Then the following statements are true:
There is exactly one month that has exactly 28 days:

∃!a ∈ AM : |a| = 28

Some months have exactly 30 days:

∃a ∈ AM : |a| = 30

All month have at least 28 days:

∀a ∈ AM : |a| ≥ 28

2.2.1 Sets of Numbers

Many sets of numbers that are of interest in physics have infinitely
many elements. We construct them in Table 2.2 based on the natu-
ral numbers N: check ISO norm

N: remark on Neumann
construction?

N = {1, 2, 3, . . .}

or the natural numbers with zero

N0 = N
⋃
{0} .

Remark 2.4. Some authors adopt the convention that zero is in-
cluded in the natural numbers N. When this matters you have to
check which convention is adopted. �

There are many more sets of numbers. For instance, in math-
ematics the set of constructable numbers is relevant for certain
proofs in geometry, and in physics and computer graphics quater-
nions are handy when it comes to problems involving three-
dimensional rotations. In any case one needs intervals of numbers.
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Definition 2.5: Interval of Real Numbers R

An interval is a continuous subset of a set of numbers. We
distinguish open, closed, and half-open subsets.

• closed interval: [a, b] = {x : x ≥ a, x ≤ b} ,

• open interval: (a, b) = ]a, b[ = {x : x > a, x < b} ,

• right open interval: [a, b) = [a, b[ = {x : x ≥ a, x < b} ,

• left open interval: (a, b] = ]a, b] = {x : x > a, x ≤ b} .

Subsets of R will be denoted as real intervals.
add limits, closure, and
R as closure of Q.

2.2.2 Self Test

Problem 2.1. Relations between sets

Let A, B, C, and D be pairwise distinct elements. Select one of
the symbols

∈, 6∈, 3, 63, ⊂, 6⊂, ⊃, 6⊃, =

and avoid 6∈, 63, 6⊂, 6⊃ wherever possible.

a) {A, B} � {A, B, C},

c) {∅} � ∅,

e) A � {A, B, C},

g) {A, C, D} \ {A, B} � {A, B, C},b) {A} � B,

d) {{A}} � {{A}, {B}},

f) {A, C, D} ∩ {A, B} � {A, B, C, D},

h) {A, C, D} ∪ {A, B} � A.

Problem 2.2. Intervals

a) Provide [1; 17]∩]0; 5[ as a single interval.

b) Provide [−1, 4]\[1, 2[ as union of two intervals.

Problem 2.3. Sets of numbers

Which of the following statements are true?

a) {6 · z|z ∈ Z} ⊂ {2 · z|z ∈ Z}.

b) {2 · z|z ∈ Z} ∩ {3 · z|z ∈ Z} = {6 · z|z ∈ Z}.

c) Let T(a) be the set of numbers that divide a. Then

∀a, b ∈N : T(a) ∪ T(b) = T(a · b)

Example: T(2) = {1, 2}, T(3) = {1, 3}, and T(6) = {1, 2, 3, 6}.
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2.3 Groups

A group G refers to a set of operations t ∈ G that are changing
some data or objects. Elementary examples refer to reflections
in space, turning some sides of a Rubik’s cube, or translations in
space, as illustrated in Figure 2.1. The subsequent action of two
group elements t1 and t2 of G is another (typically more compli-
cated) transformation t3 ∈ G. Analogous to the concatenation of
functions, we write t3 = t2 ◦ t1, and we say t3 is t2 after t1. The set
of transformations forms a group iff it obeys the following rules.

Definition 2.6: Group

A set (G, ◦) is called a group with operation ◦ : G × G → G
when the following rules apply

a) The set is closed: ∀g1, g2 ∈ G : g1 ◦ g2 ∈ G.

b) The set has a neutral element: ∃e ∈ G ∀g ∈ G : e ◦ g = g.

c) Each element has an inverse element:
∀g ∈ G ∃i ∈ G : g ◦ i = e.

d) The operation ◦ is associative:
∀g1, g2, g3 ∈ G : (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

Wüstholz rather sug-
gests:
∀e ∈ G : e ◦ f = f
⇒ ∀g ∈ G ∃h ∈ G :
h ◦ g = e

Definition 2.7: Commutative Group

A group (G, ◦) is called a commutative group when

e) the group operation is commutative:
∀g1, g2 ∈ G : g1 ◦ g2 = g2 ◦ g1.

Remark 2.5. Commutative groups are also denoted as Abelian groups.
�

When the group has a finite number of elements the result of
the group operation can explicitly be specified by a group table.
We demonstrate this by the smallest groups. The empty set can
not be a group because it has no neutral element. Therefore the
smallest groups have a single element and two elements. Both of
these groups are commutative.

Example 2.8: Smallest groups

({n},�) comprises only the neutral element.
� n
n n

The smallest non-trivial group has two elements ({0, 1},⊕)
with ⊕ 0 1

0 0 1
1 1 0
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22 2. Balancing Forces and Torques

It describes the turning of a piece of paper:
Not turning, 0, does not change anything (neutral element).
Turning, 1, shows the other side, and turning twice is
equivalent to not turning at all (1 is its own inverse).

Remark 2.6. The group properties imply that all elements of the
group must appear exactly once in each row and each column of
the group table. As a consequence the smallest non-commutative
group is the dihedral group of order 6 with six elements that is
discussed in Problem 2.7. �

Example 2.9: Non-commutative groups: rotations

The rotation of an object in space is a group. In particular
this holds for the 90◦-rotations of an object around a ver-
tical and a horizontal axis. Figure 2.6 illustrates that these
rotations do not commute.

Figure 2.6: Rotation of a book by mul-
tiples of π/2 around three orthogonal
axes.

watch out: there is a
problem with inverse
& neutral elts!

Example 2.10: Non-commutative groups: edit text fields

We consider the text fields of a fixed length n in an electronic
form. Then the operations
“Put the letter L into position

⊔
of the field”

with L ∈ {_, a, . . . , z, A, . . . , Z}
and

⊔ ∈ {1, . . . , n} form a group.
Also in this case one can easily check that the order of the
operations is relevant. In the left and right column the same
operations are preformed for a text field of length n = 4:

|_|_|_|_| |_|_|_|_|
→ |M|_|_|_| → |P|_|_|_|
→ |M|a|_|_| → |P|h|_|_|
→ |M|a|t|_| → |P|h|y|_|
→ |M|a|t|h| → |P|h|y|s|
→ |M|a|t|s| → |P|h|y|h|
→ |M|a|y|s| → |P|h|t|h|
→ |M|h|y|s| → |P|a|t|h|
→ |P|h|y|s| → |M|a|t|h|

Remark 2.7. Notations and additional properties:

a) Depending of the context the inverse element is denoted as g−1

or as −g. This depends on whether the operation is considered
a multiplication or rather an addition. In accordance with this
choice the neutral element is denoted as 1 or 0.

b) The second property of groups, b) ∃e ∈ G ∀g ∈ G : e ◦ g = g,
implies that also g ◦ e = g. The proof is provided as Problem 2.8.
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c) When a group is not commutative then one must distinguish the
left and right inverse. The condition g ◦ i = e does not imply
i ◦ g = e. However, there always is another element j ∈ G such
that j ◦ g = e. An example is provided in Problem 2.7.

�

2.3.1 Self Test

Problem 2.4. Checking group axioms

Which of the following sets are groups?

a) (N,+)

b) (Z,+)

c) (Z, ·)

d) ({+1,−1}, ·)

e) ({0},+)

� ({1, . . . , 12},⊕)

where ⊕ in f) revers to adding as we do it on a clock,
e.g. 10⊕ 4 = 2.

Problem 2.5. The group with three elements

Let G be a group with three elements {n, l, r}, where n is the
neutral element.

a) Show that there only is a single choice for the result of the group
operations a ◦ b with a, b ∈ G. Provide the group table.

b) Verify that the group describes the rotations of an equilateral
triangle that interchange the positions of the angles.

c) Show that there is a bijective map m : {n, l, r} → {0, 1, 2} with
the following property:

∀a, b ∈ G : a ◦ b =
(
m(a) + m(b)

)
mod3 .

We say that the group G is isomorphic to the natural numbers
with addition addition modulo 3.4

4 The natural number modulo n
amount to n classes that represent
the remainder of the numbers after
division by n. For instance, for the
natural numbers modulo two the
0 represents even numbers, and
the 1 odd numbers. Similarly, for
the natural numbers modulo three
the 0 represents numbers that are
divisible by three, and for the sum
of 2 and 2 modulo 3 one obtains
(2 + 2)mod3 = 4mod3 = 1.

Problem 2.6. Symmetry group of rectangles

A polygon has a symmetry with an associated symmetry opera-
tion a when a only interchanges the vertices of the polygon. It does
not alter the position. To get a grip on this concept we consider the
symmetry operations of a rectangle.

a) Sketch how reflections with respect to a symmetry axis inter-
change the vertices of a rectangle. What happens when the re-
flections are repeatedly applied?

b) Show that the symmetry operations form a group with four ele-
ments. Provide a geometric interpretation for all group elements.

c) Provide the group table.
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Watchduck (a.k.a. Tilman Piesk), wikimedia
CC BY-SA
Figure 2.7: Reflections of equilateral
triangle with respect to the three
symmetry axes form a group with six
elements; see Problem 2.7.

Problem 2.7. Dihedral group of order 6

Figure 2.7 illustrates the effect of reflections of a triangle with
respect to its three symmetry axis. All group elements can be gen-
erated by repeated action of two reflections, e.g. those denoted as a
and b in the figure.

a) Verify that the group properties, Definition 2.6, together with the
three additional requirements

a ◦ a = b ◦ b = e and a ◦ b ◦ a = b ◦ a ◦ b

imply that the group has exactly six elements,

G = {e, a, b, a ◦ b, b ◦ a, a ◦ b ◦ a} .

b) Work out the group table.

c) Verify by inspection that e is the neutral element for operation
from the right and from the left.

d) Verify that the group is not commutative, and provide an ex-
ample of a group element where the left inverse and the right
inverse differ.

e) The group can also be represented in terms of a reflection and
the rotations described in Problem 2.5. How would the graphical
representation, analogous to Figure 2.7, look like in that case.

Problem 2.8. Uniqueness of the neutral element

Proof that the group axioms, Definition 2.6, imply that e ◦ g = g
implies that also g ◦ e = g.

2.4 Fields

Besides being of importance to characterize the action of symmetry
operations like reflections or rotations, groups are also important
for us because they admit further characterization of sets of num-
bers.

The natural numbers are not a group. For the addition they are
lacking the neutral elements, and for adding and multiplications
they are lacking inverse elements.

In contrast the group (Z, +) is a commutative group with in-
finitely many elements.

Example 2.11: The group (Z, +)

The numbers Z with operation + form a group. This is
demonstrated here by checking the group axioms.

a) Addition of any two numbers provides a number:
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∀x, y ∈ Z : (x + y) ∈ Z.

b) The neutral element of the addition is 0:

∃ 0 ∈ Z ∀z ∈ Z : z + 0 = z = 0 + z.

c) For every element z ∈ Z there is an inverse (−z) ∈ Z:

∀z ∈ Z ∃(−z) ∈ Z : z + (−z) = 0 = (−z) + z.

d) The addition of numbers is associative:

∀z1, z2, z3 ∈ Z : z1 + (z2 + z3) = (z1 + z2) + z3.

However, the numbers Z still lack inverse elements of the mul-
tiplication. The rational numbers Q and the real numbers R are
commutative groups for addition and multiplication (with the spe-
cial rule that multiplication with 0 has no inverse element), and
their elements also obey distributivity. Such sets are called number
fields.

Definition 2.8: Field

A set (F,+, ·) is called a field with neutral elements 0 and 1
for addition + and multiplication ·, respectively, when its
elements comply with the following rules

a) (F,+) is a commutative group,

b) (F\{0}, ·) is a commutative group,

c) Addition and Multiplication are distributive:

∀a, b, c ∈ F : a · (b + c) = a · b + a · c

Remark 2.8. For the multiplication of field elements one commonly
suppresses the · for the multiplication, writing e.g. a b rather than
a · b. �

Example 2.12: The smallest field has two elements

The smallest field ({0, 1},⊕,�) comprises only the neutral
elements 0 of the group ({0, 1},⊕) with two elements, and 1
of the group ({1},�) with one element.

Example 2.13: Complex numbers are a field

a) The sum of two complex numbers z1 = x1 + iy1 and
z2 = x2 + iy2 amounts to

z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

Hence, the group properties for + follow from the properties
of the real numbers x1, x2 and y1, y2, respectively.
b) They also entail distributivity of complex numbers.
c) The product of the complex numbers z1 = x1 + iy1 and
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z2 = x2 + iy2 amounts to

z1 · z2 = (x1 + iy1) · (x2 + iy2)

= (x1 x2 + iy1 x2 + iy1 x2 + i2 y1 y2)

= (x1 x2 − y1 y2) + i (y1 x2 + x1 y2)

Checking the group axioms based on this representation
of the complex numbers is tedious. One better adopts a
representation in terms of polar coordinates, z1 = R1 eiϕ1

and z2 = R2 eiϕ2 (see Figure 2.8) where (cf Problem 2.10)

z1 · z2 = R1 eiϕ1 · R2 eiϕ2 =
(

R1 R2
)

ei (ϕ1+ϕ2)

Here, the group properties follow from those of multiplying
R1 and R2, and adding ϕ1 and ϕ2.

x

z iy
φ

Figure 2.8: Complex numbers z can
be represented as z = x + iy in a
plane where (x, y) are the Cartesian
coordinates of z. Alternatively, one
can adopt a representation in terms
of polar coordinates z = R eiϕ where
R =

√
x2 + y2 and ϕ is the angle with

respect to the x-axis.

Remark 2.9 (complex conjugation). Each complex numbers z has a
complex conjugate, denoted as z∗ or z̄, that is defined as

∀z = x + iy = R eiϕ ∈ C : z̄ = x− iy = R e−iϕ (2.4.1)

Complex conjugation provides an effective way to calculate the
absolute value |z| = R of complex numbers

z z̄ = (x + iy) (x− iy) = x2 − i2 y2 = x2 + y2 = R2

and z z̄ = R eiϕ R e−iϕ = R2 e0 = R2

⇒ |z| =
√

z z̄ =
√

z̄ z (2.4.2)

�

Remark 2.10. In physics complex numbers are commonly applied to
describe rotations in a plane: Multiplication by eiθ rotates a complex
number z by an angle θ around the origin:

∀z = R eiϕ ∈ C : z · eiθ = R ei(ϕ+θ) (2.4.3)

�

2.4.1 Self Test

Problem 2.9. Checking field axioms

Which of the following sets are fields?

a) (Z,+, ·)

b) ({1, 2, . . . , 12},+mod12, ·mod12)
like on a clock: 11⊕ 2 = 13mod12 = 1 and 4� 5 = 20mod12 = 8.

c) ({0, 1, 2},+mod3, ·mod3)
for instance 2� 2 = 2 + 2 = 4mod3 = 1 and 2⊕ 1 = 3mod3 = 0.
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Problem 2.10. Euler’s equation and trigonometric relations

Euler’s equation eix = cos x + i sin x relates complex values
exponential functions and trigonometric functions.

a) Sketch the position of R eix in the complex plane, and indicate
how Euler’s equation is related to the Theorem of Pythagoras.

b) Complex valued exponential functions obey the same rules as
their real-valued cousins. In particular, for R = 1 one has
ei (x+y) = eix eiy. Compare the real and complex parts of the
expressions on both sides of this relation. What does this imply
about sin(2x) and cos(2x)?

2.5 Vector spaces

With the notions introduced in the preceding sections we can give
now the formal definition of a vector space

Definition 2.9: Vector Space

A vector space (V, F,⊕,�) is a set of vectors v ∈ V over a field
(F,+, ·) with binary operations ⊕ : V× V→ V and
� : F× V→ V complying with the following rules

a) (V,⊕) is a commutative group

b) associativity: ∀a, b ∈ F ∀v ∈ V : a� (b� v) = (a · b)� v

c) distributivity 1:
∀a, b ∈ F ∀v ∈ V : (a + b)� v = (a� v)⊕ (b� v)

d) distributivity 2:
∀a ∈ F ∀v, w ∈ V : a� (v⊕w) = (a� v)⊕ (a�w)

Remark 2.11. It is common to use + and · instead of ⊕ and �, re-
spectively, with the understanding that it is clear from the context
in the equation whether the symbols refer to operations involving
vectors, only numbers, or a number and a vector.

Moreover, as for the multiplication of numbers, one commonly
drops the � for the multiplication, writing e.g. a v rather than a · v.
�

Example 2.14: Vector spaces: displacements in the plane

For displacements we define the operation ⊕ as concate-
nation of displacements, and � as increasing the length of
the displacement by a given factor without touching the
direction.
a) The neutral element amounts to staying, one can always
shift back, move between any two points in a plane, and
commutativity follows form the properties of parallelo-
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grams, see Figure 2.9.
b,c) The vectors select the direction. Scalar multiplication
only changes the length of the vectors, and the length is a
real number.
d) Is implied by the Intercept Theorem.

c
b

a+
b+
c

a
Figure 2.9: The arrows indicate dis-
placements by three vectors a, b and
c, as discussed in Example 2.14. Their
commutativity and associativity follow
from the properties of parallelograms.
This holds in the plane, and also when
the vectors span a three-dimensional
volume.

Example 2.15: Vector spaces: RD

For every D ∈N the D-fold Cartesian product RD of the
real numbers is a vector space over R when defining the
operation + and · as

∀a, b ∈ RD : a + b =


a1

a2
...

aD

+


b1

b2
...

bD

 =


a1 + b1

a2 + b2
...

aD + bD



∀s ∈ R ∀a ∈ RD : s · a = s


a1

a2
...

aD

 =


s a1

s a2
...

s aD


In a more compact manner this is also written as,

∀a = (ai), b = (bi), s ∈ R : a + b = (ai + bi) ∧ s a = (s ai)

Checking the properties of a vector space is given as Prob-
lem 2.11a).

Definition 2.10: N ×M Matrix: MN×M(F)

For N, M ∈ N we define N × M matrices A, B ∈ MN×M(F)

over the field F as arrays, A = (aij), B = (bij), with compo-
nents aij, bij,∈ F.
The indices i ∈ {1, . . . , N} and j ∈ {1, . . . , M} label the rows
and columns of the array, respectively.
The sum of matrices and the product with a scalar are de-
fined component-wise as

∀A, B ∈MN×M, c ∈ F : A + B = (aij + bij) ∧ c · A =
(
c aij

)
Example 2.16: 2 × 3 matrices: summation and multiplica-

tion with a scalar

To be specific we provide here the sum of two 2 × 3 matrices
and the multiplication by a factor of π. Let

A =

2 3
4 5
6 7

 and B =

12 13
14 15
16 17

 .
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Then

A + B =

2 + 12 3 + 13
4 + 14 5 + 15
6 + 16 7 + 17

 =

14 16
18 20
22 24



π A =

2 3
4 5
6 7

 =

2 π 3 π

4 π 5 π

6 π 7 π


Example 2.17: Vector spaces: M× N matrices

The N ×M matrices over a field F, (MN×M, F,+, ·) form a
vector space. The proof is given as Problem 2.11b).

Definition 2.11: Matrix multiplication

For matrices one defines a product as follows

� : MN×L ×ML×M →MN×M

∀A ∈MN×L, B ∈ ×ML×M : A� B = C = (cij) =

(
L

∑
k=1

aikbkj

)

Remark 2.12. Also for matrix multiplication one commonly sup-
presses the � operator, writing A B rather than A� B. �

Remark 2.13. For square matrices MM×M the operation + and
� define a sum and a product that take two elements of MM×M

and return an element of MM×M. Nevertheless, (MM×M,+,�) is
not a field: In general, � is not commutative and matrices do not
necessarily have an inverse. �

Remark 2.14. Square matrices can be used to represent reflections
and rotations. In Problem 2.12 we provide an example of eight
matrices that form a symmetry group. �

Example 2.18: Vector spaces: Polynomials of degree 2

For a field F the polynomials P2 of degree two in the vari-
able x are defined as

P2 = {p = [p0 + p1 x + p2 x2] : p0, p1, p2 ∈ F}

This set is a vector space with respect to the summation

p + q = [p0 + p1 x + p2 x2] + [q0 + q1 x + q2 x2]

=
[
(p0 + q0) + (p1 + q1) x + (p2 + q2) x2

]
and the multiplication with a scalar s ∈ F

s · p = s · (p0 + p1 x + p2 x2) =
[
(s p0) + (s p1) x + (s p2) x2)

]
Proof. Each element p = [p0 + p1 x + p2 x2] of this
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vector space is uniquely described by the three-tuple
(p0, p1, p2) ∈ F3 with rules for addition and scalar multipli-
cation analogous to those discussed for R3 in Example 2.15.
Hence, the proof for R3 also applies here.

clarify

In physics we heavily make use of the correspondence evoked
by the proof in Example 2.18. The relative position of two objects
with respect to each other is commonly described in terms of (the
sum of several) vectors. In order to gain further information about
the positions, we will then recast the geometric problem about the
positions into an algebraic problem stated in terms of linear equa-
tions. The latter can then be solved by straightforward analytical
calculations. Vice versa, abstract findings about the solutions of sets
of equations will be recast in terms of geometry in order to visu-
alize the abstract results. The change of perspective has become a
major avenue to drive theoretical physics throughout the 20

th cen-
tury. For mechanical problems it forms the core of the mathematical
formulation of problems in robotics and computer vision. Quantum
mechanics is entirely build on the principles of vector spaces and
their generalization to Hilbert spaces. General relativity and quan-
tum field theory take Noether’s theorem as their common starting
point, which is build upon concepts from group theory and the re-
quirement that physical predictions must not change when taking
different choices how to mathematically describe the system. An
important concern of these notes is to serve as a training ground to
practice the changing of mathematical perspective for the purpose
of solving physics problem. As a first physical application we dis-
cuss now force balances. Then we resume the discussion of vector
spaces, taking a closer look into the calculation of coordinates and
distances.

2.5.1 Self Test

Problem 2.11. Checking vector-space properties

a) Verify that RD with the operations defined in Example 2.15 is a
vector space.

b) Verify that N ×M matrices, as defined in Definition 2.10, form a
vector space.

Problem 2.12. Geometric interpretation of matrices We explore the
set of the eight matrices

M =

{(
a 0
0 b

)
,

(
0 c
d 0

)
, with a, b, c, d ∈ {±1}

}

a) Let the action ◦ denotes matrix multiplication. Verify that (M,�)
is a group with respect to matrix multiplication, as defined in
Definition 2.11. We denote its neutral element as I.
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b) Show that the group has five non-trivial elements s1, . . . s5 that
are self inverse:

si 6= I ∧ si ◦ si = I for i ∈ {1, . . . 6} .

c) Show that the other two elements d and r obey d ◦ r = r ◦ d = I,
that r = d ◦ d ◦ d, and that d = r ◦ r ◦ r.

d) Show that the set of points P = {(1, 1), (−1, 1), (−1,−1), (1,−1)}
is mapped to P by the action of an element of the group:

∀m ∈ M ∧ p ∈ P : p ◦m ∈ P

Hint: The action of the matrix on the vector defined as follows

(v1, v2) ◦
(

m11 m12

m21 m22

)
=

(
v1 m11 + v2 m21

v1 m12 + v2 m22

)

e) What is the geometric interpretation of the group M? Illustrate
the action of the group elements in terms of transformations of a
suitably chosen geometric object.

Problem 2.13. Polynomials of degree N

For a field F the polynomials PN of degree N in the variable x
are defined as

PN =

{
p =

[
N

∑
i=0

pi xi

]
: p0, . . . , pN ∈ F

}

a) State the rules of addition and multiplication with a scalar s ∈ F

in analogy to the special case of N = 2 discussed in Exam-
ple 2.18.

b) Verify that the polynomials of degree N are a vector space.
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2.6 Physics application: balancing forces

Tug of War, Nikolay Bogdanov-Belsky, 1939

wikiart / public domain

It is an experience from tug of war that nothing moves as long
as forces are balanced. In this example one can add a ring to the
rope. The pulling forces act in opposing directions on the ring, as
illustrated in the upper left diagram in Figure 2.10. The lower left
diagram shows the case, where three parties are pulling on the ring.
In any case the total force on the ring amounts to the sum of the
acting forces, forces are vectors, and all sums of vectors obey the
same rules. As far as graphical illustrations are concerned the sum
of forces looks therefore the same as the sum of displacements in
Figure 2.1. For the ring the sums of the forces are illustrated in the
right panels of Figure 2.10. The ring does not move when they add
to zero.

de
d
e

ba a
b

c
c

Figure 2.10: The left diagrams show
two and three forces acting on a ring.
To the right it is demonstrated that
they add to zero.

Axiom 2.1: Force balance

Let N forces F1, . . . , FN act on a body. The body does not

move as long as the forces add to zero, i.e. iff 0 =
N

∑
i=1

Fi.

Remark 2.15. Strictly speaking the body might turn, but its center of
mass will not move. We come back to this point in Section 2.9. �

explain center of mass

Example 2.19: Balancing on a slackline

A person balances on a slackline that is fixed to trees at its
opposing sides. At the point where she is standing there are
three forces acting:
her weight Fd = Mg pushing downwards, and
forces along the slackline towards the left Fl and right Fr.
She can stay at rest as long as

0 = Fd + Fl + Fr

The forces Fl and Fr are counterbalanced by the trees. These
forces become huge when the slackline runs almost horizon-
tally. Every now a then a careless slackliner roots out a tree
or fells a pillar.

Fd

FrFl

Figure 2.11: For a person balancing on
a slackline, the gravitational force Fd
(d for down) is balanced by forces Fl
and Fr along the line that pull towards
the left and right, respectively. See
Example 2.19 for further discussion.

Example 2.20: Measuring the static friction coefficient

In a rough approximation static friction between two sur-
faces arises due to interlocking or surface irregularities. One
must lift a block by a little amount to unlock the surfaces. In
line with this argument dimensional analysis suggest that
static friction should be proportional to the normal force
between the surfaces. It is independent of the contact area,
and depends on the material of the surfaces. This is indeed
what is observed experimentally: The static friction force, f
in Figure 2.12, can take values up to a maximum value of γ
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times the normal force, FN , where γ typically takes values
slightly less than one. By splitting the gravitational force, mg
acting on a block on a plane into its components parallel and
normal to the surface (gray arrows in Figure 2.12), one finds
that in the presence of a force balance mg + f + FN = 0 one
has

FN = mg cos θ

f = mg sin θ

f < γFN


⇒ sin θ < γ cos θ

⇒ θ < θc = arctan γ

When θ exceeds θc the block starts to slide. Hence, one can
infer γ from measurements of θc.

-mg sinθ -mg cosθ 
-mg

FN f

θ π/2

Figure 2.12: (top) As long as θ is
smaller than the angle of friction the
blue block does not slide. (bottom)
Placing my cell phone on two rubber
bands on a folder provides a maxi-
mum angle of about 33◦, i. e. µ ' 0.5.
Using PhyPhox and a cell phone one
can easily measure θc and µ for other
combinations of materials.

2.6.1 Self Test

Problem 2.14. Particles at rest

There are three forces acting on the center of mass of a body. In
which cases does it stay at rest?

Problem 2.15. Graphical sum of vectors

Determine the sum of the vectors. In which cases is the resulting
vector vertical to the horizontal direction?

a)                        b)                          c)                             d)

e)                        )                          g)                              h)

Problem 2.16. Towing a stone

Three Scottish muscleman5 try to tow a stone with mass M = 5 In highland games one still uses Im-
perial Units. A hundredweight (cwt)
amounts to eight stones (stone) that
each have a mass of 14 pounds (lb).
A pound-force (lbg) amounts to the
gravitational force acting on a pound.
One can solve this problem without
converting units.

20 cwt from a field. Each of them gets his own rope, and he can act
a maximal force of 300 lbg as long as the ropes run in directions
that differ by at least 30◦.

a) Sketch the forces acting on the stone and their sum. By which
ratio is the force exerted by three men larger than that of a single
man?
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b) The stone counteracts the pulling of the men by a static friction
force µMg, where g is the gravitational acceleration. What is the
maximum value that the friction coefficient µ may take when the
men can move the stone?

2.7 The inner product

The position of a particle, the direction of its motion and the angle
of attack of forces are constantly changing during the motion of a
particle. In Chapter 3 we explore how they are related. The calcu-
lations are feasible because the involved vector spaces also have an
inner product.

Definition 2.12: Inner Product of vector spaces over R or C

The inner product on a vector space (V, R,⊕,�) defines a
binary operation 〈 _ | _ 〉 : V × V → R with the following
properties for all u, v, w ∈ V and c ∈ R

a) commutativity: 〈v | w〉 = 〈w | v〉

b) linearity in the first argument: 〈c v | w〉 = c 〈v | w〉

and 〈u + v | w〉 = 〈u | w〉+ 〈v | w〉

c) positivity: 〈v | v〉 ≥ 0

where equality applies iff v = 0, 〈v | v〉 = 0 ⇔ v = 0

For a vector space over C the requirement a) is replaced by

a) conjugate symmetry: 〈v | w〉 = 〈w | v〉

and the constant c is a complex number.

Remark 2.16. The idea underlying these properties is that
√
〈v | v〉

can be interpreted as the length of the vector v. �

Remark 2.17. Conjugate symmetry and linearity for the first argu-
ment imply the following relations for the second argument

〈v | c w〉 = 〈c w | v〉 = c̄ 〈w | v〉 = c̄ 〈v | w〉

〈u | v + w〉 = 〈v + w | u〉 = 〈v | u〉+ 〈w | u〉 = 〈u | v〉+ 〈u | w〉

�

Remark 2.18. Certain properties that hold for addition and scalar
multiplication do not hold for the inner product.

a) There is no inverse: The information about the direction of vec-
tors is lost upon taking the inner product. For instance, when
〈u | v〉 = 0 and 〈u | w〉 = 0 then one still can not tell the result of
〈v | w〉.

b) Associativity does not hold: 〈u | v〉w 6= u 〈v | w〉.

�
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Example 2.21: Inner product for real-valued vectors

For real-valued vectors the inner product is commutative,
〈v | w〉 = 〈w | v〉. The inner product is then also be written
as v ·w, and it obeys bilinearity

u · (av + bw) = a(u · v) + b(u ·w)

Theorem 2.2: Geometric Interpretation of the Inner Product
for Real-Valued Vectors

For vectors of RD the inner product of two vectors a, b takes
the value

a · b = |a| |b| cos θ

where θ = ∠(a, b) is the angle between the two vectors,
see Figure 2.13.

b c

a
θ

Figure 2.13: Notations for the geomet-
ric interpretation of the inner product,
Theorem 2.2

Proof. The cosine theorem for triangles with sides of length a, b and
c and angle θ opposite to c states that

c2 = a2 + b2 − 2 a b cos θ

Let now a, b, and c be the length of the vectors a, b and c = a− b,
as shown in Figure 2.13. Then we have

a2 + b2 − 2 a b cos θ = c2 = c · c = (a− b) · (a− b)

= a · a− 2 a · b + b · b = a2 + b2 − 2 a · b
⇒ a · b = |a| |b| cos θ

Remark 2.19. Theorem 2.2 entails that the inner product u · v van-
ishes when the vectors are orthogonal, θ = π/2. Also in general we
say that

v and w are othogonal iff 〈v | w〉 = 0 .

�

Remark 2.20. The expression for the inner product that is pro-
vided Theorem 2.2 does not imply that the inner product is unique.
Rather it is a consequence of the cosine theorem that holds iff the
geometric interpretation of the vectors applies. This is demon-
strated by an example provided in Problem 2.17. �

2.7.1 Self Test

Problem 2.17. The inner product is not unique

Let v1 and v2 be two non-orthogonal vectors in a two-dimensional
vector space with an inner product 〈_ | _〉, and let λ1 and λ2 two
positive real numbers. Then the following relation defines another
inner product (_ | _):

(a | b) = λ1〈a | e1〉 〈e1 | b〉+ λ2〈a | e2〉 〈e2 | b〉 (2.7.1)
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36 2. Balancing Forces and Torques

a) Verify that the properties a) and b) of an inner product 〈_ | _〉 as
given in Definition 2.12 are also be obeyed by (_ | _).

b) Verify that (a | a) ≥ 0 iff λ1 and λ2 two positive real numbers.

c) Verify that (a | a) = 0 implies a = 0 iff the vector space is
two-dimensional.

Problem 2.18. Inner products for polynomials

Let p =
[
∑D

i=0 pi xi
]

and q =
[
∑D

i=0 qi xi
]

be elements of the vec-
tor space of N-dimensional polynomials. Verify that the following
rules define inner products on this space.

a) 〈p | q〉 =
N

∑
i=0

p̄i qi

b) 〈p | q〉[a,b] =
∫ b

a
dx

[
D

∑
i=0

pi xi

] [
D

∑
i=0

qi xi

]
for a < b ∈ R

c) Show that p = [1] and q = [x] are orthogonal with respect to the
inner product defined in a). Under which condition are they also
orthogonal for the inner product defined in b)?

2.8 Cartesian coordinates

Theorem 2.2 entails an extremely elegant possibility to deal with
vectors. We first illustrate the idea based on a two-dimensional
example, Figure 2.14, and then we develop the general theory:

e2
c

e1
c1

(e) e1

c 2(e
) e

2

Figure 2.14: Representation of the
vector c in terms of the orthogonal unit
vectors (e1, e2).

Let e1 and e2 be two orthogonal vectors that have unit length,

〈e1|e1〉 = 〈e2 | e2〉 = 1 and 〈e1|e2〉 = 0

For every vector c in the plane described by these two vectors, we
can then find two numbers c(e)1 and c(e)2 such that

c = c(e)1 e1 + c(e)2 e2

Now the choice of the vectors (e1, e2) entails that triangle with edge
c, c(e)1 e1, and c(e)2 e2 is right-angled and that

c(e)i = |c| cos∠(c, ei) = 〈c | ei〉 for i ∈ {1, 2}
⇒ c = 〈c | e1〉 e1 + 〈c | e2〉 e2

This strategy to represent vectors applies in all dimensions.

Definition 2.13: Basis and Coordinates

Let B = {ei, i ∈ {1, . . . , D} be a set of D pairwise orthogonal
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unit vectors

∀i, j ∈ {1, . . . , D} : ei · ej =

{
1 if i = j
0 else

in a vector space (V, F,+, ·) with inner product 〈_|_〉. We say
that B forms a basis for a D-dimensional vector space iff

∀v ∈ V ∃vi, i ∈ {1, . . . , D} : v =
D

∑
i=1

v(e)i ei

In that case we also have v(e)i = 〈v | ei〉, i ∈ {1, . . . , D}
and these numbers are called the coordinates of the vector v.
The number of vectors D in the basis of the vector space is
denoted as dimension of the vector space.

e2
c

e1

c
n
2
n
1

c1
(e) e1

c 2(e
) e

2

c1
(n) n

1

c 2(n
) n
2

Figure 2.15: Representation of the
vector c of Figure 2.14 in terms of the
bases (e1, e2) and (n1, n2).

Remark 2.21. The choice of a basis, and hence also of the coordi-
nates, is not unique. Figure 2.15 shows the representation of a vec-
tor in terms of two different bases (e1, e2) and (n1, n2). We suppress
the superscript that indicates the basis when the choice of the basis
is clear from the context. �

Remark 2.22. For a given basis the representation in terms of coordi-
nates is unique.

Proof. 1. The coordinates ai of a vector a are explicitly given by
ai = 〈a | ei〉. This provides unique numbers for a given basis set.

2. Assume now that two vectors a and b have the same coordi-
nate representation. Then the vector-space properties imply

a = ∑i ci ei

b = ∑i ci ei

}
⇒ a− b =

(
∑

i
ci ei

)
−
(

∑
i

ci ei

)
= ∑

i
(ci − ci) ei = ∑

i
0 ei = 0

⇒ a = b

Hence, they must be identical.

�

Remark 2.23 (Kronecker δij). It is convenient to introduce the abbre-
viation δij for

δij =

{
1 if i = j
0 else

where i, j are elements of some index set. This symbol is denoted as
Kronecker δ. With the Kronecker symbol the condition on orthogo-
nal unit vectors of a basis can more concisely be written as

ei · ej = δij

Moreover, for i, j ∈ {1, . . . , D} the numbers, δij, describe a D × D
matrix which is the neutral element for multiplication with another
D × D matrix, and also with a vector of RD, when it is interpreted
as a D× 1 matrix. �
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Theorem 2.3: Scalar product on RD and CD

The axioms of vector spaces and the inner product imply
that

on RD : 〈a | b〉 =
D

∑
i=1
〈a | i〉 〈i | b〉 =

D

∑
i=1

aibi

on CD : 〈a | b〉 =
D

∑
i=1
〈a | i〉 〈i | b〉 =

D

∑
i=1

ai b̄i

where the bar indicates complex conjugation of complex
numbers. This can be written as follows when representing
the coordinates as a 1D array of numbers

a1

a2
...

aD

 ·


b1

b2
...

bD

 = a1 b̄1 + a2 b̄2 + · · ·+ aD b̄D

where the complex conjugation does not apply for real num-
bers. This latter form of the inner product is denoted as
scalar product.

Proof. We first note that the case of real numbers can be interpreted
as special case of the complex numbers with a vanishing complex
part. Hence, we only provide the proof for the complex case.

We use the representations a = ∑i〈a | ei〉 ei and b = ∑j〈b | ej〉 ej,
and work step by step from the left to the aspired result:

〈a | b〉 =
〈

∑
i
〈a | ei〉 ei

∣∣∣∣∣ ∑
j
〈b | ej〉 ej

〉

= ∑
i
〈a | ei〉

〈
ei

∣∣∣∣∣ ∑
j
〈b | ej〉 ej

〉
= ∑

i
〈a | ei〉 ∑

j
〈b | ej〉 〈ei | ej〉

= ∑
i
〈a | ei〉 ∑

j
〈ej | b〉 δij

= ∑
i
〈a | ei〉 〈ei | b〉 .

Due to ai = 〈a | ei〉 and b̄i = 〈ei | b〉 we therefore have

〈a | b〉 = ∑
i

ai b̄i

Remark 2.24. Einstein pointed out that the sums over pairs of iden-
tical indices arise ubiquitously in calculations like to proof of Theo-
rem 2.3. He therefore adopted the convention that one always sums
over pairs of identical indices, and does no longer explicitly write
that down. This leads to substantially clearer representation of the
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calculation. For instance, the proof looks then as follows:

〈a | b〉 =
〈
〈a | ei〉 ei

∣∣∣ 〈b | ej〉 ej

〉
= 〈a | ei〉

〈
ei

∣∣∣ 〈b | ej〉 ej

〉
= 〈a | ei〉 〈b | ej〉 〈ei | ej〉 = 〈a | ei〉 〈b | ej〉 δij

= 〈a | ei〉 〈ei | b〉
⇒ 〈a | b〉 = ai b̄i

�

Remark 2.25. Dirac pointed out that the vector product 〈a | b〉
takes the form of the multiplication of a 1× D matrix for a and a
D× 1 matrix for b. He suggested to symbolically write down these
vectors as a bra vector 〈a| and a ket vector |b〉. When put together as
a bra-(c)-ket 〈a|b〉 one recovers the inner product, and introducing
|ei〉〈ei| and observing Einstein notation comes down to inserting a
unit matrix. For instance for 2× 2 vectors

〈a | b〉 = (a1, a2)

(
b̄1

b̄2

)
= (a1, a2)

(
1 0
0 1

)(
b̄1

b̄2

)
= 〈a | ei〉〈ei | b〉

Conceptually this is a very useful observation because it provides
an easy rule to sort out what changes in the equations when one
represents a problem in terms of a different basis. �

Example 2.22: Changing coordinates from basis (ei) to
basis (ni)

We observe Dirac’s observation that the expressions |ei〉〈ei|
and |ni〉〈ni| sandwiched between a bra and a ket amounts
to multiplication with one. Hence, the coordinates change
according to

a(n)i = 〈a | ni〉 = 〈a | ej〉〈ej|ni〉 = a(e)j 〈ej|ni〉

which amounts to multiplying the vector with entries
(a(e)j , j = 1, . . . , D) with the D× D matrix T with entries
tji = 〈ej|ni〉.
On the other hand, for the inner products we have

a(e)i b̄(e)i = 〈a | b〉 = 〈a | ei〉〈ei | b〉
= 〈a | nj〉〈nj | ei〉〈ei | nk〉〈nk|b〉 = 〈a | nj〉〈nj | nk〉〈nk|b〉

= 〈a | nj〉 δjk 〈nk|b〉 = 〈a | nj〉〈nj|b〉 = a(n)i b̄(n)i

Its value does not change, even though the coordinates take
entirely different values.

add worked example for an explicit coordinate transformation
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2.8.1 Self Test

Problem 2.19. Cartesian coordinates in the plane

a) Mark the following points in a Cartesian coordinate system:

(0, 0) (0, 3) (2, 5) (4, 3) (4, 0)

Add the points (0, 0) (4, 3) (0, 3) (4, 0), and connect the points
in the given order. What do you see?

b) What do you find when drawing a line segment connecting the
following points?

(0, 0) (1, 4) (2, 0) (−1, 3) (3, 3) (0, 0)

Problem 2.20. Geometric and algebraic form of the scalar product
The sketch in the margin shows a vector a in the plane, and its

representation as a linear combination of two orthonormal vectors
(ê1, ê2),

a = a cos θa ê1 + a sin θa ê2

Here, a is the length of the vector a,
and θ1 = ∠(ê1, a).

a) Analogously to a we consider another vector b with a represen-
tation

b = b cos θb ê1 + b sin θb ê2

Employ the rules of scalar products, vector addition and multi-
plication with scalars to show that

a · b = a b cos(θa − θb)

Hint: Work backwards, expressing cos(θa − θb) in terms of
cos θa, cos θb, sin θa, and sin θb.

b) As a shortcut to the explicit calculation of a) one can introduce
the coordinates a1 = a cos θa and a2 = a sin θa, and write a as a
tuple of two numbers. Proceeding analogously for b one obtains

a =

(
a1

a2

)
b =

(
b1

b2

)

How does the product a · b look like in terms of these coordi-
nates?

c) How do the arguments in a) and b) change for D dimensional
vectors that are represented as linear combinations of a set of
orthonormal basis vectors ê1, . . . , êD?

� What changes when the basis is not orthonormal?
What if it is not even orthogonal?
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Problem 2.21. Scalar product on RD

Show that the scalar product on RD takes exactly the same form
as for the complex case, Theorem 2.3.

However, complex conjugation is not necessary in that case.

Problem 2.22. Pauli matrices form a basis for a 4D vector space

Show that the Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

form a basis of the real vector space of 2× 2 Hermitian matrices, H,
with

A =

(
a11 a12

a21 a22

)
∈H ⇔ aij ∈ C ∧ aij = a∗ji

Show to that end

a) The matrices σ0, . . . , σ4 are linearly independent.

b) x0, . . . , x4 ∈ R ⇒
4

∑
i=0

xi σi ∈H

c) M ∈H ⇒ ∃x0, . . . , x4 ∈ R : M =
4

∑
i=0

xi σi

� What about linear combinations with coefficients z1, . . . , z4? Is
∑4

i=0 zi σi Hermitian? Do these matrices form a vector space?

2.9 Cross products — torques

adapted from rachaelvoorhees from
arlington, va / wikimedia CC BY 2.0

The pictures in the margin show the sign of a seesaw, a playground
toy that works even for people with vastly different weight and
size. Figure 2.16a) shows a balanced scale. When the forces acting
on the scale do not add up to zero, we pick up the scale. It moves.

more explanation
needed.

The according force balance for the beam of the scale is shown in
Figure 2.16c). In general the beam does not stay at rest, when the
two masses are not attached at the same distance from the fulcrum.
The force balance, Figure 2.16c), still hods, and the beam turns,
rather than being lifted. The sum of attached forces tells us if an
object is displaced. In analogy we introduce the torque to describe
whether it turns.

When the beam is vertical there is no torque, and it takes its
maximum when the beam is horizontal. In the former case the
forces act parallel to the beam, and in the latter they act in orthog-
onal direction. Moreover, a weight that is attached at a larger dis-
tance to the fulcrum induces a larger torque, and the torque also
increases with mass. This is expressed in the lever rule.
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a)

b)

c)

l [m]

-1 -0.5 0 0.5 1 1.5 2

α
100.0

kg
100.0

kg

100.0
kg

100.0
kg

100.0
kg

100.0
kg

100.0
kg

100.0
kg

based on from Jahobr/wikimedia CC0 1.0
Figure 2.16: a) The lever is balanced
when two equal masses are attached
at the same distance from the fulcrum.
b) It is at (stable) rest only in a single
position when equal weighs are
attached at different distances. c) In all
positions the sum of the forces on the
beam, by the fulcrum and by the two
weights, add to zero.

Example 2.23: Torques on a Lever

The torque T exerted by a lever is given by the product,
T = l F, of the modulus of the force F acting vertical to the
lever and the distance l between the fulcrum and the point
where the force is applied, which is called length of the lever
arm.
When several forces act on the same lever, then the total
torque amounts to the sum of the torques induced by the
individual forces, T = ∑i li Fi. For the scale in Figure 2.16a)
and b) we find

Ta = (1 m) (100 kg) (−g) + (−1 m) (100 kg) (−g) = 0

Tb = (1.5 m) (100 kg) (−g) cos α + (−1 m) (100 kg) (−g) cos α

' −500 cos α kg m2/s2

The torque vanishes only when α = π/2 as shown in the fig-
ure, and for the unstable tipping point α = −π/2.

Pearson Scott Foresman / Public domain
Figure 2.17: Action of a crowbar.

Remark 2.26. Adopting a lever where force is applied on a long arm
allows one to move very heavy objects or break very stable objects.
Common technological applications are the crowbar and the lever.
Archimedes was so impressed by this principle that he is quoted to
have remarked “Δοσ μοι που στω και κινω την γην” (Archimedes,
1878), i.e. “Give me but one firm spot on which to stand, and I will
move the earth” (Oxford Dictionary of Quotations, 1953) �

Mechanic’s Magazine cover of Vol II, Knight
& Lacey, London, 1824./wikipedia, public
domain
Figure 2.18: Illustration of Archimedes’
remark about moving the earth.

estimate amplification of force the the crowbar

Observe the sign of the torque: In Example 2.23 it is positive for
counterclockwise motion, and negative for clockwise motion. The
axis of rotation is fixed by the fulcrum. However, when acting the
crowbar, one applies a horizontal force to get the crowbar under
the obstacle. This induces a rotation around a vertical axis. Subse-
quently, a vertical force is applied to lift the obstacle. It induces a
rotation around a horizontal axes. The relation between the direc-
tions of the lever arm, the force, and the rotation axis is commonly
illustrated by the right-hand rule (Figure 2.19): Here the arm points
in the direction of the lever arm, the fingers in the direction of the
applied force, and the thump along the rotation axis. This sug-
gests to define torque as a product of two vectors, the arm ` and
the force F that provide the torque, T , which is a vector of length
|`| |F| sin∠`, F in a direction normal to the plane defined by ` and
F. This operation, T = `× F defines the cross product. We explore
its properties in a mathematical digression.
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Schorschi2 at de.wikipediaderivative work:
Wizard191, public domain

Figure 2.19: Right-hand rule.

2.9.1 Algebraic properties of cross products

Definition 2.14: Cross product on R3

The cross product on the vector space R3 defines a binary
operation × : R3 × R3 → R3 with the following properties
for u, v, w ∈ R3 and c ∈ R

a) anti-commutativity: u× v = −v× u

b) distributivity: u× (v + w) = u× v + u×w

c) compatibility with scalar multiplication:
(c u)× v = u× (c v) = c (u× v)

d) symmetry of scalar triple product (Jacobi identity):
u · (v×w) = v · (w× u) = w · (u× v)

Moreover for every right-handed set of three orthonormal
vectors e1, e2, and e3 we require

e) normalization: e1 · (e2 × e3) = 1

Remark 2.27. The cross product of a vector with itself vanishes

∀v ∈ R3 : v× v = 0

�

Proof. Vanishing of v× v is a consequence of anti-commutativity:

v× v = −v× v ⇒ 2 v× v = 0 ⇒ v× v = 0

Theorem 2.4: Right-handed orthonormal basis in R3

Let e1, e2 ∈ R3 be orthonormal vectors, e1 · e2 = δ12. Then e1,
e2, and e3 = e1 × e2 form a right-handed orthonormal basis
for R3, and we have

ei · (ej × ek) =


1 for ijk ∈ {123, 231, 312}
−1 for ijk ∈ {132, 213, 321}

0 else

Remark 2.28 (Levi-Civita tensor εijk). It is convenient to introduce
the abbreviation εijk for

εijk =


1 for ijk ∈ {123, 231, 312}
−1 for ijk ∈ {132, 213, 321}

0 else

This symbol is denoted as Levi-Civita tensor εijk. With this symbol
the relations between right-handed orthogonal unit vectors of a
basis can more concisely be written as

ei · (ej × ek) = εijk
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Moreover, it immediately provides the following representation of
the scalar triple product u · (v ×w) in terms of coordinates ui, vj,
wk, i, j, k ∈ {1, 2, 3},

u = ∑3
i=1 ui ei

v = ∑3
j=1 vj ej

w = ∑3
k=1 wk ek

 ⇒ u · (v×w) =
3

∑
i,j,k=1

εijk ui vj wk

or even u · (v × w) = εijk ui vj wk with Einstein notation. The
symmetry of the triple scalar product is an immediate consequence
of the symmetry of the ε-tensor. �

Proof. The identity u · (v×w) = εijk ui vj wk follows from the com-
patibility with scalar product and the relation for the basis vectors
ei · (ej × ek). The details of the proof are given as Problem 2.23.

Proof of Theorem 2.4. We show that e1, e2, and e3 = e1 × e2 form
three orthonormal vectors. By assumption e1 and e2 are orthonor-
mal. Hence, we show that e3 is a unit vector that is orthogonal to e1

and e3:

e1 · e3 = e1 · (e1 × e2) = e2 · (e1 × e1) = e2 · 0 = 0

e2 · e3 = e2 · (e1 × e2) = e1 · (e2 × e2) = e1 · 0 = 0

e3 · e3 = e3 · (e1 × e2) = e1 · (e2 × e3) = 1

Remark 2.29 (bac-cab rule). The double cross product can be ex-
pressed in terms of scalar products. Commonly this relation is
stated in terms of three vectors a, b, and c ∈ R3,

a× (b× c) = b (a · c)− c (a · b)

and referred to as bac-cab rule. �

Proof. We express the three vectors in terms of their coordinates
with respect to the orthonormal basis e1, e2, e3,

a =
3

∑
i=1

ai ei b =
3

∑
j=1

bj ej c =
3

∑
k=1

ck ek with ai, bj, ck ∈ R

and use the rules defining the cross products and inner products

a× (b× c) =

(
3

∑
i=1

ai ei

)
×
[(

3

∑
j=1

bj ej

)
×
(

3

∑
k=1

ck ek

)]

=
3

∑
i,j,k=1

ai bj ckei × (ej × ek)

When j = k or when j and k are both different from i then the
summand vanishes due to Remark 2.27. For i = j 6= k one has
ei × (ej × ek) = −ek, and for i = k 6= j one has ei × (ej × ek) = ej.
Consequently,

a× (b× c) =
3

∑
i,k=1

ai bi ck(−ek) +
3

∑
i,j=1

ai bj ci(ej)

= b (a · c)− c (a · b)
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Remark 2.30 (Jacobi identity). The cross product obeys the Jacobi
identity:

u× (v×w) + v× (w× u) + w× (u× v) = 0

�

Proof. This can be verified by evaluating the triple cross products
by the bac-cab rule. Details are give as Problem 2.24.

Remark 2.31. In coordinate notation the cross product takes the form

a× b =

a1

a2

a3

×
b1

b2

b3

 =

a2b3 − a3b2

a3b1 − a1b3

a2b3 − a3b2


�

Proof. For component k of a× b we have

[a× b]k = êk · (a× b) = êk ·
[(

3

∑
i=1

ai êi

)
×
(

3

∑
j=1

bj êj

)]

=
3

∑
i,j=1

ai bj êk ·
[
êi × êj

]
k =

3

∑
i,j=1

ai bj εijk

In the remark this is explicitly written out for k ∈ {1, 2, 3}.

2.9.2 Geometric interpretation of cross products

The cross product and the scalar triple product have distinct geo-
metrical interpretations. The geometric meaning of the cross prod-
uct a× b can best be seen by adopting a basis where the first basis
vector is parallel to e1 = a/|a|, and the second basis vector e2 lies
orthogonal to e1 in the plane spanned by a and b. The third basis
vector will then be e3 = e1 × e2. The angle between a and b, and
hence also of e1 and b is denoted as θ. Thus, b can be written as
b = b1 e1 + b2 e2 = |b| (cos θ e1 + sin θ e2), cf. Figure 2.20). For this
choice of the basis we find

a× b = |a| e1 × (b1 e1 + b2 e2) = |a| b1 e1 × e1 + |a| b2 e1 × e2

= |a| |b| sin θ e3
b

b1e1

b 2
 e
2

a=a1e1

|a×b|
e2

e1
θ

Figure 2.20: Geometric interpretation
of the absolute value of the cross
product.

Figure 2.20 illustrates that |a| |b| sin θ amounts to the area of the
parallelogram spanned by the vectors a and b. Hence, the cross
product amounts to a vector that is aligned vertically on the paral-
lelogram, with a length that amounts to the area of the parallelo-
gram.

b

a=a1e1

|a×b|
c c3e3

e2
e1θ

e3

Figure 2.21: Geometric interpretation
of the scalar triple product.

In order to evaluate also the product (a × b) · c we introduce
the coordinate representation of c as c = c1 e1 + c2 e2 + c3 e3 (Fig-
ure 2.21), and observe

(a× b) · c = |a× b| e3 · (c1 e1 + c2 e2 + c3 e3)

= |a× b| c3 = a1 b2 c3
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This amounts to the product of the area of the parallelogram
spanned by a and b multiplied by the height of the parallelepiped
spanned by the vectors a, b, c. Due to the special choice of the basis
this volume amount to a1 b2 c3 because all other contributions to
the general expression ∑ijk ai bj ck εijk vanish. The symmetry of the
scalar triple product, property d) in Definition 2.14, is understood
from this perspective as the statement that the volume of the par-
allelepiped is invariant under (cyclic) renaming of the vectors that
define its edges.

As a final remark, we emphasize that the geometric interpreta-
tion that we have given to the cross product holds in general — in
spite of the special basis adopted in the derivation. It is a distin-
guishing feature of vector spaces that the scalar numbers that are
derived from vectors take the same values every choice of the ba-
sis. It is up to the physicist to find the basis that admits the easiest
calculations.

2.9.3 The Torque

The cross product equips us with the mathematical notions to de-
fine the torque on a body.

Definition 2.15: Torque

The torque T defines a force that is going to rotate a body
around a position q0. Let Fi be the forces that attach the
body at the positions qi with respect to the considered ori-
gin. Then the torque is defined as

T = ∑
i
(qi − q0)× Fi

Remark 2.32. The value of the torque depends on the choice of the
reference position q0. �

Remark 2.33. In general, the torques induced by different forces
point in different directions. They are added as vectors. We will
further discuss this below in Example 2.24. �

Axiom 2.2: Torque balance

Let N forces F1, . . . , FN attack a body at the (body-fixed) po-
sitions qi. The body does not rotate around the position q0

as long as the sum of the torques induced by the forces add

to zero, i.e. iff 0 = T =
N

∑
i=1

(qi − q0)× Fi.

Example 2.24: Sailing boat

When a sailboat is going broad reach, as shown in Fig-
ure 2.22, the following forces are acting on the boat:

a) the wind in the sails generates a torque towards the bow
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around a horizontal axis that lies diagonal to the boat axis

b) the buoyancy of the water generates a torque along a
horizontal axis parallel to the boat the counteracts heeling

c) the water drag on the hull generates a torque towards the
bow around a horizontal axis that is orthogonal to the
boat axis

d) the fin and the rudder generate lift forces that generate a
torque around a vertical axis

e) the sailor stacks out in the trapeze to generate an addi-
tional torque in order to balance the torques

His aim is to minimize the heeling of the boat and to maxi-
mize the speed. The boat capsizes if he does not manage to
balance the torques.

Gwicke commonswiki, public domain
Figure 2.22: A sailor stacking out in
a trapeze in order to minimize the
heeling of his sailboat.

2.9.4 Self Test

Problem 2.23. Fill in the details of the proof for Remark 2.28.

Problem 2.24. Fill in the details of the proof for Remark 2.30.

Problem 2.25. Turning a wheel

Two forces of magnitude 4 N are acting on a wheel of radius r
that can freely rotate around its axis. What magnitude should a
third force, F, have that is attacking at a distance r/2 from the axis,
such that there is no net torque acting on the wheel?

Figure 2.23: Setup for Problem 2.25.

Problem 2.26. Nutcrackers

A common type of nutcrackers employs the principle of lever
arms to crack nuts with a reasonable amount of force (see Prob-
lem 2.26). We idealize the nut as a spring with spring constant
k = 1 kN/mm and assume that it breaks when it is compressed by
∆ = 0.6 mm. The nut is mounted at a distance of l = 3 cm from the
joint of the nutcracker and the hand exerts a force F at a distance L.

a) Demonstrate that a force of magnitude F =
lk∆
L

is required to
crack the nut.

b) Calculate the numerical value of F.

c) If you try to crack the nut by placing it under a heavy stone:
which mass should that stone have in order to crack the nut?

L

ℓ

F

based on Pearson Scott Foresman
nutcracker-tool, public domain
Figure 2.24: Setup for Problem 2.26.
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2.10 Worked example: Calder’s mobiles

We describe here the setup of a traditional mobile where beams
are supported by a string in the middle and balanced by attaching
masses or further beams at their outer ends. The setup of a mobile
can be laid out on a plane surface, as shown in Figure 2.25. The
different parts of the mobile should not run into each other. Hence,
they must not over overlap in the 2d layout.

Figure 2.25: Notations for the math-
ematical description of the motion of
a mobile. The mobile is suspended at
a string of length z that holds a beam
with two sections of length `0 to the
left and `1 to the right, respectively.
The string holds the total mass m of
the mobile. When suspended, the
beam can rotate by an angle θ out of
the plane.

The left arm of the uppermost
beam has length `0, and it holds an-
other beam with an overall additional
mass m0 that can take an angle θ0 out
of the plane in the suspended mobile.
Similarly, the right arm has length `1,
and it holds another beam with an
overall additional mass m1 that can
take an out-of-plane angle θ1. The
situation further down is described
by hierarchical binary indices, as
indicated in the figure.

The mobile can represented as a binary tree. Each beam has two
arms reaching left (0) and right (1). We assume that the mass of the
beams may be neglected, and reach the masses at the far ends of
the mobile, by going down from the suspension and marking the
track by a sequence of 0 and 1. The leftmost mass, 00, of the mobile
in Figure 2.25 is reached by going left, 0, twice. The next one in
counterclockwise direction by going left 0, right 1, left 0, and hence
denoted as 010, and so forth. Hence, the mobile is build of beams
that are labeled by some index I. They support a total mass mI , and
can rotated out of the plane by an angle θI . The beam has two arms
of length `I0 to the left and `I1 to the right that support masses mI0

and mI1 attached to strings of length zI0 and zI1. This hierarchical
setup of the descriptions allows us to reduce the requirement of
stability by a condition that the forces and torques acting on the
beams must be balanced. For the forces this implies

FI = FI0 + FI1 ⇒ mI = mI0 + mI1

and for the torques we find

`I0mI0g = `I1mI1g ⇒ `I0mI0 = `I1mI1
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When we take all masses to take the same value m in Figure 2.25,
we hence find

`010 = `011 `10 = `11 `00 = 2 `01 3 `0 = 2 `1

Moreover, vector calculus provides an effective means to spec-
ify the positions of the masses. We select the support of the mo-
bile as origin of the coordinate system. The support of the up-
permost beam is at position (0, 0,−z). Then the far ends of the
uppermost beam are at positions lo = (−`0 cos θ,−`0 sin θ,−z)
and l1 = (`1 cos θ,−`1 sin θ,−z), respectively. Moreover, from
the left end we reach the far ends of the next beam by the dis-
placement vectors l00 = (−`00 cos θ0,−`00 sin θ0,−z0) and l01 =

(`01 cos θ0, `01 sin θ0,−z0). Hence, the positions of the first two
masses can be represented by the following sums of vectors

q00 = l0 + l00 −

 0
0

z00

 =

−`0 cos θ − `00 cos θ0

−`0 sin θ − `00 sin θ0

−z− z0 − z00


q010 = l0 + l01 + l010 −

 0
0

z010

 =

−`0 cos θ + `01 cos θ0 − `010 cos θ01

−`0 sin θ + `01 sin θ0 − `010 sin θ01

−z− z0 − z01 − z010


We urge the reader to also work out the expressions for the posi-
tions of the other masses. add discussion and

stability analysis for
bended beams

2.11 Problems

2.11.1 Rehearsing Concepts

Problem 2.27. Tackling tackles and pulling pulleys

a) Which forces are required to hold the balance in the left and the
right sketch?

b) Let the sketched person and the weight have masses of m =

75 kg and M = 300 kg, respectively. Which power is required
then to haul the line at a speed of 1 m/s.
Hint: The power is defined here as the change of ) Mg z(t) and
(M + m) g z(t), per unit time, respectively. Verify by dimensional
analysis that this is a meaningful definition.

2.11.2 Practicing Concepts

Problem 2.28. Angles between three balanced forces

We consider three masses m1, m2, and m3. With three ropes they
are attached to a ring at position q0. The ropes with the attached
masses hang over the edge of a table at the fixed positions q1 =

(x1, 0), q2 = (0, y2), and q3 = (w, y3). Here, w denotes the width of
the table board. We now determine the angles θij between the ropes
from q0 to qi and qj, respectively.
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a) Let êi = (qi − q0)/|qi − q0| be the unit vectors pointing from the
ring to the positions where the ropes hang over the table edge,
and θij be the angle between êi and êj. Argue why

0 =
3

∑
i=1

mi êi

Multiplying this equation with ê1, . . . ê3 provides three equations
that are linear in cos θij. The first one is 0 = M1 + M2 cos θ12 +

M3 cos θ13. Find the other two equation, and solve the equations
as follows.
From the equation that is given above you find cos θ12 in terms of
cos θ13.
Inserting this into the other equation involving cos θ12 (and rear-
ranging terms) provides cos θ23 in terms of cos θ13.
Inserting this into the third equation provides

cos θ13 =
M2

2 −M2
1 −M2

3
2 M1 M3

b) Which angle θ23 do you find when M1 = M2 = M3? The three
forces have the same absolute value in this case. Which symme-
try argument does then also provide the value of the angle?

c) Determine also the other two angles θ13 and θ12. They can also
be found from a symmetry argument without calculation.
Hint: The angles do not care which mass you denote as 1, 2,
and 3.

d) Note that we found the angles θij without referring to the posi-
tions q1, . . . q3! Make a sketch what this implies for the position
of the ring, and how q0 changes qualitatively upon changing a
mass.

� The calculation of the position q0 can then be attacked by observ-
ing that

q0 = q1 + l1

(
cos β

sin β

)
= q2 + l2

(
sin α

− cos α

)
= q3 + l3

(
− sin γ

− cos γ

)
where li is the distance of the ring to the position where rope i
hangs over the table. Further, the fact that the angles of quadri-
laterals add to 2π provides

α = θ23 − γ and β =
3π

2
− γ− θ13

Altogether these are 8 equations to determine the two compo-
nents of q0, l1, . . . l3, and the angles α, β, and γ. Determine q0.

Problem 2.29. Torques acting on a ladder

The sketch in the margin shows the setup of a ladder leaning to
the roof of a hut. The indicated angle from the downwards vertical
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to the ladder is denoted as θ. There is a gravitational force of mag-
nitude Mg acting of a ladder of mass M. At the point where it leans
to the roof there is a normal force of magnitude Fr acting from the
roof to the ladder. At the ladder feet there is a normal force to the
ground of magnitude Fg, and a tangential friction force of magni-
tude γFf . This is again the sketch to the ladder leaning to the roof
of a hut. The angle from the downwards vertical to the ladder is
denoted θ. There is a gravitational force of magnitude Mg acting of
a ladder. At the point where it leans to the roof there is a normal
force of magnitude Fr. At the ladder feet there is a normal force
to the ground of magnitude Fg, and a tangential friction force of
magnitude Ff . change to problem given

on homework sheet 3.

original: Bradley, vector: Sarang / wikime-
dia public domain
Figure 2.27: Setup for Problem 2.29:
leaning a ladder to a roof.

a) In principle there also is a friction force γr Fr acting at the contact
from the ladder to the roof. Why is it admissible to neglect this
force?
Remark: There are at least two good arguments.

b) Determine the vertical and horizontal force balance for the lad-
der. Is there a unique solution?

c) The feet of the ladder start sliding when Ff exceeds the maxi-
mum static friction force γFg. What does this condition entail for
the angle θ?
Assume that γ ' 0.3 What does this imply for the critical angle
θc.

d) Where does the mass of the ladder enter the discussion? Do you
see why?

e) Determine the torque acting on the ladder. Does it matter whether
you consider the torque with respect to the contact point to the
roof, the center of mass, or the foot of the ladder?

f) The ladder slides when the modulus of the friction force Ff ex-
ceeds a maximum value µSFg where µ is the static friction coef-
ficient for of the ladder feet on the ground. For metal feet on a
wooden ground it takes a value of µS ' 2. What does that tell
about the angels where the ladder starts to slide?

g) Why does a ladder commonly starts sliding when when a man
has climbed to the top? Is there anything one can do against it?
Is that even true, or just an urban legend?

Problem 2.30. Walking a yoyo

The sketch to the right shows a yoyo of mass m standing on the
ground. It is held at a chord that extends to the top right. There are
four forces acting on the yoyo: gravity mg, a normal force N from
the ground, a friction force R at the contact to the ground, and the
force F due to the chord. The chord is wrapped around an axle of
radius r1. The outer radius of the yoyo is r2.
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a) Which conditions must hold such that there is no net force acting
on the center of mass of the yoyo?

b) For which angle θ does the torque vanish?

c) Perform an experiment: What happens for larger and for smaller
angels θ? How does the yoyo respond when fix the height where
you keep the chord and pull continuously?

Problem 2.31. Retro-reflector paths on bike wheels
The more traffic you encounter when it be-
comes dark the more important it becomes to
make your bikes visible. Retro-reflectors fixed
in the sparks enhance the visibility to the sides.
They trace a path of a curtate trochoid that is
characterized by the ratio ρ of the reflectors
distance d to the wheel axis and the wheel
radius r. A small stone in the profile traces a
cycloid (ρ = 1). Animations of the trajectories
can be found atbased on Kmhkmh Zykloiden, CC BY 4.0

https://en.wikipedia.org/wiki/Trochoid and http://katgym.

by.lo-net2.de/c.wolfseher/web/zykloiden/zykloiden.html.
A trochoid is most easily described in two steps: Let M(θ) be

the position of the center of the disk, and D(θ) the vector from the
center to the position q(θ) that we follow (i.e. the position of the
retro-reflector) such that q(θ) = M(θ) + D(θ).

a) The point of contact of the wheel with the street at the initial
time t0 is the origin of the coordinate system. Moreover, we
single out one spark and denote the change of its angle with
respect to its initial position as θ. Note that negative angles θ

describe forward motion of the wheel!

Sketch the setup and show that

M(θ) =

(
−rθ

r

)
, D(θ) =

(
−d sin(ϕ + θ)

d cos(ϕ + θ)

)
.

What is the meaning of ϕ in this equation?check signs of compo-
nents of D

b) The length of the track of a trochoid can be determined by inte-
grating the modulus of its velocity over time, L =

∫ t
t0

dt |q̇(θ(t))|.
Show that therefore

L = r
∫ θ

0
dθ
√

1 + ρ2 + 2ρ cos(ϕ + θ)

c) Consider now the case of a cycloid and use cos(2x) = cos2 x −
sin2 x to show that the expression for L can then be written as

L = 2 r
∫ θ

0
dθ

∣∣∣∣cos
ϕ + θ

2

∣∣∣∣
How long is one period of the track traced out by a stone picked
up by the wheel profile?
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2.11.3 Mathematical Foundation

Problem 2.32. The natural numbers modulo n are a group

We consider here groups Gn where the combined action of group
elements can be represented as a sum of two numbers modulo
n ∈ N. In other words, for the elements of Gn can be represented
by the numbers {0, . . . , n − 1}, and for all a, b ∈ Gn we define
a ◦ b = (a + b)modn.

a) Show that Gn is a group.

b) Show that Gn represents the rotations that interchange the ver-
tices of a regular n-sided polygon.

Problem 2.33. Groups with four elements

In Problem 2.32 we encountered the group Gn. Here, we will
study another group with four elements. The neutral element will
be denoted as n.

a) Show that the group has at least one non-trivial element e that is
self-inverse, e ◦ e = n.
Remark: Non-trivial means here that e 6= n.

�b) Show that the group is isomorphic to G4 if there is exactly one
non-trivial element that is self-inverse. In other words: the
group elements can be represented in that case by the numbers
{0, . . . , 3}, and the operation of the group on two of its elements
yields the same result as the action of G4 on the corresponding
numbers.

�c) Show that the group is isomorphic to G4 if there is at least one
element that is not self-inverse.

d) Determine the group table for the case where all group elements
are self-inverse. Show that it is unique, and that it is isomorphic
to the symmetry group of rectangles (cf. Problem 2.6).

e) Proof that all groups with four elements are commutative by
representing the group elements in terms of generating elements.
Do not refer to the group table.

-4 4 8
x̂

-8

-4

4

8
ŷ

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

Figure 2.28: Conic sections for different
eccentricity ε. i.e., the ratio of the slope
of the plane P and the surface of the
double cone, as observed in a plane
that contains the axis of the double
cone and is orthogonal to P.

Problem 2.34. Conic Sections

A conic section describes the line of intersection of a double cone
C and a plane P in three dimensions. In the margin we show the
shape of conic sections for different inclinations that are character-
ized by the eccentricity ε. Depending on the inclination of the plane
one observes

• a circle, when the axis of the cone is orthogonal to P, i.e. for
ε = 0,

• an ellipse, when the plane is slightly tilted, ε < 1,
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• a parabola, when its inclination matches with the opening angle
of the cone, ε = 1, and

• a hyperbola, when it intersects with both sides of the double
cone, ε > 1.

a) Sketch the different types of intersection of the double cone and
the plane.

b) Determine the vector a that points from the vertex of the dou-
ble cone to the point where the plane intersects the axis of the
double cone.

c) Describe the points in the intersection as sum of a and a vector b
that lies in the plane.

� d) Determine the length of the vector b as function of the angle θ

that characterizes the direction of b in P. How can this expres-
sion be used to plot the functions shown in Figure 4.19.

Problem 2.35. Linear dependence of three vectors in 2D

In the lecture I pointed out that every vector v = (v1, v2) of a
two-dimensional vector space can be represented as a unique linear
combination of two linearly independent vectors a and b,

v = α a + β b

In this exercise we revisit this statement for R2 with the standard
forms of vector addition and multiplication by scalars.

a) Provide a triple of vectors a, b and v such that v can not be rep-
resented as a scalar combination of a and b.

b) To be specific we henceforth fix

a =

(
−1
1

)
, b =

(
1
1

)
, v =

(
2
−2

)

Determine the numbers α and β such that

v = α a + β b

c) Consider now also a third vector

c =

(
0
1

)

and find two different choices for (α, β, γ) such that

v = α a + β b + γc

What is the general constraints on (α, β, γ) such that v = α a +

β b + γc.
What does this imply on the number of solutions?
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d) Discuss now the linear dependence of the vectors a, b and c by
exploring the solutions of

0 = α a + β b + γc

How are the constraints for the null vector related to those ob-
tained in part c)?

Problem 2.36. Algebraic number fields

Consider the set K = Q + IQ with I2 ∈ Q. We define the
operations + and · in analogy to those of the complex numbers
(cf. Example 2.13): For z1 = x1 + Iy1 and z2 = x2 + Iy2 we have
x1, y1, x2, y2 ∈ Q and

∀z1, z2 ∈ K :z1 + z2 = (x1 + x2) + I (y1 + y2)

z1 · z2 = (x1 x2 + I2 y1y2) + I (x1 y2 + y1 x2)

∀c ∈ Q, z = (x + iy) ∈ K :cz = c x + I y

a) Let I be a rational number, I ∈ Q. Show that K = Q.

b) Consider I =
√

10. Show that K is a field that is different from Q.

c) Consider I =
√

8. In this case K is not a field! Why?

� Find the general rule: For which natural numbers n does I =
√

n
provide a non-trivial field?
Remark: Non-trivial means here different from Q.

Problem 2.37. Bases for polynomials

We consider the set of polynomials PN of degree N with real
coefficients pn, n ∈ {0, . . . , N},

PN :=

{
p =

(
N

∑
k=0

pk xk

)
mit pk ∈ R, k ∈ {0, . . . , N}

}

a) Demonstrate that (PN , R,+, ·) is a vector space when one adopts
the operations

∀ p =

(
N

∑
k=0

pk xk

)
∈ PN , q =

(
N

∑
k=0

qk xk

)
∈ PN , and c ∈ R :

p + q =

(
N

∑
k=0

(pk + qk) xk

)
and c · p =

(
N

∑
k=0

(c pk) xk

)
.

(b) Demonstrate that

p · q =

(∫ 1

0
dx

(
N

∑
k=0

pk xk

) (
N

∑
j=0

qj xj

))
,

establishes a scalar product on this vector space.
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(c) Demonstrate that the three polynomials b0 = (1), b1 = (x)
and b2 = (x2) form a basis of the vector space P2: For each
polynomial p in P2 there are real numbers xk, k ∈ {0, 1, 2}, such
that p = x0 b0 + x1 b1 + x2 b2. However, in general we have
xi 6= p · bi. Why is that?
Hint: Is this an orthonormal basis?

(d) Demonstrate that the three vectors ê0 = (1), ê1 =
√

3 (2 x − 1)
and ê2 =

√
5 (6 x2 − 6 x + 1) are orthonormal.

(e) Demonstrate that every vector p ∈ P2 can be written as a scalar
combination of (ê0, ê1, ê2),

p = (p · ê0) ê0 + (p · ê1) ê1 + (p · ê2) ê2 .

Hence, (ê0, ê1, ê2) form an orthonormal basis of P2.

*(f) Find a constant c and a vector n̂1, such that n̂0 = (c x) and n̂1

form an orthonormal basis of P1.

Problem 2.38. Systems of linear equations

A system of N linear equations of M variables x1, . . . xM com-
prises N equations of the form

b1 = a11 x1 + a12 x2 + · · ·+ a1M xM

b2 = a21 x1 + a22 x2 + · · ·+ a2M xM

...
...

bN = aN1 x1 + aN2 x2 + · · ·+ aNM xM

where bi, aij ∈ R for i ∈ {1, . . . , N} and j ∈ {1, . . . , M}.

a) Demonstrate that the linear equations (LM, R,+, ·) form a vector
space when one adopts the operations

∀ p =
[
p0 = p1 x1 + p2 x2 + · · ·+ pM xM

]
∈ LN ,

q =
[
q0 = q1 x1 + q2 x2 + · · ·+ qM xM

]
∈ LN ,

c ∈ R :

p + q =
[
p0 + q0 = (p1 + q1) x1 + (p2 + q2) x2 + · · ·+ (pM + qM) xM

]
c · p =

[
c p0 = c p1 x1 + c p2 x2 + · · ·+ c pM xM

]
.

How do these operations relate to the operations performed in
Gauss elimination to solve the system of linear equations?

b) The system of linear equations can also be stated in the following
form 

b1

b2
...

bN

 =


a11

a21
...

aN1

 x1 +


a12

a22
...

aN2

 x2 + · · ·+


a1M

a2M
...

aNM

 xM

⇔ b = x1 a1 + x2 a2 + · · ·+ xM aM
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where b is expressed as a linear combination of a1, . . . aM by
means of the numbers x1, . . . , xM. What do the conditions on
linear independence and representation of vectors by means of a
basis tell about the existence and uniqueness of the solutions of a
system of linear equations.

2.11.4 Transfer and Bonus Problems, Riddles

Problem 2.39. Crossing a river

A ferry is towed at the bank of a river of width B = 100 m that
is flowing at a velocity vF = 4 m/s to the right. At time t = 0 s it
departs and is heading with a constant velocity vB = 10 km/h to
the opposite bank.

a) When will it arrive at the other bank when it always heads
straight to the other side? (In other words, at any time its ve-
locity is perpendicular to the river bank.)

How far will it drift downstream on its journey?

b) In which direction (i.e. angle of velocity relative to the down-
stream velocity of the river) must the ferryman head to reach
exactly at the opposite side of the river?

Determine first the general solution. What happens when you
try to evaluate it for the given velocities?

Problem 2.40. Piling bricks

At Easter and Christmas Germans consume enormous amounts
of chocolate. If you happen to come across a considerable pile of
chocolate bars (or beer mats, or books, or anything else of that
form) I recommend the following experiment:

a) We consider N bars of length l piled on a table. What is the
maximum amount that the topmost bar can reach beyond the
edge of the table.

b) The sketch above shows the special case N = 4.
However, what about the limit N → ∞?

Problem 2.41. Where does the bike go?

Consider the picture of the bicycle to the left. The red arrow
indicates a force that is acting on the paddle in backward direction.

Will the bicycle move forwards or backwards?
Take a bike and do the experiment!

adapted from picture “Damenfahrrad
von 1900” in article “Fahrrad” of Lueger
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Problem 2.42. Hypotrochoids, roulettes, and the Spirograph

A roulette is the curve traced by a point (called the generator or
pole) attached to a disk or other geometric object when that object
rolls without slipping along a fixed track. A pole on the circum-
ference of a disk that rolls on a straight line generates a cycloid. A
pole inside that disk generates a trochoid. If the disk rolls along the
inside or outside of a circular track it generates a hypotrochoid. The
latter curves can be drawn with a spirograph, a beautiful drawing
toy based on gears that illustrates the mathematical concepts of the
least common multiple (LCM) and the lowest common denomina-
tor (LCD).wikimedia, public domain

a) Consider the track of a pole attached to a disk with n cogs that
rolls inside a circular curve with m > n cogs. Why does the
resulting curve form a closed line? How many revolutions does
the disk make till the curve closes? What is the symmetry of
the resulting roulette? (The curves to the top left is an examples
with three-fold symmetry, and the one to the bottom left has
seven-fold symmetry.)

b) Adapt the description for the curves developed in Problem 2.31

such that you can describe hypotrochoids.

c) Test your result by writing a Python program that plots the
curves for given m and n.

2.12 Further reading

The second chapter of Großmann (2012) provides a clear and con-
cise introduction to the mathematical framework of vectors with an
emphasis on applications to physics problems.

A nice discussion of force and torque balances with many
worked exercises can be found in Chapter 2 of Morin (2007).
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3
Newton’s Laws

In Chapter 2 we explored how several forces that act on a body can
be subsumed into a net total force and torque. The body stays in
rest, say at position q0, when the net force and torque vanish. Now
we explore how the forces induce motion and how the position of
the body evolves in time, q(t), when it is prepared with an initial
condition q(t0) = q0 at the initial time t0.

Photographs of a Tumbling Cat. Nature 51, 80–81 (1894)

At the end of this chapter we will be able to discuss the likelihood
for injuries in different types of accidents, be it men or cat or mice.
Why do the cats go away unharmed in most cases when they fall
from a balcony, while an old professor should definitely avoid such
a fall. As a worked example we will discuss water rockets.

https://doi.org/10.1038/051080a0
https://www.grc.nasa.gov/WWW/K-12/rocket/rktbot.html
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3.1 Motivation and outline: What is causing motion?

Every now and then I make the experience that I sit in a train, read-
ing a book. Then I look out of the window, realize that we are pass-
ing a train, feeling happy that we are further approaching my final
destination; and then I realize that the train is moving and my train
is still in the station. Indeed, the motion of objects in my compart-
ment is exactly identical, no matter whether it is at rest or moves
with a constant velocity; be it zero in the station, at 15 m/s in a
local commuter train, or 75 m/s in a Japanese high-speed train.
However, changes of velocity matter. I forcefully experience the
change of speed of the train during an emergency break, and coffee
is spilled when it takes too sharp a turn.

Modern physics was born when Galileo and Newton formalized
this experience by saying that bodies (e.g. the set of bodies in the
compartment of a train) move in a straight line with a constant
velocity as long as there is no net force acting on the bodies, and
that the change of its velocity is proportional to the applied force.

Outline

In the first part of this chapter we will relate temporal changes of
positions and velocities to time derivatives. Subsequently, we can
formulate equations of motion that relate these changes to forces.
The last part of the chapter deals with strategies to find solutions by
making use of conservation laws.

mass m
position q(t)
velocity q̇(t), v(t)
acceleration q̈(t)
forces Fα(q, t)

Table 3.1: Notations adopted to
describe the motion of a particle. A
single dot denotes the time derivative,
and double dot the second derivative
with respect to time.

3.2 Time derivatives of vectors

In this section we consider the motion of a particle with mass m
that is at position q(t) at time t. Its average velocity vav(t, ∆t) dur-
ing the time interval [t, t + ∆t] is

vav(t, ∆t) =
q(t + ∆t)− q(t)

∆t

When the limit lim∆t→0 vav(t, ∆t) exists1 we can define the velocity1 The discussion of this limit for
general functions is a core topic
of vector calculus. For our present
purpose the intuitive understanding
based on the idea that q(t + ∆t) '
q(t) + ∆t v(t) provides the right idea.
To provide a hint for the origin of the
mathematical subtleties we point out
that the approximation works unless
there is an instantaneous collision
with a wall at some point in the time
interval ]t, t + ∆t[. In physics we try
our luck, and fix the problem when
we face it. Indeed, upon a close look
there are no instantaneous collisions in
physics, see Problem 3.17.

of the particle at time t,

v(t) = lim
∆t→0

q(t + ∆t)− q(t)
∆t

(3.2.1)

The velocity is then the time derivative of the position, and in an
immediate generalization of the time derivative of scalar functions
we also write

q̇(t) = v(t) =
dq(t)

dt

Finally, we point out that the components of the time derivative of a
vector amount to the derivatives of the components.
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Theorem 3.1: Time derivatives of vectors

Let a(t) be a vector with time-dependent components ai(t)
with respect to orthonormal basis {êi, i = 1 · · ·D} that is
fixed in time.
Then ȧ(t) = ∑i ȧi(t) êi. The components of ȧ(t) amount to
the time derivatives of the components of a(t).

Proof. For each time we have a(t) = ∑i ai(t) êi where it is under-
stood that the sum runs over i = 1 · · ·D. We insert this into the
definition, Equation (3.2.1), of the the time derivative and use the
linearity of scalar products with vectors to obtain

ȧ(t) = lim
∆t→0

a(t + ∆t)− a(t)
∆t

= lim
∆t→0

∑i ai(t + ∆t) êi −∑i ai(t) êi
∆t

= lim
∆t→0

∑
i

êi
ai(t + ∆t)− ai(t)

∆t
= ∑

i
êi lim

∆t→0

ai(t + ∆t)− ai(t)
∆t

= ∑
i

êi ȧi(t)

The subtle step here, from a mathematical point of view, is the
swapping of the limit and the sum in the second line of the argu-
ment. Courses on vector calculus will spell out the assumptions
needed to justify this step (or, more interestingly from a physics
perspective, under which conditions it fails).

The change of the velocity will be denoted as acceleration. Based
on an analogous argument as for the velocity, it will be written as a
time derivative

Definition 3.1: Acceleration

The time derivative of the velocity v(t) = q̇(t)
is denoted as acceleration, and written as

dv(t)
dt

= v̇(t) = q̈(t)

In the next section it will be related to the action of forces F(q, t)
acting on a particle that resides at the position q at time t.

3.2.1 Self Test

Problem 3.1. Derivatives of elementary functions

Recall that

d
dx

sin x = cos x
d

dx
ex = ex d

dx
ln x = x−1
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Use only the three rules for derivatives

d
dx
(

f (x) + g(x)
)
= f ′(x) + g′(x)

d
dx
(

f (x)g(x)
)
= f ′(x) g(x) + f (x) g′(x)

d
dx

f
(

g(x)
)
= g′(x) f ′

(
g(x)

)
to work out the following derivatives

a) sinh x =
1
2
(
ex − e−x) and cosh x =

1
2
(
ex + e−x)

b) cos x = sin(π/2 + x)

c) xa = ea ln x for a ∈ R

What does this imply for the derivative of f (x) = x−1?

d) Use the result from (c) to proof the quotient rule:

d
dx

f (x)
g(x)

=
f ′(x) g(x)− f (x) g′(x)(

g(x)
)2

e) tan x =
sin x
cos x

and tanh x =
sinh x
cosh x

� f) Find the derivative of ln x solely based on
d

dx
ex = ex.

Hint: Use that x = eln x and take the derivative of both sides.

Problem 3.2. Integrals of elementary functions

In a moment we will also perform integrals to determine the
work performed on a body when it is moving subject to a force.
Practice you skills by evaluating the following integrals.

a)
∫ 1

−1
dx (a + x)2

b)
∫ 5

−5
dq (a + b q3)

�

∫ B

0
dk tanh2(kx)

c)
∫ ∞

0
dx e−x/L

d)
∫ L

−L
dy e−y/ξ

e)
∫ L

0
dz

z
a + b z2

f)
∫ ∞

0
dx x e−x2/(2Dt)

g) ∫ √Dt

−
√

Dt
d` ` e−`

2/(2Dt)

�

∫ √Dt

−
√

Dt
dz x e−z x2

Except for the integration variable all quantities are considered to
be constant.

Hint: Sometimes symmetries can substantially reduce the work
needed to evaluate an integral.

3.3 Newton’s axioms and equations of motion (EOM)

In Section 4.1 we referred to a train compartment to point out that
physical observations will be the same — irrespective of the ve-
locity of its motion, as long as it is constant. A setting where we
perform an experiment is denoted as reference frame, and reference
frames that move with constant velocityare called inertial systems.
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Definition 3.2: Reference Frames and Inertial Systems

A reference frame (Q, {êi(t), i = 1 · · ·D}) is an agreement
about the, in general time dependent, position of the origin
Q(t) of the coordinate system and a set of orthonormal basis
vectors {êi(t), i = 1 · · ·D}, that are adopted to indicate the
positions of particles in a physical model.
The reference frame refers to an inertial system when it does
not rotate and when it moves with a constant velocity, i. e. if
and only if Q̈ = 0 and ˙̂ei = 0 for all i ∈ {1 · · ·D}.

Remark 3.1. The requirement ˙̂ei = 0 implies that the orientation of
the basis vectors êi does not change, i.e. the reference frame does
not rotate. �

Remark 3.2. The rest frame for a particle is a reference frame where
the particle velocity takes the constant velocity 0. �

Remark 3.3. Let q = (q1, . . . qD) be the coordinates of a particles, as
specified in in the inertial frame (Q, {êi}), and x = (x1, . . . xD) its
position given in the inertial frame (X, {n̂i}). Then

q = Q +
D

∑
i=1

qi êi = X +
D

∑
i=1

xi n̂i .

� 3e1e1

e2 3e2

4n
1

n
1

n
2

-n
2

X

Q

q

Figure 3.1: Graphical illustration of
the description of a position from the
perspective of two different reference
frames, q = Q + 3 ê1 + 3 ê2 =
X + 4 n̂1 − n̂2 with the notations of
Remark 3.3.

3.3.1 1st Law

As long as a reference frame moves with a constant velocity, it feels
like at rest. Physical measurements can only detect acceleration.
This is expressed by

Axiom 3.1: Newton’s 1st law

breakable]Newton!1st law|textbf The velocity of a particle
moving in an inertial system is constant, unless a (net) force
is acting on the particle,

∀t ≥ t0 : F(t) = 0 ⇔ q̇(t) = v = const

⇔ q(t) = q0 + v (t− t0)

as sketched in the margin.

v · (
t− t0)

q(t)

q0 = q(t0)

The particle moves then in a straight line with a constant speed.
Indeed, when a particle moves with the constant velocity v = q̇(t)
in the reference frame (Q1, {êi(t), i = 1 · · ·D} then it is at rest
in the alternative reference frame (Q2, {êi(t), i = 1 · · ·D} where
Q2 = Q1 + v t. Therefore, in the latter coordinate system the
particle is at rest, and it will remain at rest when it is not perturbed
by a net external force. After all,

q = Q1 + v t = Q2 + 0 .
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3.3.2 2nd Law

Newton’s second law spells out how the velocity of the particle
changes when there is a force.

Axiom 3.2: Newton’s 2nd law

The change, q̈(t), of the velocity of a particle, q̇(t), at posi-
tion, q(t), is proportional to the sum of the forces Fα acting
on the particle, and the proportionality factor is the particle
mass m,

m q̈(t) = ∑
α

Fα(t) .

Remark 3.4. In general the time dependence of the forces can be
decomposed into three contributions

a) An implicit time dependence, F(q(t)), when the force depends
on the position, q(t) of the particle. For instance, for a Hookian
spring with spring constant k one has, F(q) = −k q.22 The spring constant k is a positive

constant of dimension Newton per
meter that characterizes the strength of
the spring, and the minus sign makes
it explicit that the Hoookian force is
a restoring force pushing the particle
back towards q = 0.

b) An implicit time dependence, F(q̇(t)), when the force depends
on the velocity, q̇(t) of the particle.
For instance, the sliding friction for a particle with mass m and
friction coefficient γ is, F(q̇) = −m γ q̇.

c) An explicit time dependence when the force is changing in time.
For instance, when pushing a child sitting on a swing one will
only push when the swing is moving in forward direction.

Typically, one explicitly sorts out these dependencies and writes

q̈(t) = m ∑
α

Fα(q(t), q̇(t), t)
�

The resulting relation between the acceleration and the force is
called equation of motion of the particle.

Definition 3.3: Equation of Motion (EOM)

Newton’s second law establishes a relation between the
position q(t) of a particle of mass m, its velocity q̇(t), and
acceleration q̈(t),

m q̈(t) = F(q̇(t), q(t), t)

that is referred to as the equation of motion (EOM) of the
particle.
The motion of N particles residing at the positions
q1(t), . . . , qN(t) ∈ RD and interacting with each other
amounts to N D coupled equations

m q̈1(t) = F1(q̇1(t), . . . , q̇N(t), q1(t), . . . , qN(t), t)
... =

...

m q̈N(t) = FN(q̇1(t), . . . , q̇N(t), q1(t), . . . , qN(t), t)
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The primary aim of Theoretical Mechanics is to determine the solu-
tion of the EOM for given initial conditions (cf. Definition 1.6),

Γ0 =
(

q1(t0), . . . , qN(t0), q̇1(t0), . . . , q̇N(t0)
)

for the positions and velocities of the particles at time t0. Bundles of
phase-space trajectories characterize the motion of sets of trajecto-
ries, and they can be analyzed to determine how the behavior of a
system changes upon varying the parameters of the setup.

Example 3.1: Particle moving in the gravitational field

The gravitational field induces a constant force m g on a par-
ticle with mass m. Let it have velocity v0 at time t0 when it
is taking off from the position q0. Then Newton’s 2nd law
states that q̈(t) = g, and this equation must be solved subject
to the initial conditions q(t0) = q0 and q̇(t0) = v. By work-
ing out the derivatives one readily checks that this is given
for

q(t) = q0 + v (t− t0) +
1
2

g (t− t0)
2

Example 3.2: Particle moving in a circle

Let a particle of mass m move with constant speed in a circle
of radius R such that its position can be written as

q(t) =

(
R cos(ωt)
R sin(ωt)

)

with a constant angular velocity ω. Then its velocity and
acceleration take the form

q̇(t) =

(
−ω R sin(ωt)
ω R cos(ωt)

)

and q̈(t) =

(
−ω2 R cos(ωt)
−ω2 R sin(ωt)

)
= −ω2 q(t)

The speed is constant, taking the value
√

q̇ · q̇ = ω R.
The force is antiparallel to q with magnitude m ω2 R.
Moreover, q̇ · F = 0 at all times. Hence, the force only
changes the direction of motion, and not the speed.

3.3.3 3rd Law

Newton’s third law states that the reference frame does not matter
for the description of the evolution of two particles, even when
they interact with each other — i.e. when they exert forces on each
other. Consider for instance the motion of two particles of the same
mass m that reside at the positions q1(t) and q2(t). We decide to
observe them from a position right in the middle between the two
particles Q =

(
q1(t) + q2(t)

)
/2. In the absence of external forces
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this is an inertial frame, such that Q̈ = 0 according to Newton’s
first law. However, Newton’s second law implies that also

0 = 2mQ̈ = m q̈1 + m q̈2 = F1 + F2

where F1 = m q̈1 and F2 = m q̈2 are the forces acting on particle 1
and 2, respectively. Up to a change of sign the forces are the same,
F1 = −F2. This action-reaction principle is stipulated by

Axiom 3.3: Newton’s 3rd law

Forces act in pairs:

actio when a body A is pushing a body B with force FA→B

reactio then B is pushing A with force FB→A = −FA→B ,

and these forces are always balanced, FA→B + FB→A = 0.

Example 3.3: Fixing a hammock at a tree

When you lie in a hammock that is fixed at a tree, your ham-
mock exerts a force FH on the tree (actio). The hammock
stays where it is because the tree pulls back with exactly
the same force −FT , up to a change of sign (reactio), and, in
turn, this force can be written as the sum of two components
accounting for the normal force FN of the tree on the rope
and a friction force Ff that prevents the rope from sliding
down the tree.

Figure 3.2: Graphical illustrations of
forces involved in hanging a hammock
on a tree, Example 3.3. Example 3.4: Ice skaters

• When two ice skaters of the same mass push each other
starting from a position at rest, then they will move in
opposite directions with the same speed (unless they
brake).

• When they have masses m1 and m2 their velocities will be
related by m1 v1 + m2 v2 = 0 because v1 = v2 = 0 initially,
and m1 v̇1 + m2 v̇2 = F1 + F2 = 0 at any instant of time. As
long as they push, the velocities are non-zero and speed
increases. When they slide there is no force any longer,
and they go at constant speed—except for the impact of
friction of the skates on the ice.

slide:

push:

Figure 3.3: Graphical illustrations
of motion of the two ice-skaters of
Example 3.4. Example 3.5: Water Rocket

A water rocket receives its thrust by the repulsive force
in response of accelerating and releasing a water jet. Let
M the mass of a rocket at a given time, and VR its speed.
To determine the acceleration of the rocket we consider a
short time interval ∆t where water of mass ∆M is ejected
with speed v f . In the absence of gravitation the momentum
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balance implies that at any given time the momentum of
the rocket M(t)VR(t) must amount to the sum of the wa-
ter ∆M (vR(t) − v f emitted during a short time ∆t and the
momentum of the rocket M(t + ∆t)VR(t + ∆t) after that
time,

M VR = (M− ∆M) (VR + ∆VR) + ∆M (VR − v f )

⇔ 0 = M ∆VR − ∆M v f − ∆M ∆VR

Now we observe that ∆M = a ρ, v f ∆t where a is the cross
section of the ejected jet, and ρ the mass density of the
ejected water:

M
∆VR
∆t

= a ρ, v2
f + a ρ, v f

∆VR
∆t

∆t

and in the limit of small time increments ∆t→ 0 we obtain
the force FR that is accelerating the rocket

FR = M V̇R = a ρ v2
f

The rocket trajectory results from interplay of gravity
and FR. One case will be discussed as worked example at
the end of this chapter, in Section 3.5. Solving the general
case has been suggested as an instructive computer-based
example for teaching mechanics (Gale, 1970; Finney, 2000).
Instructions about how to build and discuss the rocket in
school is available from the NASA and the instructables
community.

Michal Richard Trowbridge / wikimedia CC
BY-SA 3.0
Figure 3.4: Launching a water rocket,
as introduced in Example 3.5.

3.3.4 Punchline

Newton’s equations are stated nowadays in terms of derivatives,
a concept in calculus that has been pioneered by Leibniz.3 In this 3 Even though these principles of cal-

culus were independently understood
by Newton which lead to a very long
fight for authorship and fame.

language they take the following form for a particle of mass m that
is at position q(t) at time t,

q̇(t) = v(t)

v̇(t) =
1
m

Ftot(q(t), v(t), t)

Prior to Newton, physical theories adopted the Aristotelian point
of view that v is proportional to the force. Indeed in those days
many scientists were regularly inspecting mines, and from the per-
spective of pushing mine carts is is quite natural to assert that their
velocity is proportional to the pushing force. Galileo’s achievement
is to add the ‘tot’ of the force side of the equation, pointing out
that there also is a friction force acting on the mine cart. Newton’s
achievement is to add the ‘dot’ on the left side of the equation, stat-
ing that the velocity stays constant when the pushing force and the
friction force balance.
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Example 3.6: Pushing a mine cart

The motion of the mine cart is one-dimensional along its
track such that the position, q, velocity, x, and forces are
one-dimensional, i. e. scalar functions. Once the mine cart is
moving it experiences a friction force Ff = −γ v, that (to a
first approximation) is proportional to its velocity, v. Now,
let the mine worker push with a constant force FM such that

m q̈ = m v̇ = Ftot = FM − γ v .

The mine cart travels with constant velocity v̇ = 0, when the
attacking forces balance, i. e. for vc = FM/m γ.
For a different initial velocity, v(t0) = v0, one finds an expo-
nential approach to the asymptotic velocity,

v(t) = vc +
(
v0 − vc

)
e−γ (t−t0)

After all, v(t0) = vc +
(
v0 − vc

)
= v0 and

v̇(t) =
(
v0 − vc

)
(−γ) e−γ (t−t0)

=
(
−γ

(
v(t)− vc

)
= −γ v(t) + FM

)
/m

clarify: Aristotelian me-
chanics + criticism

Figure 3.5: The pre-Newtonian under-
standing of the relation between force
and velocity of a body.

The advantage of the Newtonian approach above earlier mod-
eling attempts is that it makes a quantitative prediction about the
asymptotic velocity, and that it also addresses the regime where the
velocity is changing, e. g. when the mine cart is taking up speed.

3.3.5 Self Test

Problem 3.3. Terminal velocity for turbulent drag

Rather than a friction of the type of the mine cart, a golf ball
experiences a drag force

Fd = −ρ|u|2
2

cd A û

where A is the cross section of the ball, ρ the density of air, u the
velocity of the golf ball, and cd ' 0.5 the drag coefficient.

a) The drag coefficient is a dimensionless number that depends on
the shape of the object that experiences drag. For the rest the
expression for the drag force follows from dimensional analysis.
Verify this claim.

b) A slightly more informed derivation of Fd introduces also the
diameter D of the golf ball and states that drag arises because
the ball has to push air out of its way. When moving it has to
push air out of the way at a rate A u. The air was at rest initially
and must move roughly with a velocity u to get out of the way.
Subsequently, its kinetic energy is lost. Check out, how this leads
to the expression provided for Fd.
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c) What is the terminal velocity of a golf ball that is falling out of
the pocket of a careless hang glider?

d) Use dimensional analysis to estimate the distance after which the
ball acquires its terminal velocity, and how long it takes to reach
the velocity.

Problem 3.4. Orbit of the Moon around Earth

The Moon is circling around Earth due to the gravitational force
of modulus

FME =
GME MM

R2
ME

where G = 2
3 × 10−12m3/kg s is the gravitational constant, ME '

6× 1024 kg and MM ' 3
4 × 10−23kg are the masses of Moon and

Earth, respectively, and RME = 7
4 × 106m is the distance from Earth

to Moon.

a) Calculate the force that Moon is experiencing due to the Earth.
Compare it to the gravitational acceleration g ' 10 m/s2 scaled
by (RME/RE)

2 where RE = 2π × 106m is the Earth radius. Why
would one scale by this factor?

b) Assume that the Moon trajectory is circular and identify FME

with the centripetal force that keeps the moon on its orbit. What
does this tell about the dependence of the period T of the motion
on G, RME and the masses.

c) Evaluate T and compare it to the duration of a month.

Problem 3.5. Escape velocities

The escape velocity is the minimum speed of a projectile that
would allow it to escape into outer space when friction due to the
atmosphere is neglected.

a) Estimate the escape velocity of Earth based on the gravitational
force law FME given in Problem 3.4, the gravitational acceleration
g = 10 m/s2 on Earth, and the fact that the Earth circumference
was set to 2πRE = 4× 104 km.

b) Recall the relation between gravity on Earth and Moon given in
Problem 1.7, and estimate also the escape velocity from Moon.

c) After you performed the calculations:
Compare your estimates to the values provided by Wikipedia.

Problem 3.6. Pulling a cow

A child is pulling a toy cow with a force of F = 5 N. The cow has
a mass of m = 100 g and the chord has an angle θ = π/5 with the
horizontal. 3 For this angle one has tan θ ≈ 3/4.
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a) Describe the motion of the cow when there is no friction.
In the beginning the cow is at rest.

b) What changes when there is friction with a friction coefficient of
γ = 0.2, i.e. a horizontal friction force of magnitude −γmg acting
on the cow.

c) Is the assumption realistic that the force remains constant and
will always act in the same direction? What might go wrong?

Children’s Museum of Indianapolis, CC BY-SA 3.0

3.4 Constants of motion (CM)

In the previous section we saw that Newton’s laws can be ex-
pressed as equations relating the second derivative of the position
of a particle to the forces acting on the particle. The forces are de-
termined as part of setting up the physical model. Subsequently,
determining the time dependence of the position is a mathemat-
ical problem. Often it can be solved by finding constraints on the
solution that must hold for all times. Such a constraint is called a

Definition 3.4: Constant of motion

A function C(q, q̇, t) is a constant of motion (CM) iff its time
derivative vanishes,

d
dt
C(q, q̇, t) = 0

It provides us with an opportunity to take a closer look at the
expressions that emerge when taking derivatives of functions with
arguments that are vectors. In order to evaluate the time derivative
of C we write q = (q1, ....., qD), and apply the chain rule

d
dt
C(q(t), q̇(t), t) =

d
dt
C(q1(t), · · · , qD(t), q̇1(t), · · · , q̇D(t), t)

=
D

∑
i=1

dqi
dt

∂C
∂qi

+
D

∑
i=1

dq̇i
dt

∂C
∂q̇i

+
∂C
∂t

(3.4.1)

In this expression the operation ∂ is called ‘partial’, and the deriva-
tive ∂C/∂qi is denoted as partial derivative of C with respect to qi.
For the purpose of calculating the partial derivative, we consider C
to be a function of only the single argument qi. For sake of a more
compact notation we also write ∂qiC rather than ∂C/∂qi. Moreover,
when it is not clear from the context which conditions are adopted,
they can explicitly be stated as subscript of a vertical bar to the
right of the derivative (or even square brackets).
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Example 3.7: Partial derivatives

For f (x, y) = x/
√

x2 + y2 and R =
√

x2 + y2 we have

∂x f (x, y)|y =
1√

x2 + y2
− x2(

x2 + y2
)3/2 =

y2

R3

∂x f (x, y)|R = ∂x

[ x
R

]
R
=

1
R

A compact notation that allows us to state the expression of
Equation (3.4.1) in a more transparent way is achieved as follows:
We observe that the expressions in the sums amount to writing
out in components a scalar product of q and q̇ with vectors that
are obtained by the partial derivatives. These vectors are denoted
gradients with respect to q and q̇, and they will be written as In the literature one also finds the

alternative notations

∇q C =
∂C
∂q

= ∂qC
∇q C =


∂q1C

...
∂qDC

 and ∇q̇ C =


∂q̇1C

...
∂q̇DC

 (3.4.2)

such that

d
dt
C(q(t), q̇(t), t) = q̇ · ∇q C + q̈ · ∇q̇ C +

∂C
∂t

In terms of the phase-space coordinates Γ = (q, q̇) one can also
adopt the even more compact notation

d
dt
C(q(t), q̇(t), t) = Γ̇ · ∇Γ C +

∂C
∂t

or even

d
dt
C(Γ(t), t) = Γ̇ · ∇ C(Γ(t), t) +

∂C
∂t

(Γ(t), t)

where the index of the nabla operator has been dropped with the
understanding that it is clear from the context what the operator
refers to.

We make use of these derivatives while introducing some impor-
tant physical quantities that are constants of the motion in specific
settings.

3.4.1 The kinetic energy

When no forces are acting on a particle, Ftot = 0, it moves with
constant velocity. All functions that depend only on the velocity
will then be constant. In particular this holds for the kinetic energy,
T, that will play a very important role in the following.

Theorem 3.2: Conservation of kinetic energy

The kinetic energy T =
m
2

q̇2 of a particle is conserved
iff no net force acts on the particle, i. e. iff Ftot = 0.
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Proof. d
dt

T =
m
2

d
dt ∑

i
q̇i · q̇i = m ∑

i
q̇i · q̈i

= mq̇ · q̈ = q̇ · (m q̈) = q̇ · Ftot = 0

In the last two steps we used Newton’s 2nd law, and the assump-
tion that Ftot = 0.

3.4.2 Work and total energy

From a physics perspective, work is performed when a body is
moved in the presence of an external force.

Figure 3.6: Breaking a particle track
q(t) into a sequence of discrete points
qi with segments si+1 = qi+1 − qi .

• When the force F is constant along a straight path of displace-
ment s = qE − qI , from a position qI to the position qE, then the
work W amounts to the scalar product W = F · s.

• When the force depends on the position along the path, we
parameterize the motion along the path by time, q(t), with
q(tI) = qI and q(tE) = qE and break it into sufficiently small
pieces si = q(ti)− q(ti − ∆t) where the force Fi = F(ti) and the
velocity of the particle q̇(ti) may be assumed to be constant, such
that q̇(ti) =

(
q(ti)− q(ti−1)

)
/∆t. Then

W = ∑
i

Fi · si = lim
∆t→0

Fi · q̇ ∆t =
∫ t1

t0

F(t) · q̇(t) dt =
∫

q(t)
F · dq

The last equality should be understood here as a definition of
the final expression that is interpreted here in the spirit of the
substitution rule of integration.

Definition 3.5: Work and Line Integrals

The work, W, of a particle that performs a path q under the
influence of a force F(t) amounts to the result of the line
integral

W =
∫

q
F · dq

When the path is parameterized by time, then W amounts to
the time integral of dissipated power P(t) = F(t) · q̇(t),

W =
∫

F(t) · q̇(t) dt =
∫

P(t) dt

Remark 3.5. The scalar product F · dq or P(t) = F(t) · q̇(t) singles
out only the action of the force parallel to the trajectory. The per-
pendicular components do not perform work. Hence, a force that
is always acting perpendicular to the velocity, i. e. perpendicular to
the path of the particle, does not perform any work,

W =
∫

F(t) · q̇(t) dt =
∫

0 dt = 0

It only changes the direction of motion. �
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Remark 3.6. The result of the integral does not rely on the parame-
terization of the path by time. For instance mathematicians prefer
to use the length ` of the path. The speed of the particle is then
˙̀(t) = |q̇(t)| and one finds

W =
∫

F(t) · s =
∫

F(t(`)) · q̇(t(`)) d`
˙̀ =

∫
F(`) · q

d`
(`) d`

where dq̂/d` is a unit vector pointing in the direction of the trajec-
tory. �

The calculation of work simplifies dramatically when the force
can be written as gradient of another function, Φ.

Definition 3.6: Potentials and Conservative Forces

A force F(q) that can be expressed as the negative gradient
of a function Φ(q),

F(q) = −∇Φ(q) = −


∂q1 Φ(q1, . . . , qD)

...
∂qD Φ(q1, . . . , qD)


is called a conservative force and the function Φ is the potential
associated to the force.

Remark 3.7. Conservative forces only depend on position, F = F(q).
They neither explicitly depend on time nor on the velocity q. �

Remark 3.8. Conservative forces only depend on position, F = F(q).
They neither explicitly depend on time nor on the velocity q. �

Example 3.8: Conservative forces: (counter-)examples

• Gravitational acceleration g is is constant in space. Hence,
gravity is a conservative force.

• Friction of a cube sliding over a table is proportional to
the particle speed v. Therefore, friction is not a conserva-
tive force.

• Setting the rope into motion for rope skipping requires an
oscillatory force. Due to its time time dependence such a
force is not conservative.

Rope skipping on the poster of the movie
“Doubletime”, wikimedia, CC BY 2.0

Theorem 3.3: Work for conservative forces

For conservative forces, F = −∇Φ(q), the work for a path
q(t) from q0 to q1 amounts to the difference of the potential
evaluated at the initial and at the final point of the path

W =
∫

q(t)
F · dq = Φ(q0)−Φ(q1)

Proof.
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W =
∫ t1

t0

F · q̇ dt = −
∫ t1

t0

∇Φ · q̇ dt

= −
∫ t1

t0
∑

i

∂Φ
∂qi

∂qi
∂t

dt = −
∫ t1

t0

d Φ
dt

dt

= −
(
Φ(q(t1))−Φ(q(t0))

)
= Φ(q0)−Φ(q1)

Remark 3.9. The work performed along a closed path vanishes
for conservative forces. After all, in that case q1 = q0 such that
W = Φ(q0)−Φ(q1) = 0. �

Remark 3.10. The potential in itself is not an observable.4 One can4 An observable is a quantity that can be
measured by direct observation. only observe the work, which is the potential difference between

two positions, and the force, which is the negative gradient of the
potential. Therefore, the potential is only defined up to adding a
constant. �

Example 3.9: Gravitational Potential

For a particle of mass m gravity on the Earth surface gives
rise to a force of magnitude F(x, y, z) = −m g ẑ that can be
derived from the potential Φ(x, y, z) = m g z,

−∇Φ1(x, y, z) =

−∂xΦ(x, y, z)
−∂yΦ(x, y, z)
−∂zΦ(x, y, z)

 =

 0
0
−m g

 = F(x, y, z)

Far away, at a position q = (q1, q2, q3) from the center of
Earth, gravity induces a force F(q) = −G ME m q/|q|3 on a
body of mass m. This force can be obtained as

−∇φ2(q) = ∇
G ME m√

q2
1 + q2

2 + q2
3

= G ME m


∂q1

1√
q2

1+q2
2+q2

3

∂q2
1√

q2
1+q2

2+q2
3

∂q3
1√

q2
1+q2

2+q2
3



= G ME m


−q1

[q2
1+q2

2+q2
3]

3/2

−q2

[q2
1+q2

2+q2
3]

3/2

−q3

[q2
1+q2

2+q2
3]

3/2

 =
−G ME m[

q2
1 + q2

2 + q2
3
]3/2 q = F(q)

Remark 3.11. According to Theorem 3.3 differences of the value of
the potential between two positions amount to the work performed
in the potential. Different approaches to calculate the value of this
scalar observable must yield identical results. Therefore, the func-
tional dependence of the potential must not depend on the choice
of the coordinate system. This invariance requires that the poten-
tial can always be expressed in terms of scalar products. For the
potentials in Example 3.9 this is achieved by writing

Φ1(q) = m g · q with g = (0, 0,−g)

Φ2(q) = −G ME m/
√

q · q
�
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Remark 3.12. One can make use of the properties of scalar products
to reduce the computational work to determine the force for a given
potential by working out the component i of the gradient where
i is can be any index of the vector. For conciseness we also write
then ∂i for the partial derivative with respect to component qi of the
argument q of Φ(q).

For the potentials in Example 3.9 this works as follows

−∂iΦ1(q) = −m ∂i ∑
j

gjqj = −m ∑
j

gjδij = −mgi

−∂iΦ2(q) = G ME m ∂i

[
∑

j
q2

j

]−1/2
=
−G ME m qi[

∑j q2
j

]3/2

In particular in the second case the advantage is evident. �

Example 3.10: Falling men and cat

When a cat, that has a mass of m = 3 kg, falls from a balcony
in the fourth floor, i. e. from a height H ' 4 × 3 m = 12 m,
the initial potential energy

Vcat = mgH = 3 kg× 10 m/s2 × 12 m = 360 kg m2/s2

will be transformed into kinetic energy and then dissipated
when the cat hits the ground.
To get an idea about this energy we compare it to the energy
dissipated when a man of mass M = 80 kg, falls out of his
bed that has a height of h = 50 cm,

Vman = Mgh = 80 kg× 10 m/s2 × 0.5 m = 400 kg m2/s2

From the point of view of the dissipated energy the fall of
the cat is not as bad as it looks at first sight.

Conservative forces are called conservative forces because mo-
tion in such a potential conserves the sum of the potential energy
and the kinetic energy.

Theorem 3.4: Conservation of the total energy

The total energy E = T + Φ of a particle is conserved
if it moves in a conservative force field F = −∇Φ.

Proof.
dE
dt

=
dT
dt

+
dΦ
dt

= m q̇ · q̈ +∇Φ · q̇ = q̇ ·
(
mq̈− F

)︸ ︷︷ ︸
= 0

= 0

In the third equality we used that the force is conservative, and
in the final step, we used Newton’s second law which states that
mq̈ = F.
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Example 3.11: Accidents at work and on the street

A paramedic emergency ambulance receives two calls from
an accident site:
i. a craftsmen fell from a roof of height H
ii. a teenager hit a tree with his motorcycle with a speed v
For which height does the energy of the craftsman approxi-
mately match the one of the motor cyclist when he drove

in the city, vC = 50 km/h,
outside the city, vL = 100 km/h,
on a German autobahn with vA = 150 km/h
or was really speeding with vS = 200 km/h.

We assume that they both have comparable mass.
Energy conservation entails that we have to compare the
potential energy Vworker of the craftsman on the roof and the
kinetic energy of the teenager on the motorcycle Tteenager,

mgH = Vworker = Tteenager =
m
2

v2 ⇔ H =
v2

2g

Hence we find

v 50 km/h 100 km/h 150 km/h 200 km/h
H 12 m 50 m 110 m 200 m
floor 4 16 36 64

Most likely, the teenager will encounter more severe injuries,
unless the craftsman is working on a really high building.

3.4.3 Momentum

Theorem 3.5: Conservation of momentum

The momentum P = ∑N
i=1 miq̇i(t) of a set of N particles with

masses mi that reside at the positions qi(t) is conserved if no
net force Ftot acts on the system.

Proof. The time derivative of the total momentum is
d
dt

P =
N

∑
i=1

miq̈i(t)

where miq̈i(t) amounts to the force on particle i. This force amounts
to the sum of an external force Fi on particle i and the forces f ji ex-
erted by other particles j on i. The net force amounts to the sum of
the external forces, 0 = Ftot = ∑i Fi. Newton’s third law requires
that f ji = − fij, and we will set fii = 0 to simplify notations of
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indices in the sums. Consequently,

d
dt

P =
N

∑
i=1

(
Fi +

N

∑
j=1

f ji

)
=

N

∑
i=1

Fi +
N

∑
i=1

N

∑
j=1

fij

= Ftot +
1
2

N

∑
i=1

N

∑
j=1

(
fij + f ji

)
= 0

Ôàáðèöèî, CC BY-SA 4.0
Figure 3.7: Newton’s cradle. When
the excited ball to the right is released
it will come down, hit the rightmost
ball that is hanging down at rest.
The momentum is transferred to the
leftmost ball, and that is moving up
(almost) as far to the left as the initial
ball was excited to the right. Its motion
reverses, and by the same sequence of
events the motion proceeds from left to
right.

Example 3.12: One-dimensional collisions

We consider two steel balls that can freely move along a line.
They have masses m1 and m2 and reside at positions x1 and
x2, respectively. Initially ball two is at rest in the origin, and
ball one is approaching from the right with a constant speed
v1. What is the speed of the balls after the collision? Before
and after the collision the particles feel no forces such that
their velocity is constant. We assume that the collision is
elastic such that energy is preserved. Hence,

before collision = after collision

momentum: m1 v1 = m1 v′1 + m2 v′2

energy:
m1

2
v2

1 =
m1

2
(v′1)

2 +
m2

2
(v′2)

2

where the prime indicates the post-collision velocities.
These velocities can best be determined by writing the mo-
mentum and energy balance in the form

m1 (v1 − v′1) = m2 v′2 and m1 (v2
1 − v′21 ) = m2 v′22

and dividing the second by the first equation. This provides

v1 + v′1 = v′2

Together with the momentum balance it provides

v′1 =
m1 −m2

m1 + m2
v1 and v′2 =

2 m1

m1 + m2
v1

In particular, when the two particles have the same mass one
obtains that v′1 = 0 and v′2 = v1 which is beautifully exem-
plified by the dynamics of Newton’s cradle.

3.4.4 Angular Momentum

In the immediate vicinity of the collisions the balls in Newton’s
cradle perform a motion along a horizontal line, as discussed in
Example 3.12. However, during the excursions to the left and right
they follow a circular track where the chains act as arms and their
suspension as fulcrum of the circular motion. In such settings it is
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often desirable to also consider the evolution of the angular mo-
mentum.

Theorem 3.6: Conservation of angular momentum

The angular momentum L = ∑N
i=1 miqi(t) × q̇i(t) of a set of N

particles with masses mi that reside at the positions qi(t) is
conserved if no external forces act on the system and if the
interaction forces between pairs of particles act parallel to
the line connecting the particles.

Proof. d
dt

L =
N

∑
i=1

mi

(
q̇i(t)× q̇i(t) + qi(t)× q̈i(t)

)
= ∑

i<j

(
qi(t)× fij + qj(t)× f ji

)
= ∑

i<j

(
qi(t)− qj(t)

)
× fij = 0

where we used that fij = − f ji due to Newton’s third law, and
that (qi(t) − qj(t)) is parallel to fij by assumption on the particle
interactions.

Figure 3.8: Notations adopted in the
measurement of the speed v of a bullet
of mass m that is hitting a rotor of
mass M attached to an arm of length
L; see ?? 3.13.

Example 3.13: Determine the speed of a bullet.

In a CSI lab one tests the speed of a bullet by shooting it into
a rotor where a mass M = 1 kg can move horizontally with
minimal fraction on an arm with length L = 1 m. For a bullet
of a mass m = 8 g we find a rotation frequency f = 0.16 Hz.
What is the muzzle velocity v of the gun? During the colli-
sion the bullet gets stuck in the rotor mass. Before and after
the collision the angular momentum thus is

m L v = (m + M) L2 ω = (m + M) L2 2π f

⇔ v =
m + M

m
2π f L =

1008
8
× 2π × 0.16 m/s ' 125 m/s

3.4.5 Self Test

Problem 3.7. Derivatives of common composite expressions

Evaluate the following derivatives.

a) d
dx (a + x)b

b) ∂
∂x (x + b y)2

c) d
dx (x + y(x))2

d) d
dt sin θ(t)

e)
d
dt
(
sin θ(t) cos θ(t)

)
f) d

dt sin
(
2θ(t)

)
g) d

dz

√
a + b z2

h) ∂
∂x3

[
∑6

j=1 x2
j

]−1/2

i) ∂
∂y1

ln(x · y)

In these expressions a and b are real constants, and x and y are
6-dimensional vectors.
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Problem 3.8. Running mothers

Demonstrate that

I = ẋ1(t) ẋ2(t) + ω2 x1(t) x2(t)

is a constant of motion of a two-dimensional harmonic oscillator
with equation of motion

ẍ(t) = −ω2 x(t) with ω ∈ R and x(t) =
(
x1(t), x2(t)

)
∈ R2

Problem 3.9. Anvil shooting

Rex Hammock from USA/
wikimedia CC BY-SA 2.0

Anvil shooting is a tradition in some US communities to cele-
brate St. Clement’s Day, honoring Pope Clement I, the patron saint
of blacksmiths and metalworkers. Typical anvils have a mass of
about 150 kg and they are shot up to a height of 60 m. Which en-
ergy must the gun powder release to the anvil for such a feat?

Problem 3.10. Running mothers

In the Clara Zetkin Park one regularly encounters blessings5 5 Look up “terms of venery” if you
ever run out of collective nouns.of dozens of mothers jogging in the park while pushing baby car-

riages. Troops of kangaroo mothers rather carry their youngs in
pouches.

a) Estimate the energy consumption spend in pushing the carriages
as opposed to carrying the newborn.
The carriages suffer from friction. Let the friction coefficient be
γ = 0.3.
When carrying the baby the kangaroo must lift it up in every
jump and the associated potential energy is dissipated.

b) How does the running speed matter in this discussion?

c) How does the mass of the babies/youngs make a difference?

Problem 3.11. The sledgehammer experiment

In his magnificent book “Thinking Physics” Lewis Carroll Ep-
stein (2009) sets out a class room experiment that he used to per-
form in his physics class: He placed an anvil on his chest and asked
a student from the audience to hit the anvil with a sledge hammer
as hard as he could manage. What will happen?

Epstein changed the way of presenta-
tion of this experiment when a very
nervous student missed the anvil and
hit his hand. Have a look into the book
for the full story.

Problem 3.12. The rotating chair experiment

The spin increases when an ice dancer pulls inwards arms and
legs. This is illustrated in the picture of Yuko Kawaguti in the mar-
gin, and the physical principle has beautifully been demonstrated
in a wikimedia movie by Oliver Zajkov from the Physics Institute at
the University of Skopje.

deerstop, wikimedia, CC0
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a) Assume that a less careful experimenter starts his motion with a
spin of 1 Hz, holding 5 kg barbells with stretched-out arms 1 m
away from the rotation axis. Estimate his spin rate when he pulls
in his arms till the barbells reach a distance of 20 cm from the
rotation axis.

b) Which trajectory will they take when the careless experimenter
gets dizzy and looses hold on the barbells?

3.5 Worked example: Flight of an Earth-bound rocket

In order to illustrate the applications of Newton’s laws we discuss
now the flight of a rocket. We will deal with the case a) where the
rocket is moving in vertical direction, b) where the fuel is ejected
with a constant speed v f (or zero when it is exhausted), and c)
where the rocket does not reach heights with a noticeable change of
the gravitational acceleration. At the end of this section we discuss
the impact of relaxing these assumptions, and point to the literature
for a further discussion.

Let VR be the speed of the rocket. It is positive when the rocket
goes up, and negative when it falls down. On the way down, its
mass will be m. Initially, it has a mass m + M0, where M0 is mass
of the fuel (cf. Figure 3.9). As long as the rocket is firing, Newton’s
third law implies that

Figure 3.9: Notations adopted for the
discussion of the flight of a rocket in
Section 3.5.

FR =
(
m + M(t)

)
V̇R = a ρ v2

f −
(
m + M(t)

)
g

The first force on the right-hand side of this equation accounts for
the recoil from ejection of the fuel (cf. Example 3.5) and the latter
to gravitational acceleration. We also observed in Example 3.5 that
the mass M(t) of the remaining fuel at time t obeys the differential
equation Ṁ = −a ρ v f such that6

6 One easily checks that this expres-
sion is correct for the initial mass,
M(0) = M0 and its derivative agrees
with Ṁ(t). The same applies also
for the expressions for the speed and
height of the rocket discussed below.
Problem 4.2 gives clues how the solu-
tions are determined systematically.
In Chapter 4 we discuss systematic
approaches to find the solution.

M(t) = M0 − a ρ v f t .

At some time T all fuel is consumed, and we have

0 = M0 − a ρ v f T ⇒ T =
M0

a ρ v f
.

Moreover, for the rocket acceleration we find

V̇R(t) =
FR

m + M(t)
= −g +

v f /T
µ− t/T

with µ =
m + M0

M0

The rocket speed is obtained by integrating the acceleration
from the initial time, where the rocket is at rest, till time t. The
integral takes a simpler form when one adopts the dimensionless
integration variable, τ = t/µT,

VR(t) = µT
∫ t/µT

0
dτ VR(t) = −g t− v f

∫ t/µT

0
dτ

1
1− τ

= −g t− v f ln
(

1− t
µT

)
(3.5.1a)
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Thus, at time T the rocket has acquired the speed

VR(T) = −g T + v f ln
µ− 1

µ
. (3.5.1b)

The rocket height z(t) is obtained by observing that ż(t) = VR(t),
which in turn is given by Equation (3.5.1a). The solution where the
rocket starts at height zero is the given by

z(t) = µT
∫ t/µT

0
dτ VR(t) = −

g t2

2
− µT v f

∫ t/µT

0
dτ ln(1− τ)

= − g t2

2
− µT v f

[
(τ − 1)

(
−1 + ln(1− τ)

)]t/µT
0

= − g t2

2
+ v f t + v f T

(
µ− t

T

)
ln
(

1− t
µT

)
. (3.5.2a)

At time T this simplifies to

z(T) = − g T2

2
+ v f T

[
1 + (µ− 1) ln

µ− 1
µ

]
(3.5.2b)

Starting from that position the rocket will perform a ballistic
flight with initial velocity VR(T) that will add to its height another
height increment of V2

R(T)/2g. The additional height increment ∆H
before the rocket reaches the crest of its height is found by energy
conservation and Equation (3.5.1b)

m g ∆H =
m
2

V2
R(T)

⇒ ∆H =
V2

R(T)
2 g

=

[
g T2

2
− T v f ln

µ− 1
µ

+
v2

f

2 g

(
ln

µ− 1
µ

)2
]

(3.5.3)

Combining Equations (3.5.2b) and (3.5.3) yields the total height, H,
reached by the rocket,

H = z(T) + ∆H =

[
− g T2

2
+ v f T + (µ− 1) v f T ln

µ− 1
µ

]
+

[
g T2

2
+ v f T ln

µ− 1
µ

+
v2

f

2 g

(
ln

µ

1 + µ

)2
]

= v f T
[

1 + µ ln
µ− 1

µ

]
+

v2
f

2 g

(
ln

µ− 1
µ

)2
(3.5.4)

-1 1 2 3 4
x

-2

-1

1

2

lnx

x− 1

Figure 3.10: The function x − 1 (red)
is always larger (or equal) than ln x
(blue).

For m > 0 we have µ > 1, and the expression in the square
bracket is always negative, as one can see based on the inequality
ln x ≤ x− 1 shown Figure 3.10,

1 + µ ln(1 + µ−1) ≤ 1 + µ
(

1 + µ−1 − 1
)
= 0

The best strategy to achieve a large height is to go for a small T in
order to suppress the first term in Equation (3.5.4) and large v f to
achieve large values of the second term.

When energy efficiency is a concern, e. g. when the rocket is
used for a measurement of the atmosphere at height H, one might
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Figure 3.11: (left) Contour line for the
efficiency, Equation (3.5.5), as function
of the mass ratio m/M0 = µ − 1
and the dimensionless inverse rocket
acceleration α = gT/v f . The maximum
is taken for α = 0. (right) Plot of the
µ dependence of the efficiency for
α = 0. The maximum efficiency of
ηopt ' 0.648 is obtained for µc ' 1.255.
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be interested to reach the height H with minimum energy cost.
This means one is interested to minimize the ratio of the potential
energy of the rocket at height H and the the energy M0v2

f /2 burned
to deliver the freight,

η =
m g H

M0v2
f /2

=
2 m g T
M0 v f

[
1 + µ ln

µ− 1
µ

]
+

m
M0

(
ln

µ

1 + µ

)2

=
2 g T

v f
(µ− 1)

[
1 + µ ln

µ− 1
µ

]
+ (µ− 1)

(
ln

µ− 1
µ

)2

(3.5.5)

The efficiency is a function of µ and of the dimensionless number
α = g T/v f . The contour lines of η(µ, α) are plotted in the left panel
of Figure 3.11.

Definition 3.7: Contour lines and isosurfaces

The contour lines of a two variable function f (x, y) are those
lines in the (x, y)-plane, where f (x, y) takes some constant
value. More generally these lines are also called isolines, the
two-dimensional surfaces where a three-variable function
g(x, y, z) in the (x, y, z)-space takes constant values are called
isosurfaces, and the N − 1-dimensional hypersurfaces of RN

where the function h(q) with q ∈ RN takes a constant values
will also be denoted as isosurfaces.

Example 3.14: Isosurfaces of the 3D Gaussian distribution

The 3D Gaussian distribution

P(x, y, z) =
1

(2πD t)3/2 exp
(
− x2 + y2 + z2

2Dt

)
describes the distribution of dye molecules at time t when
a tiny droplet of dye is added without motion in a large
container of water (Brownian motion). At any given instant
of time the surfaces where the concentration take constant
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values C amount to

C = (2πD t)−3/2 exp
(
−(x2 + y2 + z2)/(2Dt)

)
⇔ x2 + y2 + z2 = −2Dt ln

(
C (2πD t)3/2) = R2

where R2 is an abbreviation of the (positive) constant on the
right-hand side of the equation. Hence, the isosurface IR for
a given R amounts to a sphere of radius R,

IR = {(x, y, y) ∈ R : x2 + y2 + z2 = R2} .

The contour lines of the efficiency reveal that the maximum
efficiency is obtained for α = 0, which can expected since the
expression in square brackets in Equation (3.5.5) is negative. From
a physics perspective it means that high efficiencies require a large
fuel expulsion speed v f . The maximum efficiency amounts to the
maximum of η(µ, α = 0) = µ ln2[µ/(1 + µ)], which amounts to the
root µc of the equation 2/(1 + µ) + ln[µ/(1 + µ)]. Numerically it is
found to be µc ' 0.255. Hence, the maximum efficiency is obtained
when the mass of the fuel M0 is roughly four times larger than the
mass of the empty rocket. The maximum efficiency amounts then to

ηmax =
4 µc

(1 + µc)2 ' 0.648 .

Irrespective of the rocket design one can not transform more than
2/3 of the energy of the fuel into potential energy of the rocket. The
remaining energy is dissipated in the kinetic energy of the exhaust.

Further discussion of the trajectories of rockets can be found in
Finney (2000); Gale (1970); Seifert et al. (1947). A discussion of water
rockets that addresses the change of speed v f of the ejected water
was given in Kagan et al. (1995); Gommes (2010).

3.6 Problems

3.6.1 Practicing Concepts

Problem 3.13. Car on an air-cushion

We consider a car of mass m = 20 g moving – to a very good
approximation without friction – on an air-cushion track. There is a
string attached to the car that moves over a roll and hangs vertically
down on the side opposite to the car.

a) Sketch the setup and the relevant parameters.

b) Which acceleration is acting on the car when the string is ver-
tically pulled down with a force of F = 2 N. Determine the
velocity v(t) and its position x(t).

c) Determine the force acting on a 200 g chocolate bar, in order to
get a feeling for the size of the force that was considered in (b).
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84 3. Newton’s Laws

d) Now we fix the chocolate bar at the other side of the string.
The velocity of the car can then be obtained based on energy
conservation

E = Ekin + Epot =
m + M

2
v2 + Mgh = konst,

where M is the mass of the chocolate bar. Is the acceleration the
same of different as in the cases (b) and (c)? Provide an argu-
ment for your conclusion.

Problem 3.14. ’Oumuamua

Tomruen/wikimedia CC BY-SA 4.0
Figure 3.12: ’Oumuamua trajectory as
seen by an observer on Earth.

On 19 October 2017 astronomers at the Haleakala Observatory in
Hawaii discovered ’Oumuamua, the first interstellar object observed
in our solar system. It approached the solar system with a speed
of about vI = 26 km/s and reached a maximum speed of vP =

87.71 km/s at its perihelion, i. e. upon closest approach to the sun
on 9 September 2017.

a) Show that at the perihelion the speed and ’Oumuamua’s smallest
distance to the sun, D, obey the relation

v2
P − v2

I
2

=
MS G

D

while for the Earth we always have

4π2R
T2 ' MS G

R2

Here, MS is the mass of Sun, R is the Earth-Sun distance, and
T = 1 year is the period of Earth around Sun.

b) Show that this entails that
D
R

=
2 v2

E
v2

P − v2
I

, where vE = 2πR/T is

the speed of Earth around sun.

c) Use the relation obtained in (b) to determine D in astronomical
units, and compare your estimate with the observed value D =

0.25534(7)AU.

Problem 3.15. Galilean cannon

In the margin we show a sketch of a Galilean cannon. Assume
that the mass mass ratio of neighboring balls with always two, and
that they perform elastic collisions.

SteveBaker/wikimedia, CC BY-SA 3.0

a) Initially they are stacked exactly vertically such that their dis-
tance is negligible. Let the distance between the ground the
lowermost ball be 1 m. How will the distance of the balls evolve
prior to the collision of the lowermost ball with the ground?

b) After the collision with the ground the balls will move up again.
Determine the maximum height that is reached by each of the
balls.
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Problem 3.16. Motion in a harmonic central force field

A particle of mass m and at position r(t) is moving under the
influence of a central force field

F(r) = −k r .

a) We want to use the force to build a particle trap,7 i. e. to make 7 Particle traps with much more
elaborate force fields, e.g. the Penning-
and the Paul-trap, are used to fix
particles in space for storage and use
in high precision spectroscopy.

sure that the particle trajectories r(t) are bounded: For all initial
conditions there is a bound B such that |r(t)| < B for all times t.
What is the requirement on the sign of the constant k to achieve
this aim?

b) Determine the energy of the particle and show that its energy is
conserved.

c) Demonstrate that the angular momentum L = r × m ṙ of the
particle is conserved, too. Is this also true when considering a
different origin of the coordinate system?
Hint: The center of the force field is no longer coincide with the
origin of the coordinate system in that case.

Problem 3.17. Collision with an elastic bumper

Consider two balls of radius R with masses m1 and m2 that are
moving along a line. Their positions will be denoted as x1 and x2 in
such a way that they touch when x1 = x2 and they do not feel each
other when x1 < x2. When they run into each other, the balls can
slightly be deformed such that the distance between their centers
takes the value 2R − d, and they experience a harmonic repulsive
forces ±k d. We will say then that d = x2 − x1 < 0.

a) Newton’s equations for the collision of the two balls take the
form

m1 ẍ1(t) = −k d(t) m2 ẍ2(t) = k d(t)

Show that this implies

d̈ = −ω2 d

for some positive constant ω. How does ω depend on the spring
constant k and on the masses m1 and m2?

b) Let d(t) = −dM sin
(
ω (t− t0)

)
describe the deformation of the

balls for a collision at t = t0, and contact in the time interval
t0 ≤ t ≤ tR. Verify that it is a solution of the equation of motion.
At which time tR will the particles release (i.e. there is no overlap
any longer)? What is the maximum potential energy stored in
the harmonic potential?

c) We consider initial conditions where particle 1 arrives with a
constant velocity v0 from the left, and particle 2 is at rest. What
is the total kinetic energy in this situation? Assume that at most
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a fraction α of the kinetic energy is transferred to potential en-
ergy. What is the relation between v0 and the maximum defor-
mation dM?

d) The velocity of the two particles at times t0 ≤ t ≤ tR can now be
obtained by solving the integrals

mi ẋi(t) = mi xi(t0) + (−1)i
∫ t

t0

dt′ k d(t′) , with i ∈ {1, 2}

Why does this hold? Which values does xi(t0) take? Solve the
integral and show that

ẋ1 = v0

[
1 +

√
αβ
(

cos(ω (t− t0)
)
− 1
)]

ẋ2 = v0
m1

m2

√
αβ
(

cos(ω (t− t0)
)
− 1
)

How does β depend on the masses?

e) Verify that at release we have

ẋ1 = v0
(
1− 2

√
αβ
)

ẋ2 = v0
2 m1

m2

√
αβ
)

Verify that these expressions comply to momentum conservation.
Verify that the expressions obey energy conservation iff α = β =

m2/(m1 + m2).

f) What does this imply for particles of identical masses, m1 = m2?
How does your result fit to the motion observed in Newton’s
cradle? What does it tell about the assumption of instanta-
neous collisions of balls that is frequently adopted in theoretical
physics?

Problem 3.18. Inelastic collisions, ballistics, and cinema heroes

Let us take a look at how cinema heroes shoot.

“Free Metal Jacket” movie poster
(wikimedia fair use)

a) The title of Stanley Kubrick’s movie Full Metal Jacket refers to
full metal jacket bullets, i. e. projectiles as they were used in the
M16 assault rifle used in the Vietnam war. Its bullets have a mass
of 10 g and they set a 1 kg wooden block revolving at a 1 m arm
into a 8 Hz motion. What is the velocity of the bullets?

The bullets of a 9 mm Luger pistol have a mass of 8 g and they
are fired with a muzzle velocity of 350 m s−1. What is the result-
ing angular speed θ̇ of the wooden block?

b) Alternatively one can preform this measurement by shooting the
bullet into a swing where a wooden block of mass M is attached
to ropes of length `. Initially it is at rest. Consider angular mo-
mentum conservation to determine its velocity immediately after
impact. What does this tell about the kinetic energy immediately
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after the impact, and what about the maximum height of reached
by the swing in its subsequent motion?

Let L be 2 m. Which mass is required to let the swing go up to
the height of its spindle?

Dutch Movie poster of Planet Terror.
(wikimedia fair use license)

What does this tell about the recoil of the pistol and the rifle?
What do you think now about the shooting scenes that you
might recall from Rambo movies or grindhouse movies like
Planet Terror.

3.6.2 Mathematical Foundation
add: problems for line
integrals, in particular
parameterization with
length

add: calculation of the
length of a path

add: problems for con-
tour lines

Problem 3.19. Solving integrals by partial integration

Evaluate the following integrals by partial integration∫
dx f (x) g′(x) = f (x) g(x)−

∫
dx f ′(x) g(x)

a)
∫ b

a
dx x ekx

b)
∫ b

a
dx x2 ekx

c)
∫ ∞

0
dx x3 e−x2

�d)
∫ b

a
dx xn ekx, n ∈N

The integral d) can only be given as a sum over j = 0, . . . , n.

Problem 3.20. Substitution with trigonometric and hyperbolic
functions

Figure 3.13: Illustration of the sub-
stitute rule for integrals that may be
represented in terms of a Riemann
sum ():∫ f (xF)

f (xI )
d f g( f ) '∑

i
∆ fi g( fi)

'∑
i

∆xi
∆ fi

∆xi
g( f (xi))

'
∫ xF

xI
dx

d f (x)
dx

g( f (x))

provide reference

Evaluate the following integrals by employing the suggested
substitution, based on the substitution rule∫ f (xF)

f (xI)
d f g( f ) =

∫ xF

xI

dx
d f (x)

dx
g( f (x))

with a function f (x) that is bijective on the integration interval
[xI , xF]. A graphical illustration of the rule is given in Figure 3.13.

a)
∫ b

a
dx

1√
1− x2

by substituting x = sin θ

b)
∫ b

a
dx

1√
1 + x2

by substituting x = sinh z

c)
∫ b

a
dx

1
1 + x2 by substituting x = tan θ

d)
∫ b

a
dx

1
1− x2 by substituting x = tanh z

Problem 3.21. Gradients and contour lines

a) Contour lines in the (x, y)-plane are lines y(x) or x(y) where
a functions f (x, y) takes a constant value (cf. Definition 3.7).
Sketch the contour lines of the functions

f1(x, y) = (x2 + y2)−1 and f2(x, y) = −x2 y2
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b) Determine the gradients ∇ f1(x, y) and ∇ f2(x, y).
Hint: The gradient ∇ f (x, y) of a function f (x, y) is the vector
(∂x f (x, y), ∂y f (x, y)) that contains the two partial derivatives of
the (scalar) function f (x, y) (cf. Equation (3.4.2)).

c) Indicate the direction and magnitude of the gradient by appro-
priate arrows in the sketch showing the contour lines. In which
direction is the gradient pointing?

3.6.3 Transfer and Bonus Problems, Riddles

Problem 3.22. Moeschenbroeks double-cone experiment

User:FA2010, Public domain

In the margin we show Moeschenbroeks double-cone experi-
ment. The setup involves three angles:

1. The opening angle α between the two rails.
2. The angle φ of the rail surface with the horizontal.
3. The opening angle θ of the cone.
When it is released from the depicted position the cone might

move to the right, to the left, and it could stay where it is. How
does the selected direction of motion depend on the choice of the
three angles?

Problem 3.23. Coulomb potential and external electric forces

We consider the Hydrogen atom to be a classical system as sug-
gested by the Bohr-Sommerfeld model. Let the proton be at the
center of the coordinate system and the electron at the position r.
The interaction between the proton and the electron is described by
the Coulomb potential α/|r|. In addition to this interaction there
is a constant electric force acting, that is described by the potential
F · r. Altogether the motion of the electron is therefore described by
the potential

U = − α

|r| − F · r

a) Sketch the system and the relevant parameters.

b) Which force is acting on the particle? How do its equation of
motion look like?

c) Verify that the energy is conserved.

d) Show that also the following quantity is a constant of motion,

I = F · (ṙ× L)− α
F · r
|r| +

1
2
(F × r)2

Here L is the angular momentum of the particle with respect to
the origin of the coordinate system.

3.7 Further reading

Sommerfeld’s (1994) classical discussion of Newton’s axioms dates
back to the 1940s, but still is a one of the most superb expositions of
the topic.
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A comprehensive discussion of the flight of water bottle rockets
has been given in Finney (2000), and it has been augmented by
a discussion of subtle corrections involving the thermodynamic
expansion of air in Gommes (2010).
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4
Motion of Point Particles

In Chapter 3 we learned how to set up a physical model based on
finding the forces acting on a body, and thus determining the accel-
eration of its motion. For a particle of mass m and position q New-
ton’s second law relates its acceleration q̈ to the force that is acting
on the particle. In Chapter 2 we saw that the total force F(q, q̇, t)
acting on the particle may depend on q, q̇, and t. The resulting re-
lation between the acceleration and the force is called equation of
motion of the particle, Definition 3.3. In the present chapter we will
discuss approaches that will allow us to systematically find the so-
lutions of EOMs. Moreover, we will explore what type of behavior
is encountered for different types of initial conditions.

Mechanical planetarium used to teach astronomy at Harvard
Sage Ross/wikimedia, CC BY-SA 3.0

At the end of this chapter we will discuss the motion of planets
around the sun, moons around their planets, and will be able to
figure out which rules determine the intricate trajectory of ’Oumua-
mua shown in Figure 3.12.

https://commons.wikimedia.org/wiki/File:Planetarium_in_Putnam_Gallery_2,_2009-11-24.jpg
https://creativecommons.org/licenses/by-sa/3.0
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4.1 Motivation and outline: EOM are ODEs

From the mathematical point of view the equation of motion is an
ordinary differential equation (ODE).

Definition 4.1: Ordinary Differential Equation (ODE)

An ordinary differential equation (ODE) of nth order for a func-
tion f (t) expresses the nth derivative of the function,

f (n)(t) =
dn

dtn f (t)

as a function of time and the lower derivatives of the func-
tion, f (n−1)(t), . . . , f (1)(t) = d

dt f (t), f (0)(t) = f (t),

f (n)(t) = F( f (n−1)(t), . . . , f (t), t) .

Here, f and F may be scalar or vector valued functions.

Remark 4.1. The EOM for a particle at position q ∈ R3 is a second
order ODE where the second time derivative q̈(t) of the vector
valued function q(t) (the position of the particle) is related to F/m,
which is a vector that depends on q̇, q and t; cf. Definition 3.3. �

Remark 4.2. A differential equation is called an ordinary differen-
tial equation, when all derivatives are taken with respect to the
same variable. When discussing the physics of waves, e. g. for
the full description of Tsunami waves mentioned in Example 1.11,
to deal with electromagnetic waves or gravitational waves, one has
to deal with differential equations involving space and time deriva-
tives. These type of equations are called partial differential equations
(PDE). In Leipzig they are addressed in the course “Theoretical
Physics II”. �

Commonly, the forces in an EOM for a particle only depend on
particle positions and velocities, and not explicitly on time. The
forces only depend on the particle configuration, and they will be
the same irrespective of whether I measure them today or when my
grand-daughter determines them with her grand-children at the
dawn of the next century.

Definition 4.2: Autonomous Equations of Motion

An ODE is called autonomous when its right-hand side does
not explicitly depend on time. In particular an autonomous
EOM takes the form

m q̈(t) = F(q̇(t), q(t)) .

The forthcoming discussion of ODEs makes use of the very im-
portant observation that every ODE can be stated as first order
ODE in some abstract phase space. We introduce this idea for N
particles with masses mi, i = 1 · · ·N that are moving in D dimen-
sions. According to Definition 3.3 their motion is described by a
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4.1. Motivation and outline: EOM are ODEs 93

system of N D differential equations for the coordinates of the D
dimensional vectors qi = (qi,α, α = 1 · · ·D)

q̈i,α =
1

mi
Fi,α({q̇i, qi}i=1···N , t) , i = 1 · · ·N , α = 1 · · ·D

To avoid clutter in the equations we did not explicitly state here the
time dependence of q̈i,α(t), q̇i,α(t), and qi,α(t).

By introducing the variables vi = q̇i the EOMs can be written as
a set of 2 D N first order ODEs

q̇i,α = vi,α

v̇i,α =
1

mi
Fi,α({qi, q̇i}i=1···N , t)

For an autonomous system this can be written in a more com-
pact form by introducing the 2DN dimensional phase-space coordi-
nate Γ and the flow V as follows

Γ =
(
q1,1 · · · q1,D , q2,1 · · · qN,D , q̇1,1 · · · q̇1,D , q̇2,1 · · · q̇N,D

)
V =

(
v1,1 · · · v1,D , v2,1 · · · vN,D ,

F1,1

m1
. . .

F1,D

m1
,

F2,1

m2
· · · FN,D

mN

)
Γ̇ = V(Γ) for autonomous systems.

Moreover, a non-autonomous system can always be expressed as
an autonomous, first order ODE where Γ and V denote points in a
2DN + 1 dimensional phase space,

Γ =
(
q1,1 · · · q1,D , q2,1 · · · qN,D , q̇1,1 · · · q̇1,D , q̇2,1 · · · q̇N,D , t

)
V =

(
v1,1 · · · v1,D , v2,1 · · · vN,D ,

F1,1

m1
. . .

F1,D

m1
,

F2,1

m2
· · · FN,D

mN
, 1
)

Γ̇ = V(Γ) for non-autonomous systems.

In phase space, Γ denotes a point that characterizes the state of
our system, and V(Γ) provides the unique direction and velocity
of the temporal change of this state. In an approximation, that is
accurate for sufficiently small ∆t, we have

Γ(t + ∆t) ' Γ(t) + ∆t V(Γ(t))

In phase space the ODE therefore can be represented as a field of
vectors V(Γ) that represent signposts signifying which direction a
trajectory will take when it continues from this point, and how fast
it will proceed.

Definition 4.3: Phase-Space Plot

A phase-space plot provides an overview of all solutions of an
ODE by marking the direction of motion of the trajectories
in phase space by arrows, and showing the evolution of a
representative set of trajectories by solid lines. At times such
a plot is therefore also denoted as the phase-space portrait of
the solutions of an ODE.
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94 4. Motion of Point Particles

Remark 4.3. For an autonomous system with a single DOF

ẋ(t) = v(t)

v̇(t) = m−1 F
(
v(t), x(t)

)
the phase-space portrait is a two-dimensional plot with arrows(
v, F(v, x)/m

)
at the positions (x, v) in the plane, and trajectories

v(x). One can only see the shape of the trajectories, and not their
time dependence. �

Example 4.1: Phase-space plot for the harmonic oscillator

The EOM of the harmonic oscillator is ẍ(t) = −ω2 x(t)
where ω can be absorbed into the time scale by adopting the
dimensionless time τ = ωt. Its dimensionless energy is then
given by

E =
v2

2
+

x2

2
with

{
ẋ = v
v̇ = −x

The energy is conserved because

d
dt

E = x ẋ + v v̇ = x v− v x = 0

Therefore trajectories in phase space amount to contour
lines of the the energy function E(x, v). This is shown in
Figure 4.1 where the energy is marked by color coding and
the direction of the flow is provided by arrows.

-2 -1 0 1 2
x

-2

-1

0

1

2

ẋ
/ω

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 4.1: Color plot of contour
lines of the energy of the harmonic
oscillator, and the flow field of its
EOM.

Outline

The forthcoming discussion in the present chapter will provide

i. a classification of ODEs with an emphasis on strategies to find
solutions for specific initial conditions, and

ii. further discussion of phase-space plots used to characterize sets
of solutions.

The methods will be introduced and motivated based on elemen-
tary physical problems that will serve as examples of particular
relevance in physics.

4.2 Integrating ODEs — Free flight

We first discuss the motion of a single particle moving in a gravi-
tational field that gives rise to the constant gravitational accelera-
tion g. Hence, the particle position q(t) obeys the EOM

q̈ = g (4.2.1)

The right hand side of this equation is constant. It neither depends
on q̇, q, nor explicitly on t. This has two remarkable consequences
that we will exploit whenever possible.
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4.2. Integrating ODEs — Free flight 95

4.2.1 Decoupling of the motion of different DOF

Each component qα of q can be solved independently of the other
DOF

q̇α = gα

Rather than dealing with a vector-valued ODE, one can therefore
solve D scalar ODEs which turns out to be a much simpler task.
Indeed, we will see in our further discussion that the solution of
vector-valued ODEs will often proceed via a coordinate transforma-
tion that decouples the different DOF.

4.2.2 Solving ODEs by integration

The ODE, Equation (4.2.1), can be solved by integration

1 The prime of the integration vari-
able t′ indicates here that the integra-
tion variable t′ must not be confused
with the boundary t of the integral.
Physicists often drop the prime with
the understanding that this simplifies
notation and there is no danger of
confusion (after this note has been
made).

Algorithm 4.1: Integrating ODEs

An ODE for f (t) can be solved by integration when its right-
hand side does not depend on on f (t) and its derivatives,
i. e. when it takes the form

ḟ (t) = g(t)

For the initial condition f (t0) = f0 one can then expresses
the solution of the ODE in terms of an integral,1

f (t) = f0 +
∫ t

t0

dt′ ḟ (t′) = f0 +
∫ t

t0

dt′ g(t′)

For an autonomous ODE, where g(t) = c = const, one thus
obtains

f (t) = f0 + c · (t− t0)

The idea underlying the algorithm can be understood by reading
the equations in reverse order and taking into account the substitu-
tion rule for integration,

∫ t

t0

dt′ g(t′) =
∫ t

t0

dt′ ḟ (t′) =
∫ f (t)

f (t0)
d f = f (t)− f (t0)

4.2.3 Integrating the EOM for free flight

For the free flight only the constant acceleration g due to gravity is
acting on the particle such that q̈(t) = g. For the initial conditions
q(t0) = q0 and q̇(t0) = v0 Algorithm 4.1 provides the velocity

q̇(t) = v0 +
∫ t

t0

dt′g = v0 + g · (t− t0)
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96 4. Motion of Point Particles

This equation can be integrated again, providing the position of the
particle

q(t) = q0 +
∫ t

t0

dt′q̇(t) = q0 +
∫ t

t0

dt′
(
v0 + g (t− t0)

)
= q0 + v0

∫ t

t0

dt′ + g
∫ t

t0

dt′ (t− t0)

= q0 + v0 (t− t0) + g
∫ t−t0

0
dt′′ t′′

= q0 + v0 (t− t0) +
1
2

g (t− t0)
2

When we introduce the components of the vectors q and v = q̇ as
q = (q1, q2, . . . ) and v = (v1, v2, . . . ), and choose the component
direction anti-parallel to g as z = q1, then

z(t) = q1(t) = z(t0) + v1(t0) (t− t0)−
g
2
(t− t0)

2 (4.2.2a)

qi(t) = qi(t0) + vi(t0) (t− t0) , for i > 1 (4.2.2b)

It is illuminating to discuss these solutions form the perspective of
non-dimensionalization and the evolution in phase space.

For i > 1 the EOM is q̈i = 0. In phase space the direction field
at (qi, vi) is then given by the vectors (vi(t0), 0) pointing in hori-
zontal direction, as shown in Figure 4.2(left). Moreover, for Equa-
tion (4.2.2b) we have q̇i(t) = vi(t0) = const irrespective of qi(t).
Therefore, the solutions take the form of horizontal lines. When in-
troducing dimensionless units by adopting the velocity scale vi(t0)

one obtains

v̂i(t) =
q̇i(t)
q̇i(t0)

= 1

For this problem all trajectories are identical up to a rescaling of
the length and time units. By rescaling, all horizontal lines in the
phase space can be mapped into the same dimensionless solution.
From the point of view of the Buckingham-Pi Theorem 1.1 this is
due to the fact that there are no dimensionless parameters in the
solutions—not even due to the choice of initial conditions.

Figure 4.2: Phase-space flows for mo-
tion for free flight. (left) For direction
perpendicular to g where there is no
acceleration. The trajectories are hori-
zontal lines. (right) For z anti parallel
to g there is a constant acceleration
−g. The trajectories take the form of
parabola that are open to the left.

For Equation (4.2.2a) the arrows at position (z, vz) in the phase
space are directed to (v,−g). For v = 0 they point straight down,
for large v they point right and only a little bit down, and for large
negative v they point left and only a little bit down, as marked in
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4.2. Integrating ODEs — Free flight 97

Figure 4.2(right). The phase-space trajectories are found by observ-
ing that ż = vz(t0)− g (t− t0) implies t− t0 =

[
vz(t0)− vz

]
/g such

that

z = z(t0) + vz(t0)
vz(t0)− vz

g
−
[
vz(t0)− vz

]2
2 g

= z(t0) +
vz(t0)− vz

2 g
[
2 vz(t0)−

(
vz(t0)− vz

)]
= z(t0) +

v2
z(t0)− v2

z
2 g

(4.2.3)

As function of vz these are parabola with a maximum at vz = 0
and height zmax = z(t0) + v2

z(t0)/2g, as shown in Figure 4.2(right).
In this case the EOM involves the constant g such that only one
of the initial conditions can be absorbed into dimensionless units.
For dimensionless units based on the velocity scale vz(t0) and the
length scale v2

z(t0)/2 g we have

z
v2

z(t0)/2 g
= I −

(
vz

vz(t0)

)2
with I = 1 +

2 g z(t0)

v2
z(t0) -4 -2 0 2 4

z · 2g/vz(t0)2

-4

-2

0

2

4

v z
/v

z
(t

0
)

Figure 4.3: Dimensionless phase-space
trajectories of a particle falling in the
gravitational field without friction.

The trajectories in this dimensionless representation are shown
in Figure 4.3. They all have the shape of a normal parabola, but the
parabolas are shifted by the dimensionless constant I that is formed
by the gravitational acceleration g, and the initial conditions z(t0)

and vz(t0).

4.2.4 Self Test

Problem 4.1. Estimating the depth of a pond

You drop a stone into a pond and count n seconds till you hear
it hit the water. How long a chord do you have to attach to your
bucket to get up some water.

Problem 4.2. Integrating the EOM for the flight of an Earth-
bound rocket

Integrate the EOM for rocket flight derived in Section 3.5,

V̇R(t) = −g +
a ρ v2

f

m + M0 − a ρ v f t

ż(t) = VR(t)

for a rocket that is launched with velocity v0 at a height H0, i. e. for
the ICs

VR(t0) = v0 and z(t0) = H0

How do the solutions Equations (3.5.1a) and (3.5.2a) change? Was
there a way to anticipate the impact of the changing the initial
height H0?
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98 4. Motion of Point Particles

Problem 4.3. Alternative dimensionless units for trajectories with
constant acceleration

Discuss the shape of the trajectories that emerges when introduc-
ing dimensionless units based on the velocity scale vz(t0) and the
length scale z(t0) into Equation (4.2.3).

Hint: You will find parabolas as shown to in the margin. Discuss
their shape and the position of their maximum.Figure 4.4: Sketch of the universal

form of the free-flight trajectories in
phase space, Equation (4.2.3).

4.3 Separation of variables — Settling with Stokes drag

The settling of a ball in a viscous medium can be described by the
equations of motion

m ḧ(t) = −m g− µ ḣ(t) . (4.3.1a)

Here h(t) is the vertical position of the ball (height), g is the acceler-
ation due to gravity, and the contribution −µ ḣ(t) describes Stokes
friction, i. e. the viscous drag on the ball. It has the same form as
the friction opposing the motion of the mine cart in Example 3.6.

The Stokes friction coefficient µ depends the viscosity of the
fluid η and the geometry of the body. The viscosity [η] of a fluid is
measured in terms of Pa = kg/m s. For air and water it takes val-
ues of about ηair ' 2× 10−5 kg/m s, and ηwater ' 1× 10−3 kg/m s,
respectively. The size of the ball will be given by its radius R.
Hence, dimensional analysis implies that

µ ∝ R η

For a sphere of radius R the proportionality constant takes the
value of 6π.

This problems involves the parameters g, µ and m that will ab-
sorbed into dimensionless units by introducing the dimensionless
units for height ĥ = h µ2/m2 g, velocity v̂ = ḣ µ/m g, and time
τ = (t− t0) µ/m. In these units the EOM takes the form

d2

dτ2 ĥ(τ) = −1− d
dτ

ĥ(τ) ⇔
{

d
dτ ĥ = v̂
d

dτ v̂ = −1− v̂
(4.3.1b)

-2 -1 0 1 2
ĥ

-2

-1

0

1

2

v̂

Figure 4.5: Dimensionless phase-space
trajectories of a particle subjected to
a constant acceleration g and Stokes
drag.

The corresponding phase-space plot is shown in Figure 4.5. For
positive (i. e. upwards) velocities the resulting direction field in
phase space point to the lower right, and for v̂ it points straight
down. However, the arrows are steeper than for the case without
friction, Figure 4.3. For v̂ > 0 the trajectories in the two cases look
similar, but with friction they follow curves that are broader than
the parabola for the frictionless fall. For downwards, the flows
differ qualitatively: Trajectories started with zero velocity never
cross the v̂ = −1 line, and trajectories that are started with a speed
larger than 1 are no longer accelerated by gravity, but slowed down
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4.3. Separation of variables — Settling with Stokes drag 99

by friction until they also reach their terminal velocity −1 that is
marked by a red line.

After having reached this qualitative insight into the dynam-
ics, we will look now for the explicit solution of the EOM. Equa-
tion (4.3.1) can be integrated once, yielding an ODE for the settling
velocity starting from a height ĥ0 with velocity v̂0,

ḣ(τ) = v̂0 − τ −
(
ĥ(τ)− ĥ0

)
This equation can not be solved by integration, employing Algo-
rithm 4.1, because its right-hand side explicitly depends on the
function h(t) that must still be determined as solution of the ODE.
It is a better strategy in this case to adopt another solution strategy.

4.3.1 Solving ODEs by separation of variables

In the case at hand the ODE (4.3.1a) can be interpreted as a first
order ODE for the settling velocity v = ḣ where v̇ is provided as
a function of only v. Such an ODE is best solved by separation of
variables.

Algorithm 4.2: Separation of variables

A one-dimensional first-order ODE of the form

ḟ (t) = g( f (t)) h(t)

can be solved by separation of variables. For the initial condi-
tion f (t0) = f0 one obtains then

∫ t

t0

dt′ h(t′) =
∫ t

t0

dt′
ḟ (t′)

g( f (t′))
=
∫ f (t)

f0

d f
1

g( f )

which provides the solution in terms of two integrals.

Remark 4.4. Let us assume that we find the antiderivatives H(t)
with dH/dt = h(t) as well as A( f ) with dA/d f = 1/g( f ) and in-
verse I( f ), i. e. I(A( f )) = f . Then separation of variables provides
the explicit solution

H(t)− H(t0) = A( f (t))− A( f (t0))

⇒ f (t) = I
(

H(t)− H(t0) + A( f (t0))
)

�

We will see an example of this type when we resume the discus-
sion of Stokes drag in Section 4.3.2.

Remark 4.5. Often the integrals can be performed but the inverse
I( f ) can not be given in a closed form. If one can find the inverse of
H(t), i. e. a function J(H) with J(H(t)) = t then the solution can
still be given in the (rather unusual) explicit form

t = J
(

A( f )− A( f (t0)) + H(t0)
)

This is always possible for autonomous ODEs, i. e. in particular for
Equation (4.3.1a) with f (t) = ḣ(t). �
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100 4. Motion of Point Particles

Example 4.2: Separation of variable

The solution of the differential equation

dy(x)
dx

=
ey2(x)

1− 2 y2(x)
with y(0) = 0

obeys

x =
∫ x

0
dx′ =

∫ y(x)

0
dy (1 + 2 y2) ey2

= y(x) ey2(x)

One can not solve this equation to specify y(x), but it is easy
to plot y ey2

and swap the axes (see Figure 4.6).

0 2 4 6 8 10
x

0

0.5

1

1.5

y(
x
)

Figure 4.6: Solution of the ODE
discussed in Example 4.2.

Remark 4.6. When neither of the inverse functions are known, then
the solution can only be stated as an implicit equation

H(t)− A( f ) = H(t0)− A( f (t0)) = const

Hence, the solutions amount to the contour lines of the function
G(t, f ) = H(t)− A( f ) that is plotted to this end as function of the
two variables (t, f ).2 �

2 Plotting of contour lines is supported
by all scientific plot programs. In
Gnuplot it is facilitated via the “set im-
plicit” option for a 2d plot command
“plot”, or by using “set contour” to-
gether with a 3d plot called by “splot”.
In Sage there are the commands
‘plot_implicit()’ and ‘contour_plot()’.
In Python with Matplotlib there is ‘mat-
plotlib.pyplot.contour()’.

Example 4.3: Separation of variable

The solution of the differential equation

dy(x)
dx

=
y(x)

(
1 + cos x)

1 + y(x)
with y(0) = 1

obeys

x + sin x− 1 =
∫ x

0
dx′
(
1 + cos x′)

=
∫ y(x)

1
dy
(

1
y
+ 1
)
= ln y + y− 1

One can not solve this equation to specify y(x) or x(y).
Hence, the solution is given as implicit equation

⇔ G(x, y) = y + ln y− x− sin x = 0

whose solution is plotted in Figure 4.7.
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4
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)

Figure 4.7: Solution of the ODE
discussed in Example 4.3.

4.3.2 Solving the EOM for settling with Stokes drag

For Equation (4.3.1a) we will now derive the velocity v(t) = ḣ(t)
for an initial velocity v0 by applying Algorithm 4.2. In order to
simplify notations we perform the derivation in dimensionless
units, Equation (4.3.1b), and introducing the physical variables in
the end. Separation of variables provides that for a particle with
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4.3. Separation of variables — Settling with Stokes drag 101

initial velocity v̂0

τ =
∫ τ

0
dτ′ = −

∫ v̂(τ)

v̂0

dw
1

1 + w
= − ln

1 + v̂(τ)
1 + v̂0

⇔ v̂(τ) = −1 +
(
v̂0 + 1

)
e−τ (4.3.2)

The solutions are shown in Figure 4.8. Stokes drag entails that for
large times, τ � 1, the ball is sinking with the constant Stokes
velocity that takes the value −1 in our dimensionless units. Due to
−1 = v̂∞ = µv∞/m g this implies v∞ = −m g/µ in terms of the
physical units.
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Figure 4.8: Sketch of w(τ) as obtained
in Equation (4.3.2).

The position of the sphere can be obtained by integrating Equa-
tion (4.3.2) for v̂(τ) = dĥ/dτ with initial condition ĥ0,

ĥ(τ) = ĥ0 +
∫ τ

0
dτ

dh(τ)
dτ

= ĥ0 +
∫ τ

0
dτ
(
−1 +

(
v̂0 + 1

)
e−τ

)
= ĥ0 − τ +

(
v̂0 + 1

) (
1− e−τ

)
(4.3.3a)

or in terms of physical units

h(t) = h0 − v∞ (t− t0) +
m
µ

(v0 − v∞)
[
1− exp

(
− µ

m
(t− t0)

)]
(4.3.3b)

4.3.3 Relation to free fall

It is instructive to explore how the evolution with Stokes friction is
related to the free flight h f (t) = h0 + v0(t− t0)− g (t− t0)

2 obtained
in Section 4.2. This can most effectively be done by Taylor expan-
sion of Equation (4.3.3) for small τ, and subsequently expressing
the result in physical units.

Definition 4.4: Taylor expansion

The Taylor expansion to order N provides an approximation
of a function f (x) at a position x0. It is obtained by matching
the first N derivatives of the function and of a polynomial of
order N that represents the Taylor approximation (or Taylor
approximation),

f (x) '
N

∑
n=0

dn f (x)
dxn

∣∣∣∣
x=x0

(x− x0)
n

n!

Remark 4.7 (Leading-order Taylor expansion). The first-order, or
leading-order Taylor expansion is a linear function t(x) = t0 + t1x
with coefficients t0 = f (x0) and t1 = f ′(x0). Hence, we have
t(x0) = t0 = f (x0) and t′(x) = t1 = f ′(x0). This is a tangent
to the function f (x) that approximates f at x0 by having the same
functional value and slope. Examples for the sine function are
shown in Figure 4.9. �

Figure 4.9: The leading order and
second order Taylor approximations of
the sine function at the origin (green)
and at the position x0 = 2.5.

Remark 4.8 (Second-order Taylor expansion). The second-order
Taylor expansion is a quadratic function t(x) = t0 + t1x + t2x2 with

© Jürgen Vollmer — 2021-02-12 04:11:40+01:00



102 4. Motion of Point Particles

coefficients t0 = f (x0), t1 = f ′(x0), and t2 = f ′′(x0)/2. As for the
first-order approximation, we have t(x0) = t0 = f (x0) and t′(x) =
t1 = f ′(x0). Moreover, in this case we also have t′′(x) = 2 t2 =

f ′(x0). Examples for the sine function are shown in Figure 4.9. �

Example 4.4: Taylor approximations of the sine function

For sin x the even derivatives vanish at the origin, and the
odd 2n− 1 derivative amounts to −1n. Hence, the first few
terms of the Taylor expansion at the origin are given by

sin x ' x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · ·

At the origin the first and second order Taylor approxima-
tion agree, as shown by the green line in Figure 4.9.
For the sine-function the expansion at a position x0 is given
by
sin x ' sin(x0)

[
1− (x− x0)

2

2!
+

(x− x0)
4

4!
− (x− x0)

6

6!
+ · · ·

]

+ cos(x0)

[
(x− x0)−

(x− x0)
3

3!
+

(x− x0)
5

5!
− · · ·

]
The red lines in Figure 4.9 show the first-order (thin red
line) and the second order (thick red line) approximation for
x0 = 2.5. The second order approximation remains closer to
the sine-function for a bit longer than the linear first-order
approximation.

Example 4.5: Taylor approximations of the exponential
function

The derivatives of the exponential function f (x) = exp(ax)
amount to f (n)(x) = an f (x) such that its expansion at a posi-
tion x0 is given by

ea x ' ea x0

[
1 + a (x− x0) +

a2 (x− x0)
2

2
+ · · ·

· · ·+ an (x− x0)
n

n!
+ · · ·

]

For x0 = 0 this simplifies to

ea x =
∞

∑
n=0

(a x)n

n!
' 1 + a x +

(a x)2

2
+ · · ·

Based on the Taylor expansion of the exponential function e−τ =

∑∞
n=0(−τ)n/n! we find for Equation (4.3.3)

ĥ(τ) = ĥ0 − τ +
(
v̂0 + 1

) (
τ − τ2

2
+

τ3

6
− · · ·

)
= ĥ0 + v̂0 τ −

(
v̂0 + 1

) τ2

2

(
1− τ

3
+ · · ·

)
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The solution with physical units is obtained by substituting ĥ =

µ2 h/m2 g, ĥ0 = µ2 h0/m2 g, τ = µ (t− t0)/m, and v̂0 = µ ḣ(t0)/m g.
Hence,

h(t) = h0 + v0 (t− t0)−
µ

m

(
v0 +

m g
µ

)
(t− t0)

2

2

(
1− µ (t− t0)

3 m
+ · · ·

)
= h0 + v0 (t− t0)−

g
2
(t− t0)

2
(

1− v0

v∞

) (
1− µ (t− t0)

3 m
+ · · ·

)
This implies that Stokes friction provides a small corrections to
the free flight if the initial velocity is small as compared to the
asymptotic velocity of free flight, |v0| � v∞ = m g/µ. Further,
one must restrict the attention to times that are small as compared
to the time scale m/µ where the asymptotic velocity is reached.
Equation (4.3.2) implies that this amounts to situations where the
velocity |v(t)| is small as compared to the Stokes settling speed v∞.
This is discussed now for two concrete cases:

Example 4.6: Stokes friction for a steel ball

A steel ball with a diameter of 1 cm has a mass of about

m =
4π

3
2× 103 kg/m3 1× 10−6 m3

8
' 1× 10−3 kg

In air it will reach a terminal velocity of about

vair =
m g
µair

=
3 m g

2 ηair R
=

3× 1× 10−3 kg 10 m/s2

2× 2× 10−5 kg/m s 1× 10−2 m

' 7.5× 104 m/s

Saturation to this velocity occurs on time scales

tair =
m

µair
=

m
ηair R

=
1× 10−3 kg

2× 10−5 kg/m s 1× 10−2 m
= 5× 103 s

and this time the bullet will have dropped by a distance
g t2

c /2 = 2.5× 107 m which is much more than the thickness
of the atmosphere. We conclude that Stokes friction is not
relevant for the motion of a bullet in air.
Even in water, where the viscosity is larger by a factor of 50,
we will have

vwater =
3 m g

2 ηwater R
=

3× 1× 10−3 kg 10 m/s2

2× 1× 10−3 kg/m s 1× 10−2 m

' 1.5× 103 m/s

Saturation to this velocity occurs on time scales

twater =
m

ηwater R
=

1× 10−3 kg
1× 10−3 kg/m s 1× 10−2 m

= 100 s

and this time the bullet will have dropped by a distance
g t2

water/2 = 5× 104 m which is deeper than the deepest
point in our Oceans.3

3 In Section 4.4 we will see what goes
wrong here.
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Example 4.7: Stokes friction for sperms

Sperms are cells equipped with cilia that allow them to
swim towards the egg for fertilization. They have a char-
acteristic size L of a few micrometers and they swim in
an environment that is approximated here as water. Their
mass is of the order of msperms = ρwater L3. In this case their
asymptotic speed is reached at a time scale

tspermium =
mspermium

µspermium
=

ρwater L2

ηwater

=
1× 103 kg/m3 1× 10−12 m2

1× 10−3 kg/m s
= 1× 10−6 s

Stokes friction plays a major role for their swimming. See
Purcell (1977) for more details.

4.3.4 Self Test

Problem 4.4. Solving ODEs by separation of variables

Determine the solutions of the following ODEs

a)
dy
dx

=
cos2 y
sin2 x

such that y(π/4) = 0

b)
dy
dx

=
3 x2 y

2y2 + 1
such that y(0) = 1

c)
dy
dx

= − 1 + y3

x y2 (1 + x2)
such that y(1) = 2

Problem 4.5. Taylor approximations of the Cosine function

Find the Taylor approximation for the cosine function

a) analogously to the discussion in Example 4.4, and

b) based on Euler’s equation eix = cos x + i sin x.
Hint: Insert a = i into the expansion provided in Example 4.5,
and collect real and imaginary parts.

Problem 4.6. Taylor series

Find the Taylor approximation for the sine function close to

a) x = π/4 b) x = π/2 c) x = 3 π/2

Hint: Make use of the result of Problem 4.5 and the symmetries
of trigonometric functions.
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Problem 4.7. Stopping distance of a yacht

A yacht of mass 750 kg is sailing on the sailing into the harbor
with a speed of 6 m/s. At this moment it is experiencing a friction
force of 900 N. At time t = 0 the skipper switches off the motor
such that only the friction is acting on the boat. Let the water resis-
tance be proportional to the speed.

a) How long will it take till the yacht has come to rest?

b) How long will if take till the speed has been reduced to 1.5 m/s
and which distance has the yacht traversed till that time?

Problem 4.8. Free fall with viscous friction

In Equation (4.3.3) we derived the time evolution of the height h(t)
of a ball that is falling a gravitational field and subjected to Stokes
drag.

a) Make a plot of ĥ(τ) as function of τ, where you compare the
evolution of trajectories that start with different initial velocity v̂0

from the same height ĥ0 = 0.

b) Make a plot of h(t) as function of t, where you compare the
evolution of trajectories that start with the same initial velocity v0

from the same height h0, but are subjected to a different drag µ

(for instance because they have different radius).

4.4 Worked example: Free flight with turbulent friction

In Example 4.6 we reached the puzzling conclusion that — for
all physically relevant parameters — Stokes friction plays no role
for the motion of a steel ball in air and water. On the other hand,
we know from experience that friction arises to the very least for
large velocities, like for gun shots. This apparent contradiction
is resolved by observing that the drag is not due to Stokes drag.
Rather for most settings in our daily live friction arises because the
motion of the fluid around the considered object goes turbulent, as
anticipated in Problem 3.3. A ball of mass m, radius R, and mass
density ρball = 3m/4π R3 that is moving with speed v through a
fluid of mass density ρfluid will experience a turbulent drag force of
modulus

FD = m
ρfluid CD
8 ρball R

v2 = m κ v2 (4.4.1)

Here, CD is a dimensionless number that typically takes values be-
tween 0.5 and 1. A very beautiful description of the physics of this
equation has been provided in an instruction video of the NASA
(click here to check it out).

To address motion affected by turbulent drag we measure time
in units of (κg)−1/2 and velocity in units of (g/κ)1/2. The dimen-
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106 4. Motion of Point Particles

sionless velocity v̂(τ) will then obey the equation of motion

d
dτ

ĥ(τ) = v̂ (4.4.2a)

d
dτ

v̂(τ) = −1− v̂2(τ) sign
(
v̂(τ)

)
(4.4.2b)

-2 -1 0 1 2
ĥ

-2

-1

0

1

2
v̂

Figure 4.10: Dimensionless phase-
space trajectories of a particle sub-
jected to a constant acceleration g and
turbulent drag.

The requirement that the friction force always acts in the direction
opposing the motion has been incorporated here by the sign func-
tion

sign(x) =


−1 for x < 0

0 for x = 0

1 for x > 0

The phase-space flow for this EOM is shown in Figure 4.10. It
looks similar to the one for Stokes drag, with the important differ-
ence that the change of velocity grows much faster for large |v̂|. For
v̂ > 0 this gives even rise to an inflection point where the curvature
of the trajectories indicated by blue lines crosses from convex to
concave.

The equation for the velocity can again be solved by separation
of variables,

τ =
∫ τ

0
dτ′ = −

∫ v̂(τ)

v̂0

dw
1

1 + w2 sign
(
w
)

In order to deal with the sign-function, we deal with the integral
separately for four types of initial conditions in either of the inter-
vals {(−∞,−1), [−1,−1], (−1, 0], [0, ∞)}.

First we consider the initial condition where v̂0 = −1. In that
case d

dτ w(τ) = 0 such that

v̂(τ) = −1 for v̂0 = −1 (4.4.3a)

Next we consider initial conditions where v̂0 < 0, but v̂0 6= 0. In
this case

τ =
∫ v(τ)

v̂0

dw
1− w2 =

1
2

ln
(

1− v̂(τ)
1 + v̂(τ)

· 1 + v̂0

1− v̂0

)

⇔ v̂(τ) =

 −tanh
(
τ − atanh v̂0

)
for − 1 < v̂0 ≤ 0

−cotanh
(
τ − acotanh v̂0

)
for − 1 > v̂0

(4.4.3b)

Finally, we consider the case v̂0 > 0. We expect in that case that
the particle moves up, v̂(τ) > 0, till some time τc, and then it start
falling due to the action of gravity. However, in that case its velocity
heads down with −1 < v̂0 ≤ 0 such that it must follow the solution
v̂(τ) = −tanh(τ − τc) obtained in Equation (4.4.3b). For τ < τc we
find

τ = −
∫ v̂(τ)

v̂0

dw
1

1 + w2 = − arctan(v̂(τ)) + arctan(v̂0)

⇔ v̂(τ) = − tan
(
τ − arctan(v̂0)

)
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such that

v̂(τ) =

{
− tan

(
τ − τc

)
for v̂0 > 0∧ τ < τc = arctan(v̂0)

− tanh
(
τ − τc

)
for v̂0 > 0∧ τ ≥ τc = arctan(v̂0)

(4.4.3c)

-2 0 2
τ

-6

-3

0

3

6

v̂

Figure 4.11: Solutions Equation (4.4.3)
of Equation (4.4.2a).

A solution Equation (4.4.3) that passes through the origin and an-
other one through (0,−2) are shown in Figure 4.11.

4.4.1 Range of applicability

Turbulent friction applies whenever

µ |v| . m κ v2 ⇔ |v| & vc =
µ

mκ
' ηfluid

ρfluid R

For the 1 cm steel ball considered in Example 4.6 the cross-over
velocity vc yields

vc =


2× 10−5 kg/m s

1 kg/m3×1× 10−2 m
= 2 mm/s for air

1× 10−3 kg/m s
1× 103 kg/m3×1× 10−2 m

= 0.1 mm/s for water

Moreover, the characteristic time for turbulent drag is

tc = (κg)−1/2 =

√
ρball R
ρfluid g

=


√

2× 103 kg/m3×1× 10−2 m
1 kg/m3×10 m/s2 ' 1.4 s for air√

2× 103 kg/m3×1× 10−2 m
1× 103 kg/m3×10 m/s2 ' 0.04 s for water

As a consequence, one may safely assume that Stokes friction is
always negligible for the steel ball. Either friction may be neglected
or turbulent friction must be considered.

4.4.2 Self Test

Problem 4.9. Turbulent friction

Assume that the Earth atmosphere gives rise to the same turbu-
lent drag, irrespective of height.

a) What is the maximum time after which a steel ball that is shot
up with vertical velocity v0 will hit the ground?

b) Does it make a noticeable difference when you require that v0

must not surpass the speed of light c = 3× 108 m/s?

Problem 4.10. Free fall with turbulent friction

In Equation (4.4.3) we derived the velocity of a ball that is accel-
erated by gravity and slowed down by turbulent drag.

a) How will the height ĥ of the trajectories evolve for large times τ?
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b) Determine the full time dependence of the dimensionless height
ĥ by solving the ODE d

dτ ĥ = v̂.
Hint: Observe that

d
dτ

ln cos τ = − tan τ ,
d

dτ
ln cosh τ = tanh τ ,

d
dτ

ln sinh τ = cotanhτ

c) Make a plot of ĥ(τ) as function of τ, where you compare the
evolution of trajectories that start with different initial velocity v̂0

from the same height ĥ0 = 0.

d) Insert the definitions of the dimensionless units in order to find
the solutions for the velocity v(t) and height h(t) in physical
units.

Problem 4.11. Stopping length of a yacht

For moderate speeds4 a yacht experiences a turbulent drag force4 Recall Problem 1.6 for a discussion of
large speeds. of the form given in Equation (4.4.1). In the following we assume

that κ−1 ' 10 m.

a) The sails of the yacht are shortened at a speed of v0 = 10 m s−1

and some position x0. Subsequently, it is running straight ahead.
Determine the position x(t) of the yacht.

b) You will find that the yacht never comes to rest. Is that in line
with your physical intuition? What might be the origin of this
finding?

c) What would happen when the yacht is rather subjected to Stokes
drag, Equation (4.3.1a), with a friction coefficient of the order of
µ ' R η = 3 m 1× 10−3 kg/m s = 3× 10−3 kg/s.

d) How does the result of c) refer to that of a). Does the comparison
help to solve the issue raised in b)?

4.5 Linear ODEs — Particle suspended from a spring

There are two forces acting on a particle is suspended from a
spring: the gravitational force −m g and the spring force −k z(t)
where z(t) measures the displacement of the spring from its rest
position. Hence, the EOM of the particle takes the form

m z̈(t) = −m g− k z(t) (4.5.1)

This equation can neither be integrated directly, because its right
hand side depends on z(t), nor can it be solved by separation of
variables, because its right hand side depends on z(t) rather than
only on ż(t). It falls into the very important class of linear ODEs.
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Definition 4.5: Linear ODEs

An ODE is called a linear ODE when z(t) and its derivatives
only appear as linear terms in the ODE. Hence, an Nth order
linear ODEs for z(t) takes the general form

I(t) = z(N)(t) + cN−1(t) z(N−1)(t) + · · ·+ c0(t) z(t)

The functions I(t), cν(t), ν = 0 · · ·N − 1, are called the co-
efficients of the linear ODE. When they do not depend on
time we speak of a linear ODE with constant coefficients. In
particular, I(t) is called inhomogeneity; when it vanishes the
ODE is called homogeneous.

Example 4.8: Particle suspended from a spring

Equation (4.5.1) is an inhomogeneous second-order linear
ODE with the constant coefficients f0 = k, f1 = 0, and
inhomogeneity I = m g.

Remark 4.9. An Nth-order linear ODE where the coefficient in front
of the Nth derivative takes the value cN 6= 1 can be stated in the
form given in Definition 4.5 by division with cN . �

Example 4.9: Damped harmonic oscillator

The harmonic oscillator with damping γ and spring con-
stant k

m ẍ(t) = −m γ ẋ(t)− k x(t)

is described by a homogeneous second order, linear ODE
with the constant coefficients k1 = γ and k0 = k/m.

4.5.1 Solving linear ODEs with constant coefficients

Linear ODEs with constant coefficients are solved as follows

Algorithm 4.3: Linear ODEs with constant coefficients

An Nth-order linear ODE with constant coefficients,

I =
N

∑
ν=0

cν f (ν)(t)

can be recast into a homogeneous ODE by considering
h(t) = f (t) − I/c0, which is a solution of the corresponding
homogeneous, linear ODE

0 =
N

∑
ν=0

cν h(ν)(t)
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Its solutions can be written as

h(t) =
N

∑
k=1

Ak eλk t

where the numbers λk, k = 1 · · ·N are the N distinct roots of
the characteristic polynomial

0 =
N

∑
ν=0

cν λν

and the amplitudes Ak, k = 1 . . . N must be chosen such that
f (t) = I + c0 h(t) obeys the initial conditions

f (t0) =
I

c0
+

N

∑
k=1

Ak eλk t0

f (1)(t0) =
N

∑
k=1

Ak λk eλk t0

... =
...

f (N−1)(t0) =
N

∑
k=1

Ak λN−1
k eλk t0

The idea underlying this algorithm is founded on three insights:

• the solutions of a homogeneous linear ODE form a vector space,

• exp(λt) is a solution of the ODE iff it is a root of the characteris-
tic polynomial, and

• the functions {exp(λit), i = 1, . . . , N} form a basis of the vector
space.

The proof will be provided in Problem 4.15.

Remark 4.10. When the polynomial only has M < N distinct roots
the set of functions {exp(λi t), i = 1, . . . , M} is missing N − M
elements to form a basis for the space of solutions. The set is aug-
mented then by functions of the form t exp(κ t) for double roots,
t2 exp(κ t) for triple roots, etc. In this course we only deal with sec-
ond order ODEs, where at most double roots arise. The solution
strategy for that case will be discussed in Section 4.5.3. �

4.5.2 Solving the ODE for the mass suspended from a spring

For Equation (4.5.1) this implies that h(t) = z(t) + mg/k with

0 = ḧ(t) +
k
m

h(t) (4.5.2)

such that we obtain

λ± = ±
√

k
m

= ±ω as solution of 0 = λ2 +
k
m
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Consequently, the motion of the spring is described by

z(t) = −mg
k

+ A+ eω (t−t0) + A− e−ω (t−t0)

This is a real-valued function if and only if A+ and A− are canon-
ically conjugated complex numbers, such that we can write A± =

A exp(±i ϕ)/2 with A ∈ R. As a consequence of cos x = (eix +

e−ix)/2 we then obtain

z(t) = −mg
k

+ A cos
(

ϕ + ω (t− t0)
)

(4.5.3a)

where A and ϕ must be fixed based on the initial conditions

z(t0) = −
mg
k

+ A cos(ϕ)

ż(t0) = −ω A sin(ϕ)

or

A2 =
(

z(t0) +
mg
k

)2
+

ż2(t0)

ω2 and ϕ = arcsin
(

ż(t0)

ω A

)
(4.5.3b)

4.5.3 Solution for the damped harmonic oscillator

The damped harmonic oscillator is described by the linear EOM

0 = ẍ(t) + γ ẋ(t) +
k
m

x(t) with γ, k, m ∈ R+ . (4.5.4)

It characteristic polynomial

0 = λ2 + γ λ +
k
m

has the solutions

λ± = −1
2

(
γ±

√
γ2 − 4 k/m

)
Here λ+ and λ− can either be both real, a pair of complex conju-
gated numbers, or we have to deal with the case γ2 = 4 k/m where
there only is a single root. We treat the cases one after the other.
1. Two real roots

In this case γ2 < 4 k/m such that λ± ∈ R−. The motion of the
oscillator is described by

x(t) = A+ eλ+ (t−t0) + A− eλ− (t−t0)

which is a real-valued function for amplitudes A± ∈ R. The so-
lution for the initial conditions x(t0) = x0 and ẋ(t0) = v0 is then
found by solving the equations

x0 = A+ + A−
v0 = A+ λ+ + A− λ−

}
⇔


A+ = m (x0 λ− − v0)/

√
γ2 − 4 k/m

A− = −m (x0 λ+ − v0)/
√

γ2 − 4 k/m
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Problem 4.13 instructs the reader to plot these solutions for differ-
ent combinations of A+ and A−.

2. Two complex roots
This discussion is analogous to the one provided in Section 4.5.2.

One obtains

x(t) = A e−γ (t−t0)/2 cos
(

ϕ + ωγ (t− t0)
)

(4.5.5)

where A and ϕ must be fixed based on the initial conditions

x(t0) = A cos(ϕ)

ẋ(t0) = −ωγ A sin(ϕ)

or A2 = z2(t0) +
ż2(t0)

ω2
γ

and ϕ = arcsin
(

ż(t0)

ωγ A

)
In Problem 4.14 the reader is advised to fill in the details of this
derivation.

3. A single double root
For γ2 = 4 k/m the characteristic polynomial has a single

root λ = −γ/2 such that we only find a single solution exp(λt)
of the ODE. The ODE is solved then as follows:

Algorithm 4.4: Linear 2nd order ODEs: the degenerate case

A 2nd-order linear homogeneous ODE whose characteristic
polynomial has a double root at λ = c takes the form

0 = ḧ(t)− 2 c ḣ(t) + c2 h(t) with c ∈ C

This ODE has two independent solutions exp(λ t) and
t exp(λ t) such that its general solutions can be written
as

h(t) = (A + B (t− t0)) ec (t−t0)

Here the amplitudes A and B must be chosen such that the
solution obeys the initial condition

h(t0) = h0 = A

ḣ(t0) = v0 = c A + B

}
⇔

{
A = h0

B = v0 − c h0

Remark 4.11. The function t exp(ct) is a solution of the ODE iff the
characteristic polynomial has a double root:

Proof.

0 =
d2

dt2

(
t ec t)+ a

d
dt
(
t ec t)+ b

(
t ec t)

= ec t
[
(2 c + a) +

(
c2 + a c + b

)
t
]

⇒ (2 c + a) = 0 ∧
(
c2 + a c + b

)
= 0

The first equations holds iff a = −2 c and the second condition
implies then that b = c2.
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For the damped harmonic oscillator we have c = −γ/2 such that

x(t) =
[

x0 +
(

v0 +
γ x0

2

)
(t− t0)

]
e−γ t/2

is the solution with x(t0) = x0 and ẋ(t0) = v0.

4.5.4 Self Test

Problem 4.12. Alternative solution for the mass suspended from a
spring

In Equation (4.5.3) we provided the solution of the EOM (4.5.2)
of a mass suspended from a spring. Occasionally one also finds the
solution given in the form

z(t) = −mg
k

+ A1 cos
(
ω (t− t0)

)
+ A2 cos

(
ω (t− t0)

)
What is the relation between these two solutions? How does one
find one from the other?

Hint: Start from Equation (4.5.3) and use trigonometric relations.

Problem 4.13. Overdamped solutions of the damped harmonic
oscillator: time dependence and in phase-space portrait

In this exercise we discuss the form of the overdamped solutions
of the damped harmonic oscillator.

a) Consider first ICs where A+ and A− are positive. Verify that
there is a time tc where the two contributions to x(t) are equal.
Plot x(t) exp(−λ+) (tc − t0)/A+ as function of t− t0 − tc, choos-
ing a log-scale for the ordinate axis. You should observe linear
behavior for large negative and positive values on the mantissa
t− t0 − tc. What are the slopes of these lines? What is the value
where the function intersects with t− t0 − tc = 0?

b) Consider first ICs where A+ > 0 > A− and plot x(t) as function
of t − t0. Add the functions that describe the asymptotics of
x(t) for very small and for large times. You will find that this
function has a root and a maximum. Find the time where this
happens, and the function value at the maximum.

c) Sketch the motion in phase space! Make use to this end of the
special points that you evaluated in b).

Problem 4.14. Damped oscillations of the damped harmonic
oscillator: derivation and phase-space portrait

For γ2 > 4 k/m the damped harmonic oscillator shows damped
oscillations as given in Equation (4.5.5).

a) Why should the amplitudes A± of the two solutions be complex
conjugate?
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b) Choose the ansatz A± = A exp(±iϕ)/2 and derive the result
provided in Equation (4.5.5).

c) Note that there is no explicit γ dependence of IC.
Why does it drop out?

d) How does this motion look like in phase space?

Problem 4.15. The solutions of a homogeneous linear ODE form
a vector space

The set of solutions SN of a homogeneous Nth-order homoge-
neous linear ODE,

0 =
N

∑
ν=0

cν(t) f (ν)(t) , (4.5.6)

forms a vector space (cf. the Definition 2.9). Proof to this this end
that

a) (S,+) is a commutative group. The non-trivial statement that
must be checked to this end is that

∀s1(t), s2(t) ∈ S : s1(t) + s2(t) ∈ S

b) Verify that

∀α ∈ C , s(t) ∈ S : α s(t) ∈ S

and show that the other properties of a vector space follow triv-
ially from the properties of real functions.

c) Show that the vector space SN has dimension N.

d) Show that the functions exp(λt) are a solution of Equation (4.5.6)
iff λ is a root of the characteristic polynomial.

e) In Algorithm 4.3 we wrote the solutions as h(t) = ∑k Ak exp(λk t).
Show that this can be interpreted as a representation of the vec-
tor h(t) as a linear combination with coordinates Ak with respect
to a basis {exp(λk t), k = 1, . . . , N}.
Why is it important to this end that the characteristic polynomial
has distinct roots?

f) What about inhomogeneous, linear ODEs? Do their solutions
form a vector space, too? If yes: proof it! If no: provide coun-
terexamples for all properties that are violated.

add: variation of constants: fish pond, bells
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4.6 Employing constants of motion — the center of mass (CM)
inertial frame

One of the most important objectives of physics is the description
of the motion of interacting particles. As a first step in this direction
we discuss how to employ constants of motion to determine the
motion of two point particles that interact with a conservative force
depending only on the scalar distance between the particles, the
interaction most commonly encountered in physical systems. The
impact of spatial extension will be the topic of Chapter 5.

Definition 4.6: Point Particles

A point particle is an idealization of a physical object where
its mass is considered to be concentrated in a single point
in space x. Point particles can not collide. However, their
motion can be subjected to forces that depend on their posi-
tion x.

Example 4.10: Kepler Problem

The Kepler problem addresses the motion of a planet of
mass m that orbits around a sun of mass M. The sun and
the planet are so far apart that it is justified to consider their
masses as concentrated in the positions qP and qS, and to
approximate their interaction as arising from the potential

Φ(R) =
mMG

R

where G = 6.672 59× 10−11 m3kg−1s−2 is the constant of
gravitation and R = |qP − qS| is the distance between
planet and sun. Planet and sun are considered as point
particles.

Remark 4.12. The approximation of point particles has been intro-
duced by Newton upon providing the first mathematical model
for the Kepler problem. Subsequently, it has extremely successfully
been applied in celestial mechanics. Celestial Mechanics addresses
the problem of discussing the motion of all planets and their moons
based on pair interactions deriving from the potential provided
in Example 4.10. How to the tiny interactions between the planets
impact their motion over long times? Is our solar system stable, or
will–at some time in the far future–some planet or moon borrow
energy from the other bodies and escape into outer space? �

Remark 4.13. A straightforward application of the Kepler problem is
the discussion of the motion of the Moon around Earth where the
predictions have been tested extremely accurately based on satellite
data and the return time of light signals send to Moon and reflected
by mirrors on its surface that have been left there by space missions.
The measurements clearly reveal the limitations of the model: Most
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116 4. Motion of Point Particles

noticeably, the Moon gives rise to tidal forces on Earth that induce
a tiny amount of dissipation. Even in celestial mechanics there are
small dissipative corrections to conservative interaction. �add references and exer-

cises: Earth/Moon dissi-
pation In Section 3.4 we learned that conservation laws impose con-

straints on the motion of bodies that can be used to simplify the
description of their motion. We consider the motion of N particles
of masses mi, i = 1, . . . , N at the positions qi, i = 1, . . . , N that are
subjected to forces Fij acting between every pair (i, j) of particles.
There is not self-interaction Fii = 0, and the forces obey Newtons
3rd law, Fij = −Fji. Moreover, they are conservative, and depend
only on the distance of the particles, Fij = ∇Φij

(
|qi − qj|

)
. Here the

indices ij indicate that the force may depend on additional scalar
parameters such as the mass or charge of the particles.

4.6.1 Center of mass motion and relative motion

We first determine the evolution of the position of the center of
mass Q of the system

Q =
1
M ∑

i
mi qi with total mass M = ∑

i
mi (4.6.1)

Its evolution is not subjected to external forces

Q̈ =
1
M ∑

i
mi q̈i =

1
M ∑

i
∑

j
Fij = 0 (4.6.2)

due to Newtons 3rd law.
Hence, we find for an initial position Q0 and initial velocity V0 at

an initial time t0 that

Q(t) = Q0 + V0 (t− t0) (4.6.3)

Now we introduce the coordinates relative to the center of mass
ri = qi −Q and we observe that

mi r̈i = mi q̈i −mi Q̈ = mi q̈i

= ∑
j

Fij = −∇qi Φij
(
|qi − qj|

)
= −

qi − qj

|qi − qj|
Φ′ij
(
|qi − qj|

)
= −

ri − rj

|ri − rj|
Φ′ij
(
|ri − rj|

)
(4.6.4)

where Φ′ij(x) denotes the derivative of Φij(x) with respect to its
scalar argument x.

Hence, the EOMs for Q and for the positions ri relative to the
center of mass can be solved separately of each other, and the EOM
for the CM has a trivial solution, Equation (4.6.3). We may therefore
always address the motion of the particles in a setting where their
center of mass is fixed at the origin of the coordinate system.
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4.6.2 Angular momentum in celestial mechanics

The total angular momentum is conserved for systems where all
forces are due to pairwise interactions between particles pairs of
particles ij that obey Newtons 3rd law Fij = −Fji with forces acting
along the line connecting particle i and j, i. e. in particular for the
forces of the form given in Equation (4.6.4). After all,

L = ∑
i

qi ×mi q̇i = ∑
i

(
Q + ri

)
×mi

(
Q̇ + ṙi

)
= ∑

i

(
mi Q×Q + Q×mi ṙi + mi ri × Q̇ + ri ×mi ṙi

)
= MQ× Q̇ + ∑

i
ri ×mi ṙi

where the terms that contain only a single factor of ri or ṙi vanish
because ∑i mi ri = ∑i mi

(
qi −Q

)
= Q−Q = 0. Now we have

M Q̈ = ∑
i

mi q̈i = ∑
i

∑
j

Fij = ∑
i<j

Fij + Fji = 0

such that we obtain for the time derivative

d
dt

L = M Q× Q̈ + ∑
i

ri ×mi r̈i = Q×M Q̈ + ∑
i

ri ×∑
j

Fij

=
1
2

(
∑
ij

ri × Fij −∑
ij

ri × Fji

)

=
1
2

(
∑
ij

ri × Fij −∑
ij

rj × Fij

)

=
1
2 ∑

ij

(
ri − rj

)
× Fij = 0

Upon moving to the second line we used that Q̈ = 0, and the
antisymmetry of the forces Fij = −Fji. Moving to the third line we
swapped the names of the summation indices i and j. In the last
line, we collected terms and used that Fij is parallel to ri − rj. We
summarize this important finding the following

Theorem 4.1: Angular momentum conservation

The relative angular momentum is conserved for systems
with pairwise interaction forces acting parallel to the dis-
tance between particles. The total angular momentum is
conserved when external forces vanish or when they give
rise to a center-of-mass forces MQ̈ aligned parallel to Q.

Remark 4.14. An example for the latter case is a harmonic force
Fi = c mi qi. The proof is provided as Problem 4.19c).

Conservation of the relative angular momentum implies impor-
tant constraints on the motion. In celestial mechanics this is vividly
displayed in the shape of galaxies, solar systems and planetary ring
structures. All these systems emerge by the gravitational collapse
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118 4. Motion of Point Particles

of large stellar dust clouds. Let cloud be spherically symmetric
and uniform initially, consisting of a huge number of small dust
particles. By statistical fluctuations the cloud will have an angular
momentum, of the order of M D2 ω where M is the total mass of
the cloud, D is the diameter of the cloud and ω is a tiny number
with the unit of a rotation frequency. For a solar system the cloud
will collapse until virtually all of its mass is concentrated eventually
in the sun in its very center. This involves a change of the diameter
of the region holding the mass of about 104. For conserved angular
momentum the frequency ω is growing by a factor of 108. In Prob-
lem 4.17 you will show that the initial angular momentum can not
be coped by a spin of the central star. The competing constraints
of the tendency of gravity to lump together the matter in the cloud
and the need to conserve angular moment eventually form a solar
system with a central very massive star or double star that is sur-
rounded by planets moving around the star at a distance large as
compare to the size of the star.

4.6.3 Self Test

Problem 4.16. The CM of the solar system and the position of the
sun

Verify that the center of mass of Sun can lie more than a sun-
diameter away from the center of mass of the solar system.

Hint: Relevant parameters are provided in Table A.1.

Problem 4.17. Angular momentum of the solar system

The solar system has a total angular momentum of about LSoSy =

3.3212× 1045 kgm2s−1.

a) Assume that the mass was initially distributed in a ball of a
radius of about 40 AU. Estimate the corresponding effective
frequency ω.

b) Assume that the mass in concentrated in two point particles
that circulate around each other at a distance of about the sun
diameter. Compare their rotation speed to the speed of light.

c) Verify that 98% of LSoSy is accounted for by the orbital angular
momenta of the planets.

d) How does this imply the disk-like structure of our solar system?

e) Speculate about other effects that contribute to the remaining 2%
of the total angular momentum.Figure 4.12: Distances adopted for

the estimate of the forces inducing
tidal forces Fo and Fi : The distance d
between Earth and Moon, the Earth
radius R, and the distance ε between
the center of mass of Earth and the
joint center of mass of Earth and Moon
(indicated by a cross ×). Tides emerge
at the side facing the Moon (inwards)
and opposing the Moon (outwards).

Problem 4.18. Tidal forces

Gravitational forces of Moon and centripetal forces due to the
rotation with frequency Ω = 1/month of Earth around the common
center of mass of Earth and Moon (cross in Figure 4.12) give rise to
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4.7. Worked example: the Kepler problem 119

tides. On the outwards facing side the resulting acceleration on a
mass element on the Earth surface can be estimated as

a0 = g− (ε + R)Ω2 +
G MM

(d + R)2

where MM is the Moon mass.

a) Assume that Earth and Moon evolve on circular paths and em-
ploy the force balance for a stable motion in order to show that

a0 = g− R Ω2
[

1− MM
ME + MM

R
d

(1 +O(R/d))
]

and determine the higher-order correction terms that are indi-
cated here as (1 +O(R/d)).

b) Determine also the change of the acceleration on the side to-
wards the moon. How does it differ from ai?

c) Determine the relative change of the gravitational acceleration
due to the presence of moon, and the difference between ai and
ao.

d) So far we only discussed the component of the acceleration along
a line connecting Earth and Moon at the innermost and outer-
most points of the Earth surface. What about the other compo-
nents of the gravitational acceleration:
when considering tides at mid latitudes?
at positions half-way between the two points (i. e. top and bot-
tom sides of Earth in the figure).

e) What is the impact of the Earth rotation? How does it break the
symmetry? What does this imply about the relative strength of
the two tidal waves every day?

Problem 4.19. Center of mass and constants of motion

How do the expressions for the constants of motion discussed in
Section 3.4 behave when separating the center of mass motion and
the relative motion, qi(t) = Q(t) + ri(t).

a) Show that the kinetic energy T = ∑i miq̇2
i takes the new value

T =
M
2

Q̇2 + ∑
i

mi
2

ṙ2
i

b) Assume that the system is moving in a gravitational field, and
that the other forces on the particle arise from pair-wise conser-
vative interactions as discussed Equation (4.6.4). Show that the
total energy can be written as

E =
M
2

Q̇2 −Mg ·Q + ∑
i

mi
2

ṙ2
i + ∑

i<j
Φij
(
|ri − rj|

)
c) Show that the total angular momentum is conserved for a sys-

tems with the particles interactions given in Equation (4.6.4) and
an additional external force

Fi = c mi qi

acting on each particle i.
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120 4. Motion of Point Particles

4.7 Worked example: the Kepler problem

The first problem tackled in theoretical mechanics was the motion
of two point particles with gravitational interaction. It is formulated
in terms of three laws. The second law holds for all central forces,
the 3rd law is a consequence of mechanical similarity, and the 1st
law is based on a solution of the EOM. We first explore the gen-
eral arguments, and then illustrate their application to the Kepler
problem.

4.7.1 Conservation of angular momentum and Kepler’s 2nd Law

Angular momentum conservation also has important consequences
for the motion of two particles. The center of mass of the two parti-
cles takes the form

Q =
m1

m1 + m2
(Q + r1) +

m2

m1 + m2
(Q + r2) = Q +

m1 r1 + m2 r2

m1 + m2

such that

m1 r1 + m2 r2 = 0 and in particular p = m2 ṙ2 = −m1 ṙ1 .

This has important consequences for the evolution of the conserved
angular momentum of the relative motion

L = (r2 − r1)× p .

In view of

p = m2 ṙ2 = m2 q̇2 −m2 Q̇ =
m1m2

m1 + m2

d
dt
(
q2 − q1)

= µ Ṙ with µ =
m1m2

m1 + m2
and R = q2 − q1

the angular momentum of the relative motion can be expressed in
terms of the vector R connecting the two masses

L = R× µṘ

It takes the then form the angular momentum of a single particle
with mass µ, and this also applies for the relation between the
acceleration and the force

µR̈ = m2 r̈2 = F .

Moreover,

d
dt

L =
d
dt

R× µṘ = R× F = 0

for forces F acting along the line R connecting the two particles.
The conservation of angular momentum has two important

consequences:
1. The direction of L is fixed. As a consequence the positions and

the velocities of the planet and the sun always lie in a plane that is
orthogonal to L, and the force µR̈ also lies in the plane because the
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4.8. Mechanical similarity — Kepler’s 3rd Law 121

force is parallel to R. Therefore, the motion is constrained to the
plane for all times.

2. The absolute value of L is fixed, and this has a geometric
interpretation that was first formulated in the context of planetary
motion

Theorem 4.2: Kepler’s second law

A segment joining the two particles, planet and sun in the
Kepler problem, sweeps out equal areas ∆a in equal time
intervals ∆t.

Figure 4.13: Area passed over by the
trajectory.

Proof. For the time interval [t0, t1] with length ∆t = t1 − t0 one has

|L| ∆t =
∫ t1

t0

dt |R× (m2v2)| = m2

∫ t1

t0

dt |R| |v2| sin α

where α is the angle between R and v2. Further, ds = v2 dt is the
path length that the trajectory traverses in a time unit dt, such that
da = dt |R| |v2| sin α/2 is the area swiped over in dt (see the sketch
in Figure 4.13). Hence,

|L| ∆t =
1
2

∫ ∆a

0
da = ∆a ⇒ ∆a =

2 |L|
m2

∆t

such that ∆a is proportional to ∆t.

4.8 Mechanical similarity — Kepler’s 3rd Law

Two solutions of a differential equations are called similar when
they can be transformed into one another by a rescaling of the
time-, length-, and mass-scales. We indicate the rescaled quantities
by a prime, and denote the scale factors as τ, λ, and α, respectively,

t′ = τt , q′i = λqi , m′i = αmi

We explore the consequences of this idea for the Kepler problem,
i. e. for two point particles interacting by a gravitation force F
deriving from the following potential

Φ(|R|) = m1m2G
|R| ⇒ F = −∇Φ(|R|) = m1m2G

|R|3 R
Figure 4.14: Setup of and notations
for the motion of a planet around the
sun. Here mS and mP are the mass of
the sun and the planet, respectively,
and qS and qP are their positions. The
relative position is R = qP − qS.

adapt Figure 4.14

The setup for a planet going around the sun is sketched in Fig-
ure 4.14. acting on the planet and pointing towards the sun. We
only consider the relative motion and assume that there are no
other forces acting on the sun and the planet.

Information about the period and the shape of the trajectory is
obtained from the energy for the relative motion

E =
µ

2
Ṙ2 + Φ(|R|)

This energy is conserved because

dE
dt

=
d
dt

(µ

2
Ṙ2 + Φ(|R|)

)
= µ Ṙ · R̈ + Ṙ · ∇Φ(|R|)

= Ṙ ·
(
µ R̈− F

)
= 0
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Here, we used that F = µ R̈.
In our planetary system the trajectories of the planets are all

circular to a good approximation. They are therefore described by
the same solution of the EOM up to a rescaling of the length scale
and the time scale. The former accounts to their different distance
to the Sun, and the latter to the different periods of their motion.
We observe now that µ = m1 m2/(m1 + m2) and that the Sun mass
mS is 1000 times larger than the mass of Jupiter, the largest planet.
Therefore, for the motion of the planets we have (m1 + m2)/µ ' mS

and

E
µ
' Ṙ2

2
+

mS G
|R|

We expect that different planets follow the same trajectory up to
rescaling space and time units, and a different constant value of
their energy. We hence explore the consequences of the scaling
λR(t) and τt

E
µ
' λ2

τ2
Ṙ2

2
+

1
λ

mS G
|R|

⇔ E
µ

τ2

λ2 '
Ṙ2

2
+

τ2

λ3
mS G
|R|

where the right-hand side remains invariant iff τ2/λ3 = const. This
entails

Theorem 4.3: Kepler’s third law

The square of the period T of the planets in our planetary
system are proportional to the third power of their distance
D to the sun.

4.9 Solving ODEs by coordinate transformations:
Kepler’s 1st law

In polar coordinates R = (R, θ) the kinetic energy takes the form
µṘ2/2 = µ

(
Ṙ2 + (Rθ̇)2)/2 while the conservation of angular

momentum implies Rθ̇ = L/(µR) with L = |L|. Consequently,

E =
µ

2
Ṙ2(t) +

L2

2µ R2(t)
− m1m2G

R(t)
(4.9.1)

which is equivalent to the motion of a particle of mass µ at position
R in the one-dimensional effective potential (Figure 4.15)

Φeff(R) =
L2

2µ R2 −
m1m2G

R
.

2 4 6 8
R̂

-1

-0.5

0.5

1
Φ̂eff(R̂)

angular momentum
gravitation

Figure 4.15: Effective potential Φ̂ =
Φ R0/m1 m2 G for the Kepler problem
as function of the dimensionless
distance R̂ = R/R0, where R0 =
L2/µ m1 m2 G.

The first, repulsive contribution to the effective potential arises
from angular momentum conservation, and the second, attractive
contribution is due to gravity.

There is no elementary way to determine the function R(t).
However, based on Equation (4.9.1) one can plot the trajectories
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in phase space, Ṙ(R) for different energies. This plot is provided
in Figure 4.16. For negative energies there are bounded trajectories
that oscillate in the minimum of the potential Φeff. For zero energy
the trajectory reaches till R = ∞, and reaches infinity with zero
speed. For a positive energy the trajectory reaches till R = ∞, and it
will go there with speed Ṙ =

√
2E/µ.

However, one can determine the shape R(θ) of the trajectories by
observing

Ṙ(θ) = θ̇
dR(θ)

dθ
=

L
µ R2 R′(θ) 1 2 3 4 5

R̂

-2

-1

0

1

2

˙̂ R -0
.4

5

-0.
40

-0.30

-0.20 -0.15

0.00 0.30

1.00

2.
00

Figure 4.16: The phase-space flow for
the EOM of R(t) provided by Equa-
tion (4.9.1). The plot adopts dimen-
sionless units with length scale R0
introduced in Figure 4.15 and a time

scale t0 =
√

µ R3
0/m1 m2 G. Solid lines

refer to solutions for different dimen-
sionless energy, with values marked on
the contour lines.

such that

E =
L2

2 µ

(
R′2

R4 +
1

R2

)
− m1 m2 G

R

In terms of w(θ) = 1/R(θ) this implies

µ E
L2 =

1
2
(
w′(θ)

)2
+

1
2

w2(θ)− m1 m2 µ G
L2 w(θ) (4.9.2)

and differentiating with respect to θ provides

0 = w′(θ)
[

w′′(θ) + w(θ)− m1 m2 µ G
L2

]
.

The expression in the square bracket is a second order linear ODE
with solution

w(θ) =
µ m1 m2 G

L2 [1 + ε cos (θ − θ0)]

where ε and θ0 are integration constants that must be determined
from the initial conditions. Inserting w(θ) into Equation (4.9.2)
yields

µ E
L2 =

ε2 − 1
2

(
m1 m2 µ G

L2

)2
⇒ ε2 = 1 +

2 E L2

µ (m1 m2 G)2

Hence, ε is fully determined by the parameters and the conserva-
tion laws of the Kepler problem, while θ0 determines the orien-
tation of the trajectory in the plane. Commonly, one chooses the
coordinate frame where θ0 = 0.

For the motion of a planet around the sun this entails

Theorem 4.4: Kepler’s first law

The trajectories of planets around the sun are described by
sections of the cone with a plane,

R(θ) =
R0

1 + ε cos(θ − θ0)
(4.9.3)

where R0 = L2/m1 m2 µ G sets the length scale of the trajec-
tory and θ0 the orientation in the plane. The parameter ε sets
its shape: for ε = 0 the shape amounts to a circle with
radius R0, for 0 < ε < 1 to an ellipse, for ε = 1 to a parabola,
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and for ε > 1 to a hyperbola.

Figure 4.17: Section of a cone double
and a plane. The axis are drawn
here at the intersection point of the
plane with the cone axis, in order
to emphasize the the plane is tilted
around the y axis. For calculations
in the main text the vertex of the
cone will be chosen as origin of the
coordinate system.

Proof. We consider the section of a cone with opening angle α and
its symmetry axis aligned along the z-axis, and a plane, as sketched
in Figure 4.17. The origin of the coordinate system is a the vertex
of the cone. The plane is tilted with respect to the y-axis such that
it forms an angle β with the z-axis, and it intersects the z-axis at
height H. The points in the plane have coordinates

q =

 x
y

H + m H

 with m−1 = tan β

The point q lies on the cone when q · ẑ = |q| cos α, which entails

(H + m x)2 = cos2 α
(

x2 + y2 + (H + m x)2
)

Henceforth, we adopt dimensionless coordinates x̂ = x/H tan α

and ŷ = y/H tan α, and we introduce the abbreviation ε = m tan α.
We will denote the distance from the origin in the (x, y)-plane as
R =

√
x̂2 + ŷ2, and introduce θ such that x̂ = R cos θ. This entails

(1 + ε R cos θ)2 = R2

with solutions

R± =
ε cos θ

1− ε2 cos2 θ
±
[
ε2 cos2 θ +

(
1− ε2 cos2 θ

)]1/2

1− ε2 cos2 θ

=
ε cos θ ± 1

1− ε2 cos2 θ
=

−1
±1 + ε cos θ

Hence, Equation (4.9.3) describes a cone section with length scale
R0 = H tan α and eccentricity ε = m tan α.

circle

ellipse

parabola

hyperbola

Magister Mathematicae/wikimedia,
CC BY-SA 3.0

Figure 4.18: Shape of conic sections for
parameters, ε = 0 circle, 0 < ε < 1
ellipse, ε = 1 parabola, and ε > 1
hyperbola.

The eccentricity amounts to the ratio of the slope m of the z
coordinates of points in the plane as function of x, and the slope
1/ tan α of the line obtained as intersection of the double cone and
the (x, z) plane. This ratio determines the shape of the conic section
(see Figure 4.18).

For ε = 0 the shape is a circle R2 = 1.
For ε = 1 the shape is a parabola described by 1 + 2 ε x̂ = ŷ2.
For 0 < ε < 1 the shape is an ellipse described by

1 + ε2

1− ε2 = ŷ2 +
(

1− ε2
) (

x̂− ε

1− ε2

)2

For 1 < ε the shape is a hyperbola described by

ŷ = ±

√
−1

ε2 − 1
+ (ε2 − 1)

(
x̂ +

ε

ε2 − 1

)2

add remark on physical
interpretation of cone
and plane © Jürgen Vollmer — 2021-02-12 04:11:40+01:00
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4.9.1 Self Test

Problem 4.20. Keeping the Moon at a distance

Something goes wrong at the farewell party for the settlers of the
new Moon colony Sleeping Beauty 1 such that an extremely annoyed
evil fairy switches off gravity for the Moon. Luckily there also is
a good fairy at the party. She cannot undo the curse but offers to
strip all protons from all water-molecules in a bucket of water that
you give to her, and hide them on Moon. The Coulomb attraction
between electrons on Earth and protons on Moon can then undo
the damage.

a) How much water would you give to her?

b) What will happen to the Earth-Moon system when you are off by
20%, by a factor of two, or even by an order of magnitude?
Hint: The idea is that you discuss the motion for an initial con-
dition where Earth and Moon are at their present position and
move with their present velocity, while the gravitational force is
changed by a the specified factor.

Problem 4.21. Mechanical similarity and dimensional analysis

We discuss here the relation between dimensional analysis, in-
troduced in Section 1.2, and mechanical similarity, adopting the
notations introduced in the beginning of Section 4.8.

a) We consider a system with kinetic energy T = 1
2 ∑i mi q̇2

i , and
consider a potential that admits the following scaling

V′ = µα λβ V

Show that the EOM are then invariant when one rescales time as

τ = µ(1−α)/2 λ(2−β)/2

b) Consider now two pendulums, V = mgz with different masses
and length of the pendulum arms. Which factors τ, λ, and µ

relate their trajectories? How will the periods of the pendulums
thus be related to the ratio of the mass and the length of the
arms? Which scaling do you expect based on a dimensional
analysis?

c) What do you find for the according discussion of the periods of a
mass subjected to a harmonic force, V = k |q|2/2?

d) Discuss the period of the trajectories in the Kepler problem,
V = mMG/|q|. In this case the dimensional analysis is tricky
because the masses of the sun and of the planet appear in the
problem. What does the similarity analysis reveal about the
relevance of the mass of the planet for Kepler’s third law?

© Jürgen Vollmer — 2021-02-12 04:11:40+01:00



126 4. Motion of Point Particles

Problem 4.22. Conic Sections

In the margin we show the shape of conic sections for different
eccentricity ε.

a) Show that all conic sections intersect the ŷ axis at ±1.

b) Show that the conic sections intersect the x̂ axis at −1/(ε ± 1).
Where are these points located for different conic sections?

-4 4 8
x̂

-8

-4

4

8
ŷ

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

Figure 4.19: Conic sections for different
eccentricity ε.

c) How does Equation (4.9.1) look like after introducing the dimen-
sionless units adopted in Figures 4.15 and 4.16? Write down the
solution of the EOM in dimensionless units.

d) Find an alternative choice of the length scale such that all tra-
jectories intersect the x-axis at the potion −1, and prepare the
corresponding plot of the trajectory shapes in the (x, y)-plane.

4.10 Problems

4.10.1 Rehearsing Concepts

Problem 4.23. Maximum distance of flight

There is a well-known rule that one should through a ball at an
angle of roughly θ = π/4 to achieve a maximum width.

a) Solve the equation of motion of the ball thrown in x direction
with another velocity component in vertical z direction. Do not
consider friction in this discussion, and verify that the ball will
then proceeds on a parabolic trajectory in the (x, z) plane.

b) Well-trained shot put pushers push the put with an initial angle
substantially smaller than π/4, i.e., they provide more forward
than upward thrust. Verify that this is a good idea when the
height H of the release point of the trajectory over the ground is
noticeable as compared to the length L between the release point
and touchdown, i.e. when H/L is not small.

�� What is the optimum choice of θ for the shot put?

c) Consider now friction:

• Is it relevant for the conclusions on throwing shot puts?

• Is it relevant for throwing a ball?

• How much does it impact the maximum distance that one can
reach in a gun shot?

Problem 4.24. Phase-space portraits for a scattering problem

a) Sketch the potential Φ(x) = 1− 1/ cosh x for x ∈ R.

b) Sketch the direction field in the phase space for the EOM ẍ =

−∂xΦ(x).
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c) Show that E = 1
2 ẋ2 + Φ(x) is a constant of motion of the EOM.

d) Use energy conservation to determine the shape of the trajecto-
ries in phase space, and add a few trajectories to the plot started
in b).

Add to the sketch a the phase portrait of the motion in this po-
tential, i. e. the solutions of in the phase space (x, ẋ).

Problem 4.25. Another linear ODEs with constant coefficients

Consider the ODE

ẍ = a x with a ∈ R+

a) Sketch the direction field in phase space.

b) Find the solutions of x(x).

c) Add the trajectories the are proceeding through the points
(x(t0), ẋ(t0) ∈ {(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1)}
to the plot started in a).
Hint: Only two cases must be solved explicitly. All other solu-
tions can be inferred from symmetry arguments.

Problem 4.26. Stokes drag

The EOM for Stokes friction, Equation (4.3.1) is a linear differ-
ential equation. Adopt the strategy for solving linear differential
equations, Algorithm 4.3, to find the solution Equation (4.3.3b).

4.10.2 Practicing Concepts

Problem 4.27. Egyptian water clocks

In ancient Egypt time was measured by following how water
is running out of a container with a constant cross section A. At a
water level h in the container, the water will then run out at a speed

v(t) = −c
√

2g h(t)

where the numerical constant c accounts for the viscosity of water
and the geometry of the vessel. The Egyptian water clocks this
constant takes values of the order of c ' 0.6.

a) How does the height h(t) of the water in he container evolve
after the plug is pulled?

� For use as a clock it would be desirable to change the design of
the clock such that h(t) would decrease linearly in time. How
can the construction of the water clock be amended to reach that
aim?
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Problem 4.28. Damped oscillator

Physical systems are subjected to friction. This can be taken into
account by augmenting the EOM of a particle suspended from a
spring, Equation (4.5.1), by a friction term

m z̈(t) = −m g− k z(t)− µ ż(t)

a) How does friction affect the motion z(t) of the particle? What is
the condition that there are still oscillations, even though with a
damping? For which parameters will they disappear, and how
do the solutions look like in that case?

b) Sketch the evolution of the trajectories in phase space, for the
two settings with and without oscillations.

c) For the borderline case the characteristic polynomial will only
have a single root, λ. Verify that the general solution can then be
written as

z(t) = z0 + A1 eλ (t−t0) + A2 t eλ (t−t0)

d) Determine the solutions for a particle for the following initial
conditions:
the particle is at rest and at a distance A from its equilibrium
position,
the particle is at the equilibrium position, but it has an initial
velocity v0.
Indicate the form of these trajectories in the phase-space plots.

Problem 4.29. One-dimensional collisions in the center-of-mass
frame

In Example 3.12 we discussed one-dimensional collisions for set-
tings where the second particle is initially at rest. Now, we consider
the situation where both particles are moving from the beginning.
Specifically, we consider a setting with two particles of masses m1

and m2 with the initial conditions
(
q1(t0), v1

)
and

(
q2(t0), v2

)
.

a) Show that the center of mass Q(t) =
(
m1 x1(t) + m2 x2(t)

)
/M

with M = m1 + m2 of the two particles evolves as

Q(t) = Q(t0) + Q̇(t0) (t− t0) where Q̇(t0) = a1 v1 + a2 v2

and determine the associated real constants a1 and a2.

b) We denote the relative coordinates as xi = qi −Q and associate it
with a momentum mi ẋi. Show that the relative momenta add up
to zero before and after the collision,

0 = m1 x1 + m2 x2 = m1
(
q1 −Q

)
+ m2

(
q2 −Q

)
and that they swap signs upon collision.
Hint: This is a consequence of energy conservation.
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c) Determine the time evolution before and after the collision.

d) Verify the consistency of your result with the special case treated
in Example 3.12.

planet swings, lambda
points

Problem 4.30. Motion in a harmonic central force field

A particle of mass m and at position r(t) is moving under the
influence of a central force field

F(r) = −k r .

a) We want to use the force to build a particle trap,5 i.e. to make 5 Particle traps with much more
elaborate force fields, e.g. the Penning-
and the Paul-trap, are used to fix
particles in space for storage and use
in high precision spectroscopy.

sure that the particle trajectories r(t) are bounded: For all initial
conditions there is a bound B such that |r(t)| < B for all times t.
What is the requirement on k to achieve this aim?

b) Determine the energy of the particle and show that the energy is
conserved.

c) Demonstrate that the angular momentum L = r × m ṙ of the
particle is conserved, too. Is this also true when considering a
different origin of the coordinate system?
Hint: The center of the force field is no longer coincide with the
origin of the coordinate system in that case.

d) Let (x1, x2) be the coordinates in the plane that is singled out
by the angular momentum conservation. Show that mẍi(t) +
k xi(t) = 0 for i ∈ {1, 2}. Determine the solution of these equa-
tions. Sketch the trajectories in the phase space (xi, ẋi). What
determines the shape of the trajectories?

e) Show that the trajectories in the configuration space (x1, x2) are
ellipses. What determines the shape of these trajectories?

f) Discuss the relation between the amplitude and shape of the
trajectory, as determined by the ratio and the geometric mean
of the major axes of the ellipse in configuration space, and the
period of the trajectory.

4.10.3 Mathematical Foundation

Problem 4.31. Differential equations and functional dependencies

Determine ODEs whose general solutions are of the form

a) y(x) = C x2 − x

b) y2(x) = A x + B

Here, A, B, and C are real constants that will be determined by the
IC of the ODE.
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Problem 4.32. Separation of variables for a non-autonomous ODE

We consider the ODE

y′(x) =
x
y

a) How many degrees of freedom does this system have? What
is its space? State it as a first order ODE in terms of the phase-
space variables.

b) Sketch the direction field in phase space.

c) Find the solution of the ODE for ICs (x0, y0) with y0 6= 0 and

i. x0 < 0 and x0 < y0 < −x0

ii. x0 > 0 and x0 > y0 > −x0

iii. other ICs with |x0| 6= |y0|

iv. |x0| = |y0|

d) Determine the largest interval of values x ∈ R where the solu-
tions y(x) obtained in b) are defined.

e) Is the function y(x) = |x| a solution of the ODE? If in doubt:
Where do you see problems for this solution?

Problem 4.33.
�

Effective potentials and phase-space portraits

We consider ODEs of the form

ẍ(t) = − d
dx

Veff(x)

Sketch the solutions for trajectories in the following potentials in
the phase space (x, ẋ).

a) Veff = x sin x b) Veff = x cos x
c) Veff = x− sin x d) Veff = x− cos x
e) Veff = ex sin x f) Veff = e−x sin x

Problem 4.34. Central forces conserve angular momentum

Consider a system of N particles at the positions qi with masses
mi where each pair (ij) interacts by a force Fij(|dij|) acting parallel
to the displacement vector dij = qj − qi from particle i to j. Proof
the following statements:

a) The evolution of the center of mass of the system

Q =
1
M

N

∑
i=0

miqi with M =
N

∑
i=0

mi

is force free, i. e. Q̈ = 0.
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b) The total angular momentum can be written as

Ltot = M Q× Q̇ + ∑
i<j

µij dij × ḋij

Determine the factors µij.

c) The two contributions to the angular momentum, M Q× Q̇ and
the sum ∑i<j µij dij × ḋij are both conserved.

Problem 4.35. Impact of translations on conservation laws

We consider a coordinate transformation where the origin of
the coordinate systems is moved to a new time-dependent position
x(t),

qi(t) = x(t) + ri(t)

a) Show that the expressions for the kinetic energy are related by

T = ∑
i

mi
2

q̇2
i =

M
2

ẋ2 + M ẋ · Q̇ + ∑
i

mi
2

ṙ2
i

Here, M = ∑i mi and Q = M−1 ∑i miqi are the total mass and
the center of mass, respectively.

b) Show that the expressions for the total energy for motion in an
external field are related by

E = T −M g ·Q + ∑
i<j

Φij
(
|qi − qj|

)
= T −M g ·Q + ∑

i<j
Φij
(
|ri − rj|

)
−M g · x

c) Show that the angular momentum transforms as follows

L = ∑
i

mi qi × q̇i = M x× Q̇ + M
(

x + Q)× ẋ + ∑
i

mi xi × ẋi

d) Show that conservation laws are mapped to conservation laws
iff we consider a Galilei transformation, i. e. a transformation
where ẋ =const.

4.10.4 Transfer and Bonus Problems, Riddles
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Figure 4.20: The upper panel shows
the light intensity I(x)/Imax, and the
lower panel the fraction of light in
the center region of width ∆, i. e. the

power P(∆) =
[∫ ∆
−∆ I(x)dx

]
/Imax. The

red dotted value marks the asymp-
totic value π and the blue line the
approximations obtained by a Taylor
approximation up to order 2, 4, 8, 16,
and 32. according to the Taylor series
evaluated in Problem 4.36.b).

Problem 4.36. Light intensity at single-slit diffraction

Monochromatic light of wave length λ that is passion through
a slit will produce an diffraction pattern on a screen where the
intensity follows (cf. Figure 4.20, top panel)

I(x) = Imax

(
sin x

x

)2

Here the light intensity I(x) is the power per unit area that is ob-
served at a distance x to the side from the direction straight ahead
from the light source through the slit to the screen. We are in-
terested in the total power P(∆) that falls into a region of width
|x| < ∆. Since there is no antiderivative for I(x) we will find ap-
proximate solutions by considering Taylor approximations of I(x)
that can be integrated without effort.
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132 4. Motion of Point Particles

a) Show that sin2 x = (1− cos 2x)/2, and use the Taylor expansion
of the cosine-function to show that

sin2 x
x2 =

1− cos 2x
2x2 = 2

∞

∑
n=0

(−1)n

(2n + 2)!
(2x)2n

b) Determine the Taylor approximations for P(∆) by integrating the
expression found in a).

c) Write a program that is numerically determines P(∆) and com-
pares it to Taylor approximations of different order, as shown in
the lower panel of Figure 4.20.

Problem 4.37. Tricky issues in a classical population model

The Lotka-Volterra model is considered the first model address-
ing the evolution of populations in theoretical biology. It predicts
oscillations of populations, and still today it is cited in the context
of data of Lynx and Hare that were collected in Canada in the late
19th century (cf. Figure 4.21).

Let H(t) be the population of prey animals (Hare) and L(t) be
the population of its predator (Lynx). When there are no predators
the population of prey grows exponentially with a rate a, and this
rate is reduced by −bL(t), when prey is consumed by predators.
In absence of food the predators die at a rate d, and this rate is
reduced by −cH(t), when they find food.

Ḣ(t) = H(t) [a− b L(t)]

L̇(t) = L(t) [c H(t)− d]

a) Let u(τ) ∝ H(t), v(τ) ∝ L(t), and τ ∝ t. Find suitable pro-
portionality constants and a dimensionless parameter Π such
that

u̇(τ) = u(τ) [1− v(t)]

v̇(τ) = Π2 v(τ) [u(τ)− 1]

b) Show that the EOM for this biological system has fixed points at
(0, 0) and (1, 1). How does the population model behave close to
these fixed points?

c) Sketch the evolution of the solutions in the (u, v)-plane, and
compare your result with the data reported on the lynx and
hare that are shown in Figure 4.21. Can you find the qualitative
difference of the data and behavior predicted by the model?
Hint: Look at the orientation of the flow in phase space. Who
would be eating whom?

d) One can infer the form of the trajectories in phase space by ob-
serving that

dv
du

=
v̇
u̇
= π2 v (u− 1)

u (1− v)
.

Why does this hold?
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Figure 4.21: (a) Annual oscillations
of the skins of hare and lynx offered
to the Hudson Bay company. (b)
Data with higher time resolution
for the 30 years between 1875 and
1904. (c) Presentation of the data
presented in (b) as a phase-space plot.
[reproduced from Fig. 3.3. of Murray
(2002). The book provides a thorough
discussion of populations models, their
assumptions and artifacts for a range
of different populations models.]

e) Find the solution of the ODE by separation of variables and
show that the result implies the following constant of motion

Φ(u, v) = ln (v uα)− v− α u , with a suitably chosen α > 0.

Verify this result by also determining the time derivative of
Φ(u(τ), v(τ)). Here (u(τ), v(τ)) is a solution of the EOM.

Remark: The presence of a conservation law should be con-
sidered an artifact of the model whenever there is no model-
immanent (i. e. required by the biological problem in this cases)
reason for it to exist.

grav nut cracker

4.11 Further reading

An excellent mathematical treatise of the theory of ODEs that is
well-accessible for physicists is given by ?. fix reference!
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5
Impact of Spatial Extension

Figure 5.1: Impact of a laser pulse on
a microdrop of opaque liquid that is
thus blown up; cf. Klein, et al, Phys.
Rev. Appl. 3 (2015) 044018

Punt/Anefo, Amsterdam 1971, CC0

Figure 5.2: Girl playing with clackers.

Charlie Cowins from Belmont, NC, USA, CC
BY 2.0
Figure 5.3: Man running to return a
tennis ball.

In Chapter 4 we discussed the motion of point particles. However,
in our environment the spatial extension of particles in crucial.
Physical objects always keep a minimum distance due to their spa-
tial extension. When they had zero extension, one could neither
blow up water droplets by impact with a laser (Figure 5.1), nor
work clackers (Figure 5.2) or hit a ball with a tennis racket (Fig-
ure 5.3). Even giving spin to a ball only works due to the distance
between the surface of the racket and the center of the ball.

At the end of this chapter we will be able to discuss the evolu-
tion of balls with spin, and their reflections from flat surfaces. Why
is spin of so much importance in table tennis? How can a “Kreis-
läufer” score a goal in Handball, even when the goal keeper is fully
blocking he direct path to the goal?

What is the magic of
Beckham’s banana kicks?

http://link.aps.org/doi/10.1103/PhysRevApplied.3.044018
http://link.aps.org/doi/10.1103/PhysRevApplied.3.044018
https://commons.wikimedia.org/wiki/File:Mensen_met_een_klik_klak_Amsterdam,_Bestanddeelnr_924-8383.jpg
https://commons.wikimedia.org/wiki/File:Gluten_free_speed_-_Flickr_-_chascow.jpg
https://creativecommons.org/licenses/by/2.0
https://creativecommons.org/licenses/by/2.0
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5.1 Motivation and outline: How do particles collide?

In order to get a first impression about this idea we consider the
case of two particles at the positions qi, i ∈ {1, 2} that interact by a
repulsive Coulomb force that derives from a potential ΦC(|R|) with
R = q2 − q1,

ΦC(|R|) =
C
|R| ⇒ Fc(qi) = −∇qi ΦC(|qi − q2−i|) =

C
(
qi − q2−i

)
|qi − q2−i|3

Here, 2− i is the index of the other particle (1 for i = 2 and 2 for
i = 1), and the constant C is the product of the permittivity of the
vacuum and the particle charges. For charges of opposite signs this
force has agrees with the gravitational force when one substitutes
C → −m1 m2 G. This results in the same dimensionless equations
of motion as obtained for the Kepler problem, with the important
difference that the length and time units adopted to defined the
dimensionless units take vastly different values.

When the two particles carry charges of equal signs the force is
repulsive, giving rise to the EOM

0 = w′′(θ) + w(θ) +
µ C
L2 w(θ)

such that

R(θ) =
1

W(θ)
=

R0

−1 + ε cos
(
θ − θ0

) where R0 =
L2

µ C

agrees with Equation (4.9.3) up to a change of the sign of the one in
the denominator and the length unit R0.

Remark 5.1. It is illuminating to adopt a different perspective on the
origin of the minus sign in front of the one. Let us write the force
on particle 1 as F1 = F1 ê(θ) where ê(θ) is the vector pointing from
particle 1 to particle 2. The strength of the scalar force F1 will be
positive for an attractive force and negative for a repulsive force. In
the dimensionless force Ft2

0/µ R0 the change of sign is taken into
account by the sign of C in R0 = L2/µ C and the solution takes the
form of Equation (4.9.3). In order to obtain a positive length scale
|R0| = ±R0 we multiply the numerator and denominator of the
solution by the ±1 and absorb the factor in front of ε in a rotation
of the angle by π such that the polar coordinates are always aligned
with the direction of the force. Hence, one finds

R(θ) =
1

W(θ)
=

|R0|
±1 + ε cos

(
θ − θ0

) where ± 1 = sign(C)

At this point dimensionless units play out their strength. We obtain
the solution of the nontrivial EOM by an analysis of the ODE and
mapping of parameters to a known problem, rather than going
again through the involved analysis. �
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Figure 5.4: Phase-space flow and the
shape of trajectories for scattering with
a repulsive Coulomb potential.

The phase-space portrait and the shape of the orbits for repulsive
interactions are plotted in Figure 5.4. We observe that the trajectory
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shape describes the approach of the other particle from a perspec-
tive of an observer that sits on a particle located in the origin. When
the observer sits on a particle that has a much larger mass than the
approaching particle, then an outside observer will see virtually no
motion of the mass-rich particle and the lines in Figure 5.4 describe
the lines of the trajectories of the light particle in a plane selected by
the initial angular momentum of the scattering problem. In general,
two particles of masses m1 and m2 will be at opposite sides of the
center of mass. In a coordinate system with its origin at the center
of mass the lines in Figure 5.4 describe the particle trajectories up to
factors m1/(m1 + m2) and −m2/(m1 + m2) for the first and second
particle, respectively. A pair of trajectories for m1 = 0.3 (m1 + m2)

and ε = 1.2 is shown in Figure 5.5. The approximation as point
particles is well justified when the sum of the particle radii is much
smaller than their closest approach R0/(ε− 1).

-20-15-10 -5 5 10 15 20
x̂

-15
-10

-5

5
10
15
ŷ

Figure 5.5: The two black lines show
the scattering trajectories of two
particles with ε = 1.2 and relative
mass m1 = 0.3 (m1 + m2). They
approach each other along the solid
gray line and separate along the dotted
line. Particle 1 is initially at the top
right. Corresponding positions are
marked by dots of matching color.

Outline

In Section 5.2 we study the collision of spherical hard-ball particles
that only interact by a force kick vertical to the surfaces at their con-
tact point when they touch. Then we compare the Coulomb case
and the force-kick case in order to explore which features of the
outgoing trajectories are provided by conservation laws, irrespective
of the type of interaction. In Section 5.3 we discuss the forces of
an extended object (Earth) on a point particle moving without fur-
ther interactions in its gravitational field. In Section 5.4 we further
explore the impact spatial extension of solid particles: How does
their shape matter? How are particles set into spinning motion,
and how does the spin evolve? Section 5.5 addresses the motion of
particles with internal degrees of freedom. Finally, in Section 5.6 we
wrap up the findings of this section by discussing the reflections of
balls: How do balls pick up spin in collisions? What happens upon
multiple collisions in a channel with parallel walls? How should
one return a ping-pong ball arriving with severe spin? How much
energy is dissipated into vibrations of the ball? check and update upon

finalizing Chapter

5.1.1 Self Test

0 2 4 6 8

2EL 2

µC 2

0

π/6

π/3

π/2

θ

Figure 5.6: Scattering angle θ for a
collision of two particles that interact
by a repulsive Coulomb potential..

Problem 5.1. Scattering angle for the Coulomb potential

For the choice of coordinates adopted in Figures 5.4 and 5.5
the trajectories have an asymptotic angle θ with the x̂-axis when
they approach each other and they separate with an asymptotic
angle −θ.

a) Show that

tan2 θ =
2 E L2

µ C2 (5.1.1)

b) The parameter dependence of the scattering angle θ is shown
in Figure 5.6. What happens to the line for very large values of
2 E L2/µ C2?
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138 5. Impact of Spatial Extension

c) How would the scattering trajectories in Figure 5.5 look like for
θ = π/2? Does this comply with your finding in b)?

5.2 Collisions of hard-ball particles

We consider two spherical particles and denote their radii and
masses as Ri and mi with i ∈ {1, 2}, respectively. At the initial time
t = t0 the particles motion is not (yet) subjected to a force such that

qi(t) = qi(t0) + vi (t− t0) , for i ∈ {1, 2}

5.2.1 Center of mass motion

Analogous to the treatment of the Kepler problem, we decompose
the motion of the particles into a center-of-mass motion Q(t) and
a relative motion r(t). Introducing the notion M = m1 + m2 the
former amounts to

M Q(t) = m1 q1(t) + m2 q2(t) = M Q(t0) + Q̇(t0) (t− t0) (5.2.1)

Since there are not external forces the total momentum M Q̇(t) is
conserved (cf. Theorem 3.5) such that Equation (5.2.1) applies for
all times – even when the particles collide. A collision will therefore
only impact the evolution relative to the center of mass. Equa-
tion (5.2.1) holds for all times.

5.2.2 Condition for collisions

To explore the relative motion we write qi = Q + xi, and we intro-
duce the momentum p = m1 ẋ1 = −m2 ẋ2 and the distance coor-
dinate r = x1 − x2. With these notations the angular momentum of
the relative motion reads L = r × p, and it is conserved when the
collision force is acting along the line connecting the centers of the
particles (cf. Theorem 3.6 and the discussion of Kepler’s problem
in Section 4.7). Moreover, r(t) is the only time-dependent quantity
in this equation because L and p are preserved. Let us first assume
that the particles do not collide, and that the closest approach oc-
curs at some time tc to a distance rc = |r(tc)|. Then the vectors r(tc)

and p will be orthogonal, and |L| = rc |p|. By the properties of the
vector product the distance of the closest encounter will always be

rc =
|L|
|p| =

∣∣m1q1(t0)× q̇1(t0) + m2q2(t0)× q̇2(t0)−MQ(t0)× Q̇(t0)
∣∣

m1
∣∣q̇1(t0)− Q̇

∣∣
and there will be no collision if rc > R1 + R2.

5.2.3 The collision

Conservation of angular momentum implies that the relative mo-
tion of the particles proceeds in a plane. When they collide they
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5.2. Collisions of hard-ball particles 139

approach until, at time tc, they reach a position r(tc) where their
distance is |r(tc)| = R1 + R2. We denote the direction of r at this
time as β̂ and augment it by an orthogonal direction α̂ such that
(α̂, β̂, L̂ = L/ |L|) form an orthonormal basis. We select the origin
of the associated coordinate system such that

p = (p · α̂) α̂ + (p · β̂) β̂

At the collision there is a force F = F β̂ acting on the particles, that
acts in the direction of the line r(tc) connecting the particles. Hence,

1. the momentum component in the α̂ direction is preserved
during the collision because there is no force acting in this direction

2. the collision in β̂ direction proceeds like a one-dimensional
collision, Example 3.12, with the exception that one must retrace
the argument using the center-of-mass frame, as discussed in Prob-
lem 4.29.

Consequently, we obtain the following momentum p′ after the
collision

p′ = (p · α̂) α̂− (p · β̂) β̂ = p− 2 (p · β̂) β̂

5.2.4 Self Test

0 2 4 6
β̂

-4

-2

0

2

4

α̂

0.1
0.2
0.5
1
2
5

0 0.5 1.0

L 2

2µE (R1 +R2)
2

0

π/6

π/3

π/2

θ

Figure 5.7: Collision of two hard-ball
particles with radii R1 and R2: (top)
Trajectory shape. The labels denote
the ratios (p · α̂)/(p · β̂). (bottom)
Scattering angle θ.

Problem 5.2. Scattering angle for hard-ball particles

In Figure 5.7 we show shows the trajectory shape and the scatter-
ing angle for hard-ball scattering.

a) What is the dimensionless length scale adopted to plot the trajec-
tory shapes?

b) What is the impact of the angular momentum on the trajectory
shape?
What is the impact of the energy?

c) Verify that

sin2 θ =
L2

2µ E (R1 + R2)2 (5.2.2)

and that this dependence is plotted in the lower panel of Fig-
ure 5.7.

d) What happens when L2 > 2µ E (R1 + R2)
2?

Which angle θ will one observe in that case?

� e) Show that Equations (5.1.1) and (5.2.2) agree when one identifies
the length scale R1 + R2 of the hard-ball system with the dis-
tance Reff of symmetry point of the cone section from the origin,
i. e. with the mean value of the two intersection points with the
x̂-axis

Reff =
1
2

(
R0

1 + ε
+

R0

1− ε

)
=

ε R0

1− ε2

Can you provide a physical argument why that must be true?
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Problem 5.3. Reflection from a wall

Show that a particle reflected at a flat wall follows the same
trajectory as a particle that collides with a particle of the same mass
and at a position obtained as mirror image of the particle.

Problem 5.4. Collisions on a billiard table

The sketch to the right shows a billiard table. The white ball
should be kicked (i.e. set into motion with velocity v), and hit the
black ball such that it ends up in pocket to the top right.

What is tricky about the sketched track?
What might be a better alternative?

5.3 Volume integrals — A professor falling through Earth

The center of mass of a set of particles was defined in Equation (4.6.1)
as a weighted sum of their positions. Now we consider an extended
object that is characterized by a mass distribution ρ(q). We will
always assume that the distribution varies slowly in space in side
the object. Outside it vanishes. The weighted sum over the particle
positions will then be generalized to become a volume integral.

5.3.1 Determine volume and mass by volume integrals

In Section 3.4.2 we introduced line integrals by dividing the integra-
tion path into small steps {si}, and approximating the integral as a
sum over the contributions of the individual pieces. The definition
of a volume integrals proceeds analogously. Now, we integrate over
a region R ⊂ RD, and we start by partitioning this region into small
volume elements ∆Vi.

Definition 5.1: Partition of Space

A set {∆Vi , i ∈ I} is a partition of a region R ⊂ RD iff

a) ∀i ∈ I : ∆Vi ⊂ R,

b) ∀i, j ∈ I : i 6= j⇒ ∆Vi
⋂

∆Vj = ∅,

c) ∀x ∈ R ∃i ∈ I : x ∈ ∆Vi.

Definition 5.1 entails that the union of the elements of the parti-
tion amounts to the region R,

R =
⋃
i∈I

∆Vi

Let now V = ‖R‖ denote the volume of the region R. For every
partition it can be written as

V = ‖R‖ = ∑
i∈I

‖∆Vi‖

In the limit of small volume elements we write this sum as a
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Definition 5.2: Volume Integral

The volume integral F of a function f (q) over a region
R ⊂ RD is defined as follows as limit of a sum over the
elements of a partition,1 {∆Vi , i ∈ I} of R and points
qi ∈ ∆Vi,

F =
∫

R
dDq f (q) = lim

‖∆Vi‖→0
∑
i∈i

‖∆Vi‖ f (qi)

For Cartesian coordinates (q1, q2, . . . , qD) the integration vol-
ume element is dDq = dq1 · · ·dqD and the integral amounts
to

F =
∫

I1

dq1

∫
I2(q1)

dq2 · · ·
∫

I(q1,··· ,qD−1

dqD f (q1, · · · , qD)

where the boundaries of the integrals must be chosen such
that (q1, · · · , qD) ∈ R.

1 Considerable care is taken in calcu-
lus courses to explore under which
conditions the limit exists and is well-
defined. Here, we assume that the
function f varies smoothly inside the
region. In other words, we assume that
for all partition elements the difference
| f (q)− f (qi)|≪ | f (qi)| for all points
q ∈ ∆Vi .

Remark 5.2. For the function f (q) = 1 the volume integral provides
the D-dimensional volume of the region R. �

The mass m(V) contained in a volume V can be expressed as a
volume integral

m(V) =
∫
V

d3q ρ(q) =
∫
V

dx dy dz ρ(x, y, z)

=
∫ xmax

xmin

dx
[∫ ymax(x)

ymin(x)
dy

(∫ zmax(x,y)

zmin(x,y)
dz ρ(x, y, z)

)]
where the integration runs over all q ∈ V , a volume with smallest
x-value xmin and largest x-value xmax, its y-values between ymin(x)
and ymax(x) for a given x, and z-values between zmin(x, y) and
ymax(x, y) for given x and y.

Remark 5.3. We adopt the convention that the mass density is zero
outside an object. As a consequence its total M mass is obtained as

M =
∫

R3
d3q ρ(q)

The boundaries of the integral that define the shape of the body
have been absorbed into the definition of the density. �

We illustrate the steps taken to evaluate a volume integral by
calculating the area and volume of some simple geometric shapes:

Example 5.1: Surface areas of rectangles and circles

a) The surface area of the rectangle R ⊂ R2 with (x, y) ∈ R
iff 0 ≤ x ≤ a and −b < y < b is

‖R‖ =
∫

R
d2q =

∫ a

0
dx

∫ b

−b
dy = 2ab

b) The surface area of the circle C with center at the origin
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and radius R is

‖C‖ =
∫

C
d2q =

∫ R

−R
dx

∫ √R2−x2

−
√

R2−x2
dy = 2

∫ R

−R
dx
√

R2 − x2

= 2 R2
∫ π/2

−π/2
dθ cos θ

√
1− sin2 θ = 2 R2

∫ π/2

−π/2
dθ cos2 θ

= R2
∫ π/2

−π/2
dθ
(
cos2 θ + sin2 θ

)
= π R2

The choice of the integration boundaries is illustrated in
Figure 5.8. Upon moving to the second line of this equa-
tion we substituted x = R sin θ, and in the step to the
third line we made use of the π-periodicity of cos2 θ.

Figure 5.8: Notations adopted in
the surface integral performed in
Example 5.1b).

Example 5.2: Volume of a sphere

The volume of a three-dimensional sphere S with center at
the origin and radius R is

‖S‖ =
∫

S
d2q =

∫ R

−R
dx

∫ √R2−x2

−
√

R2−x2
dy

∫ √R2−x2−y2

−
√

R2−x2−y2
dz

=
∫ R

−R
dx π

(√
R2 − x2

)2
= π

∫ R

−R
dx
(

R2 − x2
)

= π

(
2 R3 − 2

3
R3
)
=

4 π

3
R3

Upon moving to the second line we observed that the y and
z integrals agreed with the ones performed to evaluate the
are of a circle, cf. Example 5.1b).

5.3.2 Change of variables

The shape of a circle with center at the origin and radius R can
much easier be described by polar coordinates rather than Cartesian
coordinates:2 {(ρ, θ) ∈ R+ × [0, 2π) : ρ < R}. To take advantage2 In order to avoid confusion with

the radius of the circle the radial
coordinate of the polar coordinates is
here denoted as ρ.

of this simplification we have to introduce a transformation of the
integration coordinates from Cartesian to polar coordinates. A
heuristic guess based on Figure 5.9 suggests that a volume element
dx dy at the position (x, y) = (ρ cos θ, ρ sin θ) should be replaced
by ρ dθ dρ. One readily verifies that this is a reasonable choice by
working out the area of the circle with radius R:

Figure 5.9: Integration volume for
polar coordinates.

‖C‖ =
∫

C
d2q =

∫ R

0
dR

∫ 2π

0
dθ R = π

∫ R

0
dR 2 R = π R2

with a much easier calculation than in Example 5.1b).
Formally the change of the integration volume is determined

by generalizing the substitution rule for integrals, as illustrated in
Figure 3.13 for one dimensional integrals. In this rule the derivative
f ′(x) account for the change of the width of the rectangles that are
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summed to approximate the integral. In order to generalize this
idea we recall from the discussion of line integrals that

dq
dR

dR =

(
cos θ

sin θ

)
dR and

dq
dθ

dθ =

(
−R sin θ

R cos θ

)
dR

In general the derivatives involved in the definition of the length
elements do not have unit length and they need not be orthogonal.
Their length reflects the change of the length unit that we also en-
counter in the one-dimensional case. The angle between the vectors
indicates that in two-dimensions one can also partition space by
using parallelograms rather than rectangle. The unit area for the
integration will always be the area spanned by the two vectors.

In D dimensions the integration volume is defined by the volume
spanned by the D derivative vectors of the position vector q with
respect to the new coordinates. It is commonly expressed in terms
of the Jacobi determinant. We first introduce the notion of a

Definition 5.3: Determinant

The determinant of a matrix amounts to the volume spanned
by its column vectors. For a matrix A it is denoted as det A.

Remark 5.4. The determinant of 2× 2 and 3× 3 matrices takes the
form of the (sum of) products along the diagonals from left to right
minus the (sum of) products of the diagonals from right to left,

det

(
a11 a12

a21 a22

)
= a11 a22 − a12 a21

det

a11 a12 a13

a21 a22 a23

a31 a32 a33

 = a11 a22 a33 + a12 a23 a31 + a13 a21 a32

− a11 a23 a32 + a22 a31 a13 + a33 a12 a21

These expressions are entailed by the geometric interpretation of
the cross product in Section 2.9.2. �

Without proof we provide the following general rule for calculat- provide a reference

ing determinants

Theorem 5.1: Recursive calculation of determinants

Let A be a D × D matrix with D ∈ N and entries aij where
i, j ∈ {1, · · · , D}. For D = 1 we define det A = a11. For D > 1
we introduce the (D − 1) × (D − 1) submatrices Aij that are
obtained from A by dropping its ith row and jth column.
The determinant of A can then be calculated by a recursion
that either works along a row j or a column k of A,

det A =
D

∑
j=1

(−1)j+k det Ajk =
D

∑
k=1

(−1)j+k det Ajk
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Altogether this allows us to identify the factor involved in a
change of the integration variables as the Jacobi determinant.

Theorem 5.2: Jacobi matrix and determinant

We consider a change of integration variables from the co-
ordinates x = (x1, x2, · · · , xD) to (y1, y2, · · · , yD) that is
defined by the functions x1(y), x2(y), · · · , xD(y). Then the
integration volume changes as

dx1 · · ·dxD = det


∂x1
∂y1

∂x1
∂y2

. . . ∂x1
∂yD

∂x2
∂y1

∂x2
∂y2

. . . ∂x2
∂yD

...
...

. . .
...

∂xD
∂y1

∂xD
∂y2

. . . ∂xD
∂yD

dy1 · · ·dyD

The matrix involved in this transition is called the Jacobi ma-
trix of the transition, and the determinant is called the Jacobi
determinant.

Example 5.3: Integration volumes

a) polar coordinates (x, y) = ρ (cos θ, sin θ)

transform as

dx dy = det

(
cos θ −ρ sin θ

sin θ ρ cos θ

)
dρ dθ = ρ dρ dθ

b) cylindrical coordinates (x, y, z) = (ρ cos θ, ρ sin θ, z)

transform as

dx dy dz = det

cos θ −ρ sin θ 0
sin θ ρ cos θ 0

0 0 1

 dρ dθ dz = ρ dρ dθ dz

c) spherical coordinates (x, y, z) = ρ (sin θ cos φ, sin θ sin φ, cos θ)

transform as

dx dy dz = ρ2 sin θ dρ dθ dφ = ρ2 dρ dcos θ dφ

5.3.3 The force of an extended object (Earth)
on a point particle (professor)

As a first step towards discussing extended objects we consider
the force exerted by an extended object on a point particle. The
force is obtained by integrating the forces originating from the mass
elements of the body,

Ftot =
∫

R3
d3q F(q)

where q is the vector from the position of the point particle to the
mass element that is exerting the force. This expression involves
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the vector-valued generalization of volume integrals. It should
be interpreted component-wise, stating the that the components
Ftot,i = êi · Ftot of the total force in some orthonormal base êx, êy, êz

amount to

êi · Ftot =
∫

R3
d3q

(
êi · F(q)

)
or explicitly Ftot,x =

∫
R3

dx dy dz Fx(x, y, z)

Ftot,y =
∫

R3
dx dy dz Fy(x, y, z)

Ftot,z =
∫

R3
dx dy dz Fz(x, y, z)

The consequences can nicely be explored when an evil witch
switches off electromagnetic interactions between a physics profes-
sor and its environment. In the absence of interaction with other
matter the professor will freely fall towards the center of Earth,
accelerated by a force that arises as sum of the mass elements con-
stituting Earth (see Figure 5.10). For the professor of mass m at
position qP and the mass element at position qe this force amounts
to F(qP, qe) = −∇(m ρ(qe) G)/ |qP − qe|. For simplicity we assume
that Earth is spherical and that its mass density takes a uniform
value ρ = 3 ME/4π R3. Then, the force on the professor takes the
form

Figure 5.10: Initially positioned at
the upper right (yellow), the professor
will fall down (red), and eventually
pop out at the other side and return
(green).

Ftot = −
∫

R3
d3q∇m ρ(qe) G

|qP − qe|
(5.3.1)

= −m ρ G ∇
∫

Earth
d3q

1√
q2

P + q2
e − 2 qP qe cos θ

(5.3.2)

where θ is the angle between the two vectors |qP| and |qe|, while qP

and qe denote their respective length.
The integral is best evaluated by adopting a spherical coordi-

nates (r, θ, φ) for the integration where r runs from zero to the
Earth radius R, the angle θ from zero to π, and φ all around from
zero to 2π,

Ftot = −m ρ G ∇
∫ R

0
dr r2

∫
−1

1d cos θ
∫ 2π

0
dφ

1√
q2

P + r2 − 2 qP r cos θ

= −2π m ρ G ∇
∫ R

0
dr r2

[
−1
qP r

√
q2

P + r2 − 2 qP r cos θ

]cos θ=1

cos θ=−1

= −2π m ρ G ∇
∫ R

0
dr

r
qP

(
|qP + r| − |qP − r|

)
= −4π m ρ G ∇

[
1

qP

∫ qP

0
dr r2 +

∫ R

qP

dr r
]

= m ρ G ∇
[

2πR2 − 2π

3
qP · qP

]
= −m g

R
qP

In the last step we used that the acceleration on the Earth surface
is g = MG/R = 4π ρ R2 G/3. The professor moves under the
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influence of a harmonic central force, as studied in Problems 4.19,
4.21 and 4.30! After a while (cf. Problem 5.12) he reappears at the
very same spot where he started, except that Earth moved on while
he was under way.

5.3.4 Self Test

Problem 5.5. Area of a parallelogram

Determine the area of the parallelogram defined by the points
(0, 0), (1, 3), (4, 4), (2, 1) by

a) performing the volume integral,

b) determining the area spanned by the two vectors that define the
sides starting at the corner (0, 0).

Problem 5.6. Volume of a solid of revolution

A solid of revolution is obtained by rotating some function f (x)
around the x axis. For instance, the function

√
R2 − x2 with −R ≤

x ≤ R describes a sphere of radius R. The volume V of a solid of
revolution are given by the integral

V = π
∫

dx ( f (x))2 (5.3.3)

a) Sketch the function f (x) =
√

R2 − x2 and verify that the solid of
revolution is indeed a sphere.

b) Determine the volume of the sphere based on the given equation.
Compare you calculation and the result to the calculation given
in Example 5.2.

c) Show that the volume integral for a solid of revolution provides
Equation (5.3.3) when one adopts cylindrical coordinates.

Problem 5.7. Volume of a cone

Determine the volume of a cone with symmetry axis along the z-
axis, that stands on the (x, y)-plane where it traces a circle of radius
R, while its vertex is at (0, 0, H).

a) Perform the volume integral with Cartesian coordinates.

b) Perform the volume integral with cylindrical coordinates.

Problem 5.8. Coordinate transformation to cylindrical coordinates

Determine the Jacobi matrix and its determinant for the transfor-
mation from Cartesian to spherical coordinates, cf. Example 5.3c).
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5.4 Center of mass and spin of extended objects

We consider a setting where there are only long distance force like
gravity and no collisions between objects. The explicit calculation
for the case of gravity in the previous section entails that in such a
setting the force exerted by a planet on a point particle is identical
to the one exerted by a mass point of identical mass that is located
at the center of the planet (see also Problem 5.12e). In the present
section we therefore explore which effects the force of a point parti-
cle exerts on an extended body.

5.4.1 Evolution of the center of mass

The force on the body is described by an integral that takes exactly
the same form as Equation (5.3.1), where now q is a vector from the
point particle to a volume element of the body.

The integral is best evaluated by introducing a coordinate frame
ê1(t), . . . , ê3(t) with orientation fixed in the rotating body and ori-
gin in the body’s center of mass Q = (Qx, Qy, Qz). In immediate
generalization of Equation (4.6.1) it is located at

Q =
1
M

∫
R3

d3q ρ(q) q ⇔

Qx

Qy

Qz

 =

M−1
∫

R3 d3q ρ(q) qx

M−1
∫

R3 d3q ρ(q) qy

M−1
∫

R3 d3q ρ(q) qz


A given mass element will always have the same coordinates

(r1, r2, r3) with respect to the body-fixed basis, and in a stationary
coordinate frame this position can be specified as

q(t) = Q(t) +
3

∑
i=1

ri êi(t)

Remark 5.5. The vector r describes the position (r1, . . . , r3) in the
body with respect to its center of mass. When the body rotates r
will evolve in time. However, the coordinates (r1, . . . , r3) are con-
stant numbers describing the shape of the body when they are
calculated in a coordinate system with base vectors {ê1, . . . , ê3}
fixed in the body and origin in its center of mass. Hence,

r =
3

∑
i=1

ri êi(t) and ṙ =
3

∑
i=1

ri ˙̂ei(t) (5.4.1)
(5.4.2)

�

We note that this choice of coordinates entails

M Q =
∫

R3
d3q ρ(q) q =

∫
R3

d3q ρ(q)
(
Q(t) +

3

∑
i=1

ri êi(t)
)

= Q(t)
∫

R3
d3q ρ(q) +

3

∑
i=1

êi(t)
∫

R3
d3q ρ(q) ri

⇒ 0 =
∫

R3
d3q ρ(q) ri =

∫
R3

d3r ρ(r) ri (5.4.3)

The latter equality holds because a shift of the origin by Q and
rotation of the coordinate axes do not affect the integration volume
(i. e. the Jacobi determinant of the transformation is one).

© Jürgen Vollmer — 2021-02-12 04:11:40+01:00



148 5. Impact of Spatial Extension

The acceleration q̈(t) takes the form

q̈(t) = Q̈(t) +
3

∑
i=1

ri ¨̂ei(t)

and the force on the spatially extended body results in

Ftot =
∫

R3
d3q ρ(q) q̈(t)

=
∫

R3
d3q ρ(q)

(
Q̈(t) +

3

∑
i=1

ri ¨̂ei(t)

)

= M Q̈ +
3

∑
i=1

¨̂ei(t)
∫

R3
d3r ρ(r) ri = M Q̈ (5.4.4)

The overall force Ftot results in an acceleration of the center of mass
that behaves exactly as for a point particle described in the previous
chapter. Thus, we have justified the assumption of point particles
adopted in Chapter 4.

5.4.2 Angular momentum and particle spin

Let us now explore the angular momentum of a spatially extended
particles. To this end we introduce the decomposition q = Q + r
into the definition

Ltot =
∫

R3
d3q ρ(q) (q× q̇) =

∫
R3

d3q ρ(q)
(
(Q + R)× (Q̇ + ṙ)

)
=
∫

R3
d3q ρ(q)

(
Q× Q̇

)
+
∫

R3
d3q ρ(q)

(
Q× ṙ

)
+
∫

R3
d3q ρ(q)

(
r× Q̇

)
+
∫

R3
d3q ρ(q)

(
r× ṙ

)
= M Q× Q̇ + Q× d

dt

∫
R3

d3q ρ(q)r(t)− Q̇×
∫

R3
d3q ρ(q)r(t)

+
∫

R3
d3q ρ(q)

(
r× ṙ

)
The first summand amounts to the angular momentum of the cen-
ter of mass, LCM = M Q × Q̇. The second and the third term
vanish due to Equation (5.4.3). The forth term can be simplified by
performing the integration in the comoving coordinate frame. The
coordinate transformation involves a translation by Q and rotation.
Hence, the Jacobi determinant is one, and the term only depends on
the local coordinates r. It is denoted as particle spin.

Definition 5.4: Particle Spin

The total angular momentum Ltot of a particle can be decom-
posed into the angular momentum LCM of its center-of-mass
motion, and its spin S around the center of mass, Q,

Ltot = LCM + S (5.4.5a)

with LCM = M Q× Q̇ (5.4.5b)

S =
∫

R3
d3r ρ(r1.r2.r3) r× ṙ (5.4.5c)
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Remark 5.6. The decomposition of the total angular momentum
has important consequences in collisions. For spatially extended
objects the conservation of angular momentum only implies that
the sum of the spin and the angular momentum of the center-of-
mass motion are conserved. As a consequence, the incoming and
outgoing angle can differ for a reflection at a wall, and the center
of mass of the particle can even move in different planes before
and after the collision. This will be demonstrated in the worked
example in Section 5.6. �

The discussion of particle spin can further be simplified by ex-
pressing the rotation of the body by the vector Ω that indicates the
rotation axis and angular speed |Ω|, and exploring that the relative
positions of the mass elements in the body do not change upon
rotation. Due to Equation (5.4.1) we have

S =
∫

R3
d3r ρ(r) r× ṙ

=
3

∑
ij=1

r̂i × ˙̂rj

∫
d3r ri rj ρ(r) =

3

∑
ij=1

r̂i × ˙̂rj tij

with tij =
∫

R3
dr1 dr2 dr3 ri rj ρ(r1, r2, r3)

Note that the coefficients tij are properties of the body. They charac-
terize the mass distribution of the body, and do not depend on the
motion. The situation simplifies further when one observes that the
velocities ˙̂rk are unit vectors that must be orthogonal to r̂k and to
Ω.3 Hence, the velocities can be expressed as 3 Recall that r̂k · r̂k = 1 such that

2 r̂k · ˙̂rk = 0, and by construction the
motion of mass elements is orthogonal
to the axis of rotation.˙̂rk = r̂k ×Ω

With this notations the kth component of S can be expressed as check signs!

Sk = r̂k · S =
3

∑
ij=1

r̂k ·
(
r̂i × (r̂j ×Ω)

)
tij

=
3

∑
ij=1

r̂k ·
(
r̂j (Ω · r̂i)−Ω (r̂i · r̂j)

)
tij

=
3

∑
ij=1

(
δjk Ωi −Ωk δij

)
tij

=
3

∑
i=1

Ωi

3

∑
j=1

δjk tij −Ωk

3

∑
ij=1

δijtij

=
3

∑
i=1

Ωi

(
tik − δik ∑

j
tjj

)

This amounts to a multiplication of the vector Ω written in terms of
its components Ωi. We summarize this observation in the following
definition
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Definition 5.5: Tensor of Inertia

The rotation of a solid body with a fixed mass distribution
ρ(r) can be described by a vector Ω that defines the rotation
axis and speed. It is related to the spin S of the body by
multiplication with the tensor or inertia

S = Θ Ω ,

i. e. a symmetric matrix with components

Θij =
∫

R3
dr1 dr2 dr3

(
ri rj −

3

∑
k=1

rk rk

)
ρ(r1, r2, r3)

Example 5.4: Intertial tensor for a solid ball

For a ball of radius R with uniform mass density ρ the
tensor of inertia has the following entries for its diagonal
elements

Θii =
∫

R3
dr1 dr2 dr3

(
ri ri −

3

∑
k=1

rk rk

)
ρ(r1, r2, r3)

We evaluate the integral in spherical coordinates with r = |r|
and θ denoting the angle with respect to the i-axis, which we
denote as z-axis in the following. Hence,

(rx, ry, rz) = r (sin θ cos φ, sin θ sin φ, cos θ) ,

and

Θii = ρ
∫ R

0
dr r2

∫ 1

−1
d cos θ

∫ 2π

0
dφ (r2

x + r2
y)

= 2 π ρ
∫ R

0
dρ r2

∫ 1

−1
d cos θ r2 sin2 θ

= 2 π ρ

(∫ R

0
dρ r4

) (∫ 1

−1
d cos θ

(
1− cos2 θ

))
= 2 π ρ

R5

5

(
2− 2

3

)
=

2
5

M R2

Moreover, for the off-diagonal element θik we align the k-axis
with φ = 0 and find

Θik = ρ
∫ R

0
dr r2

∫ 1

−1
d cos θ

∫ 2π

0
dφ rx rz

= ρ
∫ R

0
dr r2

∫ π

0
dθ sin θ

∫ 2π

0
dφ r2 sin θ cos θ

= 2π ρ
R5

5

∫ π

0
dθ sin2 θ cos θ = 0

since sin2 θ cos θ is antisymmetric with respect to π/2.

The finding that the off-diagonal elements of the tensor of inertia
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vanish is no coincidence. In ?? we will show that this happens
whenever the mass distribution features a symmetry in the ik plane.
Moreover, the ...theorem of linear algebra states that one can always fill in name and refer-

encechoose coordinates where all off-diagonal elements of the tensor of
inertia vanish.4 The particular axes where this happens are called 4 For a general matrix this is not true.

It is a consequence of the fact that Θ
is symmetric, i. e. Θij = Θji for all its
entries.

the axis of inertia of a body.

check wording

Definition 5.6: Axis of inertia

For each solid body there is a choice of internal coordinate
axes r̂i, i = 1, · · · , 3 where the tensor of inertia takes a di-
agonal form. The directions selected by the axis are called
axes of inertia, and the related diagonal entry of the matrix of
inertial is denoted as moment of inertia.

Remark 5.7. If the mass distribution of the body obeys reflection
or rotation symmetry, the axes of inertia are invariant under the
symmetry transformation. �

5.4.3 Time evolution of angular momentum and particle spin

The angular momentum LCM of its center-of-mass motion behaves
in exactly the same way as for point particles.

The spin changes in time according to the differential equation

Ṡ =
∫

R3
d3r ρ(r1, r2, r3) r× r̈

=
∫

R3
d3r ρ(r1, r2, r3) r× q̈ =

∫
R3

d3r r× F(Q + r)

In order to arrive at the second line, we noted that r̈ = q̈ − Q̈,
and that the integral for the Q̈ contribution vanishes because∫

R3 d3r ρ(r1, r2, r3) r = 0. Moreover, it is understood that the force F
is zero for coordinates r outside the body.

Definition 5.7: Particle Torque

When the part r of a body is subjected to force F then its
spin S is changing due to a torque M

Ṡ = M =
∫

body
d3r r× F(Q + r) (5.4.6)

Remark 5.8. Note that the torque is denoted by the letter capital M
that is also frequently used for the mass. Nevertheless, there is no
immediate risk that they are mixed up: The torque, M, is a vector,
while the mass, M, is a scalar. To further reduce the risk we will
denote masses by a small letter m, when mass and torque appear in
a problem. �

In general the force F(Q + r) can only be evaluated after the CM
motion has been determined. From the point of view of the rotat-
ing body it is a time-dependent force. This renders the motion of a
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particle in an inhomogeneous force field to be a very complex prob-
lem. However, the gravitational force on small spatial distances,
where the gravitational acceleration g takes a constant value, forms
a noticeable exception.

Theorem 5.3: Spinning motion and gravity

When an extended body moves subject to a spatially uni-
form acceleration g, then its center of mass follows a free-
flight parabola and its spin is preserved.

Proof. The statement about the center-of-mass motion follows from
Equation (5.4.4).

Conservation of the spin is due to∫
d3r r×

(
ρ(r1, r2, r3) g

)
=

(∫
d3r ρ(r1, r2, r3) r

)
× g

= 0× g = 0

Rather than in the free flight of a body, one also often encounters
a spinning body that is fixed at some point. Besides gravity there
is one additional force acting on the body that is constraining its
motion. When this force acts only on the center of mass, then it
has no effect on the spin and only changes the evolution of the
center of mass. When it acts on another point on the body, then the
total angular momentum is no longer conserved. This happens for
instance for a spinning top where one fixes a point on its axis.

add:
discussion of motion with additional reference point
Euler angles

5.4.4 Self Test

add problems:
moments of inertia
ruler pendulum
suspension bridge
torque on triangle/tetraeder

5.5 Bodies with internal degrees of freedom: Revisiting mobiles

In Section 2.10 we worked out the positions of masses for a mobile
where all masses are the same and where all sticks are straight.
It is worth while to revisit this problem from a more advanced
mathematical perspective.

5.5.1 Mobile at rest

The mobile is at rest when its center of mass does not move, Q̇ =

0, and when it has not spin. It remains at rest, when it does not
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experience a total force that will induce a motion of the center of
mass, and no torque that induces spin.

According to Equation (5.4.4) the center of mass can remain at
rest when the total force Ftot vanishes. This implies that the force Fs

at the suspension point of the mobile must balance the total weight
of the mobile M g,

0 = Ftot = Fs + M g ⇒ Fs = −M g

According to Equation (5.4.6) the mobile will not topple (i. e. pick
up or change its spin) when M = 0, and in Section 5.4.3 we
pointed out that the gravitational force does can not change the
spin. Hence, we are left with the force Fs at the suspension point
qs = Q + rs,

M = rs × Fs

It vanishes iff the force Fs acts parallel to the direction rs from the
position of the center of mass to the suspension point. Since Fs acts
antiparallel to gravity this entails that the center of mass of the mo-
bile must either be located directly below or above the suspension
point, irrespective of the shape of the arms or distribution of the
masses.

The mobile is not a stiff body. Rather its arms can move with
respect to each other. We assume again that the mass of the arms
may be neglected. The mass of the mobile is concentrated in its N
weights that reside at the positions qν, ν = 1, · · · , N. The position
of the suspension will be denoted as q0. Let us attach the mobile
to a spring so that we can explicitly measure the suspension force.
Clearly the forces on the mobile are conservative, such that there is
a potential Φ(q0, q1, q2, · · · , qN). The force F(ν) acting on particle ν

(or on the suspension) can then be calculated by taking the deriva-
tives with respect to the coordinates qν = (qν,x, qν,y, qν,z), of the
particle

F(ν) = −∇qν Φ =

−∂qν,xΦ
−∂qν,yΦ
−∂qν,zΦ


When the coordinates are collected into a single vector q = (q0, q1, q2, · · · , qN)

then the mobile is in equilibrium when the q-gradient of Φ(q) van-
ishes, 0 = ∇qΦ(q). However, when taking the partial derivatives
one has to keep in mind that one must not fix the values of the
other coordinates but rather keep in mind the constraints of motion
of the mobile (recall Example 3.7). Alternatively, one can account
for the elasiticity of the cords and bars in the mobile, and the re-
sulting restoring forces to pulling and bending. When also all these
forces are accounted for the stationary point can be found by a
variation principle.

move theory of variations from Chap 6.2 to this point

An more elegant way to deal with this problem will be presented
in Chapter 6. Here we already note that the condition on Φ can be
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interpreted as a multi-dimensional requirement for a stationary
point. The force will be zero, even when Φ(q) takes a maximum.
However, in that case small fluctuations will induce forces that
drive the system away from the stationary point. The mobile will
stay put when Φ(q) takes a minimum. Small perturbations will
then only lead to some wiggling close to the minimum. The mo-
bile can slowly move because there are perturbations to its shape
where all masses stay exactly at the same height. In terms of the
potential this amounts to neutral directions where the potential
is flat. In order to formally underpin this intuition we introduce
multidimensional Taylor expansions.

5.5.2 Multidimensional Taylor expansions

We consider a scalar function Φ : RD → R that assigns a real value
to its arguments x ∈ RD. For instance this may be the potential
energy assigned to a configuration of masses characterized by a
state vector x. We select a reference point x0 and explore how Φ(x)
deviates from Φ(x) for a small changes of the configuration, x =

x0 + ε, i. e. for a small change ε ∈ RD of the configuration. The
multidimensional Taylor expansions states that

Φ(x) = Φ(x0) + (εi ∂i)Φ(x0) +
1
2
(εi ∂i) (εj ∂j)Φ(x0) +

1
3!

(εi ∂i) (εj ∂j) (εk ∂k)Φ(x0) + . . .

Here, εi denotes the i-component of the vector ε with respect to an
orthonormal basis êi, and ∂i is the partial derivative with respect to
the according coordinate xi of x. Moreover, we use the Einstein con-
vention that requires summation over repeated indices, i. e. εi ∂i is
an abbreviation for εi ∂i = ∑i εi ∂i where i runs of the set of indices
labeling the base vectors, and analogous statement hold for (εj ∂j)

and (εk ∂k).

Remark 5.9. ∂jΦ(x0) should be interpreted as

∂jΦ(x0) =
∂

∂xj
Φ(x1, . . . , xj, . . . )

∣∣∣∣∣
x=x0

.

�

For scalar arguments x ∈ R the expression for the multi-
dimensional Taylor expansion reduces to the one for real functions
that we have discussed before.

Proof. For a one-dimensional function f (x) the Taylor expansion
around x0 with x = x0 + ε the expression (εj ∂j) reduces to ε d

dx .
Consequently,

f (x) = f (x0) +

(
ε

d
dx

)
f (x0) +

1
2

(
ε

d
dx

) (
ε

d
dx

)
f (x0)

+
1
3!

(
ε

d
dx

) (
ε

d
dx

) (
ε

d
dx

)
f (x0) + . . .

= f (x0) + ε f ′(x0) +
1
2

ε2 f ′′(x0) +
1
3!

ε3 f ′′′(x0) + . . .

These are the first terms of the 1D Taylor expansion.
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The first terms of the Taylor expansion can also be written in the
form

Φ(x) = Φ(x0) + (ε · ∇)Φ(x0) +
1
2

εT C(x0) ε + . . .

where the matrix C(x0) has the components cij(x0) = ∂i∂jΦ(x0).

Proof. For the first-order term we have

(ε · ∇)Φ(x0) =

(
∑

j
εj ∂j

)
Φ(x0) =

(
εj ∂j

)
Φ(x0)

where the second equality amounts to the simplification of notation
achieved by the Einstein convention.

For the second-order term we have

εT C(x0) ε =
(

ε1 , ε2 , ε3 , . . . ,
)


∂2
1Φ(x0) ∂1 ∂2Φ(x0) ∂1 ∂3Φ(x0) . . .

∂2 ∂1Φ(x0) ∂2
2Φ(x0) ∂2 ∂3Φ(x0) . . .

∂3 ∂1Φ(x0) ∂3 ∂2Φ(x0) ∂2
3Φ(x0) . . .

...
. . .




ε1

ε2

ε3
...


= ∑

jk
εj ∂j ∂kΦ(x0) εk = ∑

jk
(εj ∂j) (εk ∂k) Φ(x0)

=

(
∑

j
εj ∂j

) (
∑
k

εk ∂k

)
Φ(x0) =

(
εj ∂j

)
(εk ∂k) Φ(x0)

where the last equality amounts to the simplification of notation
achieved by the Einstein convention.

For scalar arguments the condition that ∇Φ(x0) = 0 amount to
the requirement that the slope vanishes at an extremum.

When Φ(x) is a potential then the requirement ∇Φ(x0) = 0
amounts to the requirement that the force F(x) vanishes at the
position x0,

F(x0) = −∇Φ(x0) = 0

Hence, we say that the function Φ(x) has a stationary point at x0

when ∇Φ(x0) = 0. This underpins the heuristic discussion of the
potential energy of the mobile that we gave above.

In particular Φ(x) has a minimum at x0 iff

• ∇Φ(x0) = 0, and

• all eigenvalues of C(x0) are positive.

Proof. We explore how Φ(x0) changes when one considers a point
x = x0 + ε in the vicinity of x0, where we express the deviation in
the orthonormal basis spanned by the eigenvectors êi of C. Adopt-
ing Einstein notation we have

ε = εi êi

⇒ εT C ε = εi êi ·
(
Cεk êk

)
= εi êi ·

(
λkεk êk

)
= λkεk εi êi · êk = λkεk εi δik = λkεk εk

such that

Φ(x0 + ε) = Φ(x0) + εk · ∂kΦ(x0) +
1
2

λkεk εk

© Jürgen Vollmer — 2021-02-12 04:11:40+01:00



156 5. Impact of Spatial Extension

1. Assume that ∂kΦ(x0) 6= 0 for some coordinate k. We will
then choose the orientation of the associated unit vector such that
∂kΦ(x0) = m > 0 and consider a displacement ε = ε êk. The change
of the value of Φ(x0) amounts then to

Φ(x0 + ε êk)−Φ(x0) = m ε +
λk
2

ε2 + · · · = ε

(
m +

λk
2

ε + . . .
)

For |ε| < 2m/|λk| the expression in the bracket takes a positive
value, such that Φ(x0 + ε êk) < Φ(x0) for small negative values of ε.
Consequently, Φ(x0) can only be a minimum when ∇Φ(x0) = 0.

2. Assume that ∇Φ(x0) = 0 and that all eigenvalue λk > 0. For
small ε the change of the value of Φ(x0) amounts then to

Φ(x0 + ε êk)−Φ(x0) '
1
2

λk ε2
k > 0

such that that the function takes values larger than Φ(x0) for all
positions x in the vicinity of x0.

Analogously, to the discussion of the minimum one shows that
Φ(x0) takes a maximum when the gradient vanishes, ∇Φ(x0) = 0
and when all eigenvalue λk take negative values.

The function Φ takes a saddle at x0 when there are positive and
negative eigenvalues and when ∇Φ(x0) = 0.

When some eigenvalues vanish and all others are positive (nega-
tive), then higher-order contributions of the Taylor expansion must
be considered to determine if Φ takes a minimum (maximum).

5.5.3 Self Test

Problem 5.9. Symmetry properties of the second-order contribu-
tions

Verify that the left and the right eigenvectors of C are identical,
up to transposition.

Why does this imply that the normalized eigenvectors span an
orthonormal basis?

Problem 5.10. Equipotential lines for a 2D potential

Consider a potential Φ(x) with x ∈ R2. Sketch the contour lines
of the potential for the following situations

• ∇Φ(x) = (1, 1) and C(x) = 0 for all positions x.

• ∇Φ(1, 2) = 0 and C(1, 2) =

(
1 b
b 1

)
with

1. b > 1,
2. 1 > b > −1,
3. b < −1,
4. b = 1.
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5.6 Worked example: Reflection of balls
turn from question to
worked example We consider the reflection of a ball from the ground, the lower

side of a table, and back. The ball is considered to be a sphere with
radius R, mass m, and moments of inertia mαR2 (by symmetry they
all agree). Its velocity at time t0 will be denoted as ż0. It has no spin
initially. ω0 = 0. The velocity and the spin after the nth collision
will be denoted as żn and ωn. We will disregard gravity such that
the ball travels on a straight path in between collisions.

a) Sketch the setup, and the parameters adopted for the first col-
lision: The positive x axis will be parallel to the floor and the
origin will be put into the location of the collision. Its direction
will be chosen such that the ball moves in the x-z plane. Take
note of all quantities needed to discuss the angular momentum
with respect to the origin.

b) Upon collision there is a force normal to the floor, F⊥, and a
force tangential to the floor, F‖. The spin of the ball will only
change due to the tangential force. The normal force F⊥ acts
in the same way as for point particles. The velocity in vertical
direction reverses direction and preserved its modulus. Denote
the velocity component in horizontal direction as vn = x̂ · ż, and
demonstrate that conservation of energy and angular momentum
imply that

v2
n + αR2ω2

n = v2
n+1 + αR2ω2

n+1

vn − αR ωn = vn+1 − αR ωn+1 .

Show that the tangential velocity component will therefore also
reverse its direction and preserves the modulus,

vn + R ωn = −(vn+1 + R ωn+1) .

� c) Determine v1(v0, ω0) and ω1(v0, ω0) for the initial conditions
specified above. Now, we determine v2(v1, ω1) and ω2(v1, ω1) by
shifting the origin of the coordinate systems to the point where
the next collision will arise, and we rotate by π to account for the
fact that we collide at the lower side of the table. What does this
imply for v1 and ω1? Continue the iteration, and plot v1, v2 and
v3 as function of α. Discuss the result for a sphere with uniform
mass distribution (what does this imply for ω?), and a sphere
with ω = 1/3.
Hint: For the plot one conveniently implements the recursion,
rather than explicitly calculating v3.

d) What changes in this discussion when the ball has a spin ini-
tially?

add:
tennis racket theorem?
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5.7 Problems

5.7.1 Practicing Concepts

Problem 5.11. Determining the volume, the mass, and the center
of mass

Determine the mass M, the area or volume V, and the center of
mass Q of bodies with the following mass density and shape.

a) A triangle in two dimensions with constant mass density ρ =

1 kg/m2 and side length 6 cm, 8 cm, and 10 cm.
Hint: Determine first the angles at the corners of the triangle.
Decide then about a convenient choice of the coordinate system
(position of the origin and direction of the coordinate axes).

b) A circle in two dimensions with center at position (a, b), radius
R = 5 cm, and constant mass density ρ = 1 kg/m2.
Hint: How do M, V and Q depend on the choice of the origin of
the coordinate system?

c) A rectangle in two dimensions, parameterized by coordinates
0 ≤ x ≤W and 0 ≤ y ≤ B, and a mass density ρ(x, y) = α x.
What is the dimension of α in this case?

d) A three-dimensional wedge with constant mass density ρ =

1 kg/m3 that is parameterized by 0 ≤ x ≤ W, 0 ≤ y ≤ B, and
0 ≤ z ≤ H − Hx/W.
Discuss the relation to the result of part b).

e) A cube with edge length L. When its axes are aligned parallel to
the axes x̂, ŷ, ẑ, it density takes the form ρ(x, y, z) = β z.
What is the dimension of β in this case?

Problem 5.12. Return time and position of the professor

a) How long will the professor take to arrive in down-under, and
when will he reappear for the first time close to home?

b) How far will Earth have moved in that time? When this happens
to him in Leipzig, where will he reappear, and when will he see
land again for the next time?

c) Adopt an orthonormal coordinate system (x, y, z) that is co-
rotating with Earth, with origin in the Earth center, z-axis ori-
ented towards the North pole, and x-direction towards the lat-
itude of Leipzig. Sketch the trajectory of the professor in the
(x, y)-plane when he was at rest initially.

d) Observe that the professor is initially standing on the surface of
Earth. What does this imply for his initial velocity? How does
the trajectory change?

e) Let him how start with zero velocity from the Moon surface.
What does this imply for the force law? How does the trajectory
change?
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5.7.2 Proofs

5.7.3 Transfer and Bonus Problems, Riddles
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Marguerite Martyn, 1914

wikimedia/public domain
Figure 6.1: The point-particle ide-
alization of a girl on a swing is the
mathematical pendulum of Figures 1.2
and 1.3.

In Chapter 5 we considered objects that consist of a mass points
with fixed relative positions, like a flying and spinning ping-pong
ball. Rather than providing a description of each individual mass
element, we established equations of motion for their center of mass
and the orientation of the body in space. From the perspective of
theoretical mechanics the fixing of relative positions is a constraint
to their motion, just as the ropes of a swing enforces a motion on
a one-dimensional circular track, rather than in two dimensions.
The deflection angle θ of the pendulum, and the center of mass and
orientation of the ball are examples of generalized coordinates that
automatically take into account the constraints.

In this chapter we discuss how to set up generalized coordinates
and how to find the associated equations of motion. The discussion
will be driven by examples. The examples will be derived from the
realm of integrable dynamics. These are systems where conserva-
tion laws can be used to break down the dynamics into separate
problems that can be interpreted as motion with a single degree of
freedom.

At the end of the chapter you know why coins run away rolling
on their edge, and how the speed of a steam engine was controlled
by a mechanical device. Systems where the dynamics is not inte- add more pics

grable will subsequently be addressed in Chapter 7.

https://commons.wikimedia.org/wiki/File:Sketch_by_Marguerite_Martyn_of_a_girl_standing_on_a_swing_in_a_bathing_suit_getting_dry_from_the_breeze,_1914.png
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6.1 Motivation and Outline:
How to deal with constraint motion?

Figure 6.2: Forces acting for the motion
of a swing, or its equivalent idealiza-
tion of of a mathematical pendulum.

Almost all interesting problems in mechanics involve constraints
due to rails or tracks, and due to mechanical joints of particles.
The most elementary example is a swing (Figure 6.1), where a rope
forces a mass M to move on a path with positions constrained to
a circle with radius given by the length L of the rope. Gravity M g
and the pulling force Fr of the rope acting act on the mass (Fig-
ure 6.2). However, how large is the latter force? At the topmost
point of its trajectory the mass is at rest, and no force is needed
along the rope to keep it on its track. At the lowermost point,
where the swing goes with its maximum speed, there is a sub-
stantial force. Newton’s formalism requires a discussion of these
forces. Lagrange established an alternative approach that provides
equations of motion with substantially less effort. The key idea of
this formalism is to select generalized coordinates adapted to the
problem.

Definition 6.1: Generalized Coordinates

We consider N particles moving in D dimensions. Their
motion is constrained to lie on a prescribed track and their
relative positions may be constrained by bars and joints. Due
to the constrains the system only has M < D N degrees of
freedom. In this chapter we denote the positions of the par-
ticles as x ∈ RD N , and we specify position compatible with
the constraints as x(q(t)), where q ∈ RM are the generalized
coordinates adapted to the constrained motion.

Example 6.1: Generalized coordinates for a pendulum

We describe the position of the mass in a mathematical pen-
dulum by the angle θ(t), as introduced in Example 1.10.
The position of the mass in the 2D pendulum plane is thus
described by the vector

x(t) = L

(
sin θ(t)
− cos θ(t)

)
= L R̂(θ(t)) .

In view of the chain rule its velocity amounts to

ẋ = L θ̇ ∂θ R̂(θ(t)) = L θ̇ θ̂(θ(t)) with θ̂(θ(t)) =

(
cos θ(t)
sin θ(t)

)

Note that R̂(θ) and θ̂(θ) are orthonormal vectors that de-
scribe the position of the mass in terms of polar coordinates
rather than fixed-in-space Cartesian coordinates.
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Example 6.2: Generalized coordinates for a ping-pong ball

A ping-pong ball consists of N atoms located in the three-
dimensional space. During a match they follow an intricate
trail in the vicinity of the ping-pong players. At any time
during their motion the atoms are located on a thin spherical
shell with fixed positions with respect to each other. Rather
than specifying the position of each atom one can therefore
specify the position of the ball in terms of six generalized
coordinates (Figure 6.3): Three coordinates provide its cen-
ter of mass. The orientation of the ball can be provided by
specifying the orientation of a body fixed axis in terms of its
polar and azimuthal angle, and a third angle specifies the
orientation of a point on its equator when rotating the ball
around the axis.

Figure 6.3: The position of a ball in
space can be described in terms of a
3D vector Q that describes the center
of the ball (red dot), angles θ, φ that
describe the orientation in space of
a fixed axes in the ball (green line),
and another angle ψ that describes the
position of point that is not on the axis
(blue point).

Generalized coordinates describe only positions complying with
the constraints of the motion, and they do not account for other po-
sitions from the very beginning. Lagrange’s key observation is that
constraint forces, e. g. the force on the rope of the swing, only act
in a direction orthogonal to the positions described by generalized
coordinates. Therefore, the constraint forces do not affect the time
evolution of generalized coordinates. For the pendulum and the
ping-pong ball one only has to account for gravity to find the evo-
lution of the generalized coordinates. There is no need to deal with
the force along the rope in the swing, and the atomic interaction
forces that keep atoms in their positions in the ping-pong ball.

Outline
update outline

In ?? we will first present the formalism in action in order to
learn how it works. Subsequently, in ?? we explore why it works. In
the final ?? we learn how it has impacted the physical world view
in the course of the 20

th century.

6.2 Lagrange formalism

The Lagrange formalism provides an effective approach to derive
the EOM for generalized coordinates. We first provide a derivation
in a Cartesian coordinate frame. Then we discuss how the EOM for
generalized coordinates are determined.

6.2.1 Euler-Lagrange equations for Cartesian coordinates

In Section 5.5 we saw that at mobile will be at rest in a position
characterized by the coordinate vector x when the leading order
correction δx · ∇Φ(x) to its potential energy Φ(x) vanishes for ev-
ery perturbation δx of the position. In the following we denote the
leading order corrections term of the Taylor expansion as variation.
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Definition 6.2: Variation of a scalar function

Let f : D × [tI , tE] → R with D ⊂ RD be function that
has continuous first derivatives for all x ∈ D. The variaton of
f for a small deviation δx of x such that x + δx ∈ D amounts
to the linear-order term of the Taylor expansion of f ,

δ f (x, t) = δx · ∇x f (x, t) =
D

∑
i=1

δxi
∂ f (x, t)

∂xi

In Section 5.5 we showed that δΦ(x0) = 0 for every critical point
x0 where the system is (and remains) at rest. We now also account
fort explicitly time-dependent potentials Φ(x, t) and consider the
variations δx(t) of time dependent trajectories x(t) with t ∈ [tI , tF].
Here δx(t) describes the deviation of the perturbed trajectory from
the reference trajectory x(t) at time t, and it is understood that
δx(tI) = δx(tF) = 0 Now we have

δΦ(x, t) = δx · ∇xΦ(x, t) = −δx · F(x, t) = −δx ·m ẍ

The velocity and acceleration for the perturbed trajectory x + δx are
ẋ + δẋ and ẍ + δẍ such that

d
dt

(m ẋ · δx) = m ẍ · δx + m ẋ · δẋ = m ẍ · δx + δ
m ẋ2

2

where T = m ẋ2/2 is the kinetic energy. Hence, we can express the
variation of the potential as

δΦ(x, t) = − d
dt

(δx ·m ẋ) + δT(ẋ)

⇒ δ
(
T(ẋ)−Φ(x, t)

)
= − d

dt
(δx ·m ẋ)

The difference between the kinetic and potential energy is a total
time derivative. Integrating the expression over time from tI to tF

therefore provides

∫ tF

tI

dt δ
(
T(ẋ)−Φ(x, t)

)
= −

∫ tF

tI

dt
d
dt

(δx ·m ẋ)

= δx(tI) ·m ẋ(tI)− δx(tF) ·m ẋ(tF) = 0

The integral vanishes beceause x is fixed a the start and the end
point.

Up to mathematical identities that are always true we only used
Newton’s law F(x, t) = mẍ to arrive at this conclusion. This ob-
servation is denoted as the principle of least action. Rather than on
Newton axioms we may therefore base mechanics on the principle
of least action.

Definition 6.3: Lagrangian

We consider a dynamics with kinetic energy T(ẋ(t)) and po-
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tential energy Φ(x(t), t) for trajectories x(t). The difference

L(x, ẋ, t) = T(ẋ)−Φ(x, t)

will be called Lagrangian or Lagrange function of the dynam-
ics.

Definition 6.4: Action of a trajectory

For a dynamics with Lagrangian L(x, ẋ, t) the action
S[x(t), ẋ(t)] of a trajectory x(t), tI ≤ t ≤ tF with velocity
ẋ(t) is defined as

S[x(t), ẋ(t)] =
∫ tF

tI

dt L(x(t), ẋ(t), t)

The variation of the action will be defined as

δS[x(t), ẋ(t)] =
∫ tF

tI

dt δL(x(t), ẋ(t), t)

Axiom 6.1: Principle of least action

Let x(t) with tI ≤ t ≤ tF be a trajectory from x(tI) to x(tF)

that satisfies Newton’s law F(x, t) = mẍ with a force that
is derived from a potential Φ(x, t). The the variation of the
action associated the trajectory will vanish

0 = δS[x(t), ẋ(t)]

Remark 6.1. The principle is called least action principle. However,
it only requires that the action has a critical point. There are many
examples in physics where the action takes a saddle point, rather
than a minimum. �

The principle provides an alternative way to determine EOM
that proceeds as follows.

0 = δS[x(t), ẋ(t)] =
∫ tF

tI

dt δL(x(t), ẋ(t), t)

=
∫ tF

tI

dt [δẋ∇ẋL(x, ẋ, t) + δx∇xL(x, ẋ, t)]

=
∫ tF

tI

dt δx
[(
− d

dt
∇ẋL(x, ẋ, t)

)
+∇xL(x, ẋ, t)

]
In the last step we performed a partial integration.1 The integral 1 The boundary term of the partial

integration vanishes,

[δx∇ẋL(x, ẋ, t)]tF
tI

= δx(tF) [∇ẋL(x, ẋ, t)]t=tF

− δx(tI) [∇ẋL(x, ẋ, t)]t=tF

= 0

must vanish for every choice of the variaton δx. In particular we
may choose a function δx that takes the same sign as the square
bracket whenever it does not vanish. However, in that case the
integral is strictly positive unless the square bracket vanishes. This
provides the EOM of the dynamics in terms of the Euler-Lagrange
equation.
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Theorem 6.1: Euler-Lagrange equations

Let xi(t) be a coordinates of a trajectory x(t) of a dynamics
with Lagrangian L(x, ẋ, t). Then xi(t) is a solution of the
Euler-Lagrange equation

d
dt

∂

∂ẋi
L(x, ẋ, t) =

∂

∂xi
L(x, ẋ, t) (6.2.1)

6.2.2 Euler-Lagrange equations for generalized coordinates

The Euler-Lagrange equations derive from a variational principle
that states that the gradient of the Lagrange function with respect
to the phase-space coordinate Γ = (x, ẋ) must vanish for physically
admissible trajectories. This holds for all directions in phase space.
However, generalized coordinates do not qualify as a vector such
that some care is needed to derive their EOM.

Let q be the generalized coordinates of a system and x(q) the
associated configuration vector of the system. Note that x is a vec-
tor with all properties discussed in Chapter 2, while q might only
be a tuple of functions that provide a convenient parameteriza-
tion of valid configurations. We address the situation where the
forces in the system are conservative, arising from a potential en-
ergy Φ

(
x(q), t

)
. Moreover, we assume the the potential energy can

be split into a part Φc
(
x(q), t

)
that accounts for the forces that con-

traint the motion of the system, and a part U
(
x(q), t

)
that accounts

for all other forces.
Example 6.3: Rollercoaster trail

The position x(t) on the trail of a rollercoaster can uniquely
be described by the (dimensionless) distance ` along the trail
that it has gone. Hence, generalized coordinate `(t) uniquely
describes the configuration x(`(t)) of the rollercoaster at
time t.

Example 6.4: Driven pendulum

A driven pendulum is a mathematical pendulum where the
position of the fulcrum X f and the length of the pendulum
arm L(t) are subjected to a prescribed temporal evolution.
The position of the pendulum weight, x, may then be de-
scribed by the angle θ ∈ [0, 2π] = D,

x(θ, t) = X f (t) + R(t)

(
cos θ

sin θ

)

Here, the time dependence of X f (t) and R(t) reflect the
temperal evolution of the time-dependent setup of the pen-
dulum. The temporal evolution of the pendulum will be
described in terms of the generalized coordinate θ(t).
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We will now explore the implications of the principle of least
actions for variations of the path that refer only to accessible coordi-
nates. For the kthe coordinate of the variation we write

δxk = xk(q + δq, t)− xk(q, t) =
d

∑
ν=1

∂xk
∂qν

δqν

and for the associated time derivative we have

δẋk =
d
dt

δxk =
d

∑
ν=1

∂ẋk
∂qν

δqν +
d

∑
ν=1

∂xk
∂qν

δq̇ν

As a consequence the variation of the Lagrangian takes the form

δL = δx · ∇xL+ δẋ · ∇ẋL = δx · (Fc + Fe) + δẋ ·mẋ

where Fc represent the constraint forces. We consider variations
δx that relate trajectories complying with the contraints such that
δx · Fc = 0. Therefore, in the setting of generalized coordinates
one need not accout for constraint forces. We will now express
the variation of the Lagrangian in terms of the variations of the
genralized coordinates,

δL =
D

∑
k=1

[
δxk

∂L
∂xk

+ δẋk
∂L
∂ẋk

]

=
D

∑
k=1

[(
d

∑
ν=1

∂xk
∂qν

δqν

)
∂L
∂xk

+
d

∑
ν=1

(
∂ẋk
∂qν

δqν +
∂xk
∂qν

δq̇ν

)
∂L
∂ẋk

]

=
d

∑
ν=1

δqν

D

∑
k=1

(
∂xk
∂qν

∂L
∂xk

+
∂ẋk
∂qν

∂L
∂ẋk

)
+

d

∑
ν=1

δq̇ν

D

∑
k=1

∂xk
∂qν

∂L
∂ẋk

On the other hand

∂L
(

x(q, t), ẋ(q, q̇, t), t
)

∂qν
=

D

∑
k=1

(
∂xk
∂qν

∂L
∂xk

+
∂ẋk
∂qν

∂L
∂ẋk

)
∂L
(

x(q, t), ẋ(q, q̇, t), t
)

∂q̇ν
=

D

∑
k=1

∂L
(

x(q, t), ẋ(q, q̇, t), t
)

∂ẋk

∂ẋk
∂q̇ν

=
D

∑
k=1

∂L
∂ẋk

∂

∂q̇ν

(
∂xk
∂t

+
d

∑
µ=1

∂xk
∂qµ

q̇µ

)

=
D

∑
k=1

∂L
∂ẋk

∂xk
∂qν

Therefore,

δS =
∫

dtδL =
∫

dt
d

∑
ν=1

(
δqν

∂L
∂qν

+ δq̇ν
∂L
∂q̇ν

)

=
∫

dt
d

∑
ν=1

δqν

(
∂L
∂qν
− d

dt
∂L
∂q̇ν

)
The equations of motion are derived from the Lagrangian, Defini-
tion 6.5, by Algorithm 6.1.
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Definition 6.5: Lagrangian in generalzized coordinates

The Lagrange function L amounts to the difference of the
kinetic energy T and the potential energy U of the system,

L = T −U = ∑
α

mα

2
ẋ2

α(q)−U
(
x(q)

)
(6.2.2)

Constraint forces are not considered.

Algorithm 6.1: Euler Lagrange EOMs

a) Identify generalized coordinates q that describe the ad-
missible configurations of the system.

b) Determine x(q), and the resulting expression of the po-
tential energy in terms of q,

U(q) = U
(

x(q)
)

c) Evaluate the kinetic energy based on the chain rule

T(q, q̇) = ∑
α

mα

2
ẋ2

α(q) = ∑
α

mα

2

(
∑

i

∂xα

∂qi
q̇i

)2

where xα is the α-component of the configuration vector x
and mα the mass of the associated particle.

Hence, we establish the Lagrange function

L(q, q̇) = T(q, q̇)−U(q)

expressed in terms of the generalized coordinates q and
their time derivatives q̇.

d) Determine the EOM for the component qi of q by evaluat-
ing the Euler-Lagrange equation

d
dt

∂L
∂q̇i

=
∂L
∂qi

(6.2.3)

6.3 Dynamics with one degree of freedom

We will now illustrate the application of the Lagrange formalism
for two examples with a single degree of freedom of the motion:
the mathematical pendulum, Example 6.1, and the motion of a
pearl on a rotating ring. The EOM for the pendulum can also easily
be found by other apporaches. The pearl on a rotating ring consti-
tutes a system with an explicit time dependence. In that case the
Lagrange formalism dramatically simplifies the the derivation of
the EOM.
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6.3.1 The EOM for the mathematical pendulum

The parameterization introduced in Example 6.1 provides the ki-
netic energy

T =
M
2

ẋ2 =
M
2

L2 θ̇2 θ̂(θ(t))2 =
M
2

L2 θ̇2

and the potential energy in the gravitational field

U = −Mg · x = −M L R̂
(
θ(t)

)
· g = −M L g cos θ(t)

since g = g R̂
(
0
)
.

Consequently,
L =

M
2

L2 θ̇2 + M g L cos θ(t)

⇒ M L2 θ̈(t) =
d
dt

∂L
∂θ̇

=
∂L
∂θ

= −M g L sin θ(t)

⇒ θ̈(t) = − g
L

sin θ(t) (6.3.1)

The EOM (6.3.1) can be integrated once by multiplication with
2θ̇(t)

θ̇2(t)− θ̇2(t0) =
∫ t

t0

dt 2θ̇θ̈ =
∫ t

t0

dt 2θ̇
(
− g

L
sin θ(t)

)
= 2

∫ θ(t)

θ(t0)
dθ

d
dθ

( g
L

cos θ
)
= 2

g
L
(
cos θ(t)− cos θ(t0)

)
This is a Mattheiu differential equation. For most initial conditions
it can not be solved by simple means. However, the first integral
provides the phase-space trajectories θ̇(θ) for every given set of
initial conditions

(
θ(t0), θ̇(t0)

)
,

Figure 6.4: The potential U(θ) (top)
and the phase-space plot (bottom) for
the EOM (6.3.1) of the mathematical
pendulum. The numbers marked on
the contour lines indicated the energy
of a trajectory in units of MgL.

θ̇ = ±
√

θ̇2(t0) +
2 g
L
(
cos θ(t)− cos θ(t0)

)
The phase-space portrait is shown in Figure 6.4. There are trivial
solutions where the pendulum is resting without motion at its sta-
ble and unstable rest positions θ = 0 and θ = π, These positions are
denoted as fixed points of the dynamics. There are closed circular
trajectories close to the minimum, θ = 0, of the potential where
it is harmonic to a good approximation. These are solutions with
energies 0 < 1 + E/MgL . 1.

For larger amplitudes the amplitude of the swinging grows, and
the circular trajectories get deformed. When E approaches MgL the
phase-space trajectories arrive close to the tipping points θ = ±π

where they form very sharp edges. For θ close to θ = ±π the
trajectories look like the hyperbolic scattering trajectories for the
potential −a x2/2 that was discussed in Problem 4.25. When the
non-dimensional energy is exactly one, the pendulum starts on top,
goes through the minimum and returns to the top again. Apart
from the fixed points, this is the only case where the evolution
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can be obtained in terms of elementary functions. For the initial
condition θ̇(ti) = 0 and cos θi = −1 we find

ω−1 θ̇H(t) = ±
√

2 + 2 cos θH(t) = ±2 cos
θH(t)

2

The same equation is also obtained for the initial condition θ0 = 0
and θ̇(t0) =

√
2g/L half-way on the way from the top back to the

top. For this initial condition the ODE for θ̇H can be integrated, and
we find

±2 ω (t− t0) =
∫ θ(t)

0

dθ

cos θ
2

= ln
1 + sin θH(t)

2

1− sin θH(t)
2

− ln
1
1

⇒ θH(t) = 2 arcsin tanh
(
±ω t

)
(6.3.2)

The ± signs account for the possibility that the pendulum can move
clockwise and counterclockwise. The counterclockwise trajectory is
shown in Figure 6.5. In the limit t → −∞ it starts in the unstable
fixed point θ = −π. It falls down till it reaches the minimum θ = 0
at time t0, and then it rises again, reaching the maximum θ = π for
time t→ ∞. Such a trajectory is called a homocline.

−10 −5 0 5 10

ω (t− t0)

−π

0

π

θ(
t)

Figure 6.5: Anticlockwise moving
heterocline for the mathematical
pendulum.

Definition 6.6: Homoclines and Heteroclines

Homoclines and heteroclines are trajectories that approach a
fixed points of a dynamics in their infinite past and future.
A homocline returns to the same fixed point from where it
started. A heterocline connects two different fixed points.

The take-home message of this example is that the minima and
maxima of a potential organize the phase space flow. Close to each
minimum a conservative system will have closed trajectories that
represent oscillations in a potential well. The well is confined by
maxima to the left and right of the minimum of the potential.
When these maxima have different height there is a homoclinic
orbit coming down from and returning to the shallower maximum.
When they have the same height, they are connected by heteroclinic
orbits. Thus, the homoclines and heteroclines divide the phase
space into different domains. Initial conditions within the same
domain show qualitatively similar dynamics. Initial conditions in
different domains feature different dynamics. For the mathematical
pendulum the heteroclines divide are three domains, up to the 2π

translation symmetry of θ:

a) There are trajectories oscillating around θ = 0, with energies
smaller than MgL. The region of these oscillations is bounded by
the heteroclines provided in Equation (6.3.2).

b) Trajectories with initial conditions lying above the anticlockwise
moving heterocline will persistently rotate anticlockwise and
never reverse their motion.
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c) Trajectories with initial conditions lying below the clockwise
moving heterocline will persistently rotate clockwise and never
reverse their motion.

The general strategy for sketching phase-space plots is summa-
rized in the following algorithm.

Algorithm 6.2: Phase space plots

a) Identify the minima and maxima of the potential. Mark
the minima as (marginally) stable fixed points with veloc-
ity zero. Mark the maxima as unstable fixed points with
velocity zero.

b) Identify the fate of trajectories departing from the unsta-
ble fixed points. Identify to this end the closest positions
on the potential that have the same height as the maxi-
mum. When it is another extremum the orbit will form an
heterocline. Otherwise, it will be reflected and return to
the initial maximum, forming a homocline. If there is no
further point of the same height, the trajectory will escape
to infinity.

c) Add characteristic trajectories close to the minima and in
between homo- and heteroclines.

d) Observe the symmetries of the system. To the very least
the plot is symmetric with respect to reflection at the
horizontal axis, i. e. swapping the sign of the velocity.

e) Observe energy conservation (if it applies): The modulus
of the velocity takes a local minimum for a maximum of
the potential, and a local maximum for a minimum of the
potential.

6.3.2 The EOM for a pearl on a rotating ring

Figure 6.6: Motion of a pearl mov-
ing on a ring rotating with a fixed
frequency Ω.

We consider a pearl of mass M that can freely move on a ring. The
ring is mounted vertically in the gravitational field and it spins with
angular velocity Ω around its vertical symmetry axis. Again the
setup constraints the position of the pearl to lie on a spherical shell,
and we hence describe its position as

x(t) = ` R̂
(
θ(t), φ(t)

)
However, in this case the position of the pearl is fully described
by the angle θ(t) of the deflection of the pearl from the direction
of gravity (see Figure 6.6. The angle φ(t) = Ωt is entering the
problem as a parameter, dictated by the setup of the problem, and
the motion of the pearl on the ring will be described based on a
single EOMs for its coordinate θ(t).
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Figure 6.7: The left panel shows the
effective potential for the pearl on a
ring for parameter values (Ω/ω) ∈
{0, 2−1/2, 1, 1.2, 1.5, 2, 5} from bottom
to top. The subsequent panels show
phase-space portraits of the motion for
Ω/ω = 2−1/2, 1, and 2, respectively.

The potential energy takes the same form as for the pendulum,

U = −M g · x = −M g ` cos θ(t) .

The kinetic energy is obtained based on its velocity

ẋ = ` θ̇ θ̂
(
θ(t), Ωt

)
+ `Ω sin θ(t) φ̂

(
θ(t), Ωt

)
which provides the Lagrange function

L(θ, θ̇) =
M
2

`2 θ̇2 +
M
2

`2 Ω2 sin2 θ(t) + M g ` cos θ(t)

It only differs from the expression for the spherical pendulum
by the fact that φ(t) is not a coordinate whose evolution must be
determined from an EOM. Rather it is a parameter φ(t) = Ω t
provided by the setting of the problem.

The motion only has a single DOF, θ(t), with EOM

θ̈(t) = − g
`

sin θ(t)
(

1− `Ω2

g
cos θ(t)

)
(6.3.3)

This EOM can be integrated by the same strategy adopted for the
swing and the spherical pendulum. Thus, one finds the effective
potential

Ueff(θ) = −ω2 cos θ

[
1− 1

2

(
Ω
ω

)2
cos θ

]

Figure 6.7 shows the effective potential and phase space por-
traits for different values of angular momentum, i. e. of the dimen-
sionless control parameter κ = Ω/ω. For κ < 1 the phase space
has the same structure as that of a planar mathematical pendu-
lum, with a stable fixed point at θ = 0. When κ passes through
one, this minimum of Ueff turns into a maximum, and two new
minima emerge at the positions θc = ± arccos κ−2 that are indi-
cated by a dotted gray line in the left panel of Figure 6.7. The new
maximum at zero is always shallower than the maxima at ±π.
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Hence, it gives rise to two homoclinic orbit that wind around the
new stable fixed points. The maxima at ±π will further we con-
nected by heteroclinic orbits. Hence, phase space is divided into
five distinct regions. For energies smaller than Ueff(θ = 0) the tra-
jectories wiggle around one of the stable fixed points. They stay
on one side of the ring and oscillate around the angle θc. There are
two regions of this type because the pear can stay on both sides
of the ring. For Ueff(θ = 0) < E < Ueff(θ = π) the trajectories
show oscillations back and forth between the two sides of the ring,
For E > Ueff(θ = π) they rotate around the ring in clockwise or
counter-clockwise direction for θ̇ < 0 or θ̇ > 0, respectively.

There are two take-home message from this example:
1. There are no conservation laws in the dynamics when there

are explicitly time-dependent constraints. Hence, the strategies
of Chapter 4 to establish and discuss the EOM can no longer be
applied. However, the Lagrange formalism still provides the EOM
in a straightforward manner.

1.0 2.0 3.0 4.0

−π
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4
π

−1
2
π

−1
4
π

1
4
π

1
2
π

3
4
π

π

θc

Figure 6.8: Paramter dependence of
the positions of the fixed points of the
rotation governor. Solid lines mark
stable fixed points, and unstable fixed
points are marked by dashed lines.

2. In general, the structure of the phase-space flow changes upon
varying the dimensionless control parameters of the dynamics.
These changes are called bifurcations, and they are a very active
field of contemporary research in theoretical mechanics. The pearl
on the ring features a pitchfork bifurcation since the positions of the
fixed points resemble the shape of a pitch fork (see Figure 6.8). We
will come back to this topic in due time.

6.3.3 Centrifugal Governor

In the absense of rotation the motion of the perl on the ring amounts
to a mathematical pendulum with frequency ω. This relation is
used in centrifugal governors that are used to control the rotation
of mills and steam engines. The sharp increase of θc when the rota-
tion frequence rises beyond Ω is used in a feedback mechanism of
the governor to control for instance the rotation speed of the steam
engine.

rotational governor –> impact of dissipation

carusell –> saddle-node bifurcation

6.3.4 Self Test

Problem 6.1. Phase-space analysis for a pearl on a rotating ring

a) Verify then by explicit calculation that R̂, θ̂, and φ̂ obey the rela-
tions

θ̂ =
∂R̂
∂θ

and φ̂ = R̂× θ̂ ,

and that they form an orthonormal basis.
How is φ̂ related to ∂R̂/∂φ?

b) Evaluate ẋ(t) = ` ˙̂R(θ(t), Ωt) based on the relations established
in a).
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c) Determine the kinetic energy T and the potential energy V of the
pearl.

d) Fill in the steps in the derivation of the EOM for θ, as provided
in Equation (6.3.3).

Problem 6.2. Kitchen pendulum

We consider a pendulum that is built from two straws (length
L1 and L2), two corks (masses m1 and m2), a paper clip, and some
Scotch tape (see picture to the right). It is suspended from a shash-
lik skewer, and its motion is stabilized by means of the spring taken
from a discharged ball-pen. Hence, the arms move vertically to the
skewer. We denote the angle between the arms as α, and the angle
of the right arm with respect to the horizontal as θ(t).

Figure 6.9: Setup of the kitchen pendu-
lum.

a) Determine the kinetic energy, T, and the potential energy, V, of
the pendulum. Argue that T and V can only depend on θ and θ̇,
and determine the resulting Lagrangian L(θ, θ̇).

b) Determine the EOM of the pendulum.

c) Find the rest positions of the pendulum, and discuss the motion
for small deviations from the rest positions. Sketch the according
motion in phase space.

d) The EOM becomes considerably more transparent when one
selects the center of mass of the corks as reference point. Show
that the center of mass lies directly below the fulcrum when the
pendulum it at rest.

e) Let ` be the distance of the center of mass from the fulcrum, and
ϕ(t) be the deflection of their connecting line from the vertical.
Determine the Lagrangian L(ϕ, ϕ̇) and the resulting EOM for
ϕ(t).

� f) Do you see how the equations for θ̈(t) and ϕ̈(t) are related?

6.4 Dynamics with two degrees of freedom

6.4.1 The EOM for the spherical pendulum

The spherical pendulum describes the motion of a mass M that
is mounted on a bar of fixed length ` whose other end is fixed to
a pivot. Thus, the position of the mass is constraint to a spherical
shell. We adopt spherical coordinates to describe the position

x(t) = `

sin θ(t) cos φ(t)
sin θ(t) sin φ(t)
− cos θ(t)

 = ` R̂
(
θ(t), φ(t)

)
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The angle θ takes values 0 < θ < π, and it denotes the angle
between the position the mass and the gravitational field. Conse-
quently, the potential energy in the gravitational field is obtained

U = −M g · x = −M g ` cos θ(t) .

The angle φ takes values 0 ≤ φ < 2π, and it describes in which
direction the mass is deflected from the vertical line, in a plane
orthogonal to the action of gravity (see Figure 6.10).

Figure 6.10: Spherical coordinates
adopted to describe the motion of a
spherical pendulum.

For the velocity we find

ẋ = ` θ̇ ∂θ R̂
(
θ(t), φ(t)

)
+ ` φ̇ ∂φR̂

(
θ(t), φ(t)

)
= ` θ̇ θ̂

(
θ(t), φ(t)

)
+ ` φ̇ sin θ(t) φ̂

(
θ(t), φ(t)

)
where we introduced θ̂, and φ̂ with

θ̂(θ, φ) =

cos θ cos φ

cos θ sin φ

sin θ

 and φ̂(θ, φ) =

− sin θ sin φ

sin θ cos φ

0


The unit vectors R̂, θ̂, and φ̂ form a position-dependent orthonor-
mal basis that describes positions in R3 in terms of polar coordi-
nates. The expression for ẋ and θ̂ · φ̂ = 0 immediately provide the
kinetic energy

T =
M
2

ẋ2 =
M
2

`2 θ̇2(t) +
M
2

`2 sin2 θ(t) φ̇2(t)

Consequently, the Lagrange function for the spherical pendulum
takes the form

L(θ, φ, θ̇, φ̇) =
M
2

`2 θ̇2 +
M
2

`2 sin2 θ(t) φ̇2(t) + M g ` cos θ(t)

We observe that L does not depend on φ. In that case it is advis-
able to first discuss the EOM for φ. It takes the form

M `2 d
dt

(
φ̇ sin2 θ(t)

)
=

d
dt

∂L
∂φ̇

=
∂L
∂φ

= 0

The derivative of the Lagrange function with respect to φ vanishes
because L does not depend on φ. Such a coordinate is called a
cyclic, and it always implies a conservation law, C. For the spher-
ical pendulum it signifies conservation of the z-component of the
angular momentum, and it provides an expression of φ̇ in terms of
θ

C = φ̇ sin2 θ(t) = const ⇒ φ̇(t) =
C

sin2 θ(t)
(6.4.1)

where C is proportional to the z-component of the angular momen-
tum.

The general case is summarized in the following definition:
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Definition 6.7: Cyclic coordinates

A coordinate qi is called cyclic when the Lagrange function
depends only on its time derivative q̇i, and not on qi. In that
case the associated Euler-Lagrange equation establishes a
conservation law,

C =
∂L
∂q̇i

After all d C
dt

=
d
dt

∂L
∂q̇i

=
∂L
∂qi

= 0

Remark 6.2. The constant value of C is determined by the initial
conditions on q̇i and on the other coordinates. �

Let us now consider to the other coordinate of the spherical
pendulum. The EOM for θ(t) takes the form

M `2 θ̈(t) =
d
dt

∂L
∂θ̇

=
∂L
∂θ

= M `2 φ̇2(t) sin θ(t) cos θ(t)−M g ` sin θ(t)

In this equation the unknown function φ̇(t) can be eliminated by
means of the conservation law, Equation (6.4.1), yielding

θ̈(t) =
C2 cos θ(t)

sin3 θ(t)
− g

`
sin θ(t)

and the resulting EOM can be integrated once by multiplication
with 2θ̇(t)

θ̇2(t)− θ̇2(t0) =
∫ t

t0

dt 2θ̇

(
C2 cos θ(t)

sin3 θ(t)
− g

`
sin θ(t)

)
= −2

∫ θ(t)

θ(t0)
dθ

d
dθ

(
− C2

sin2 θ
+

g
`

cos θ

)
The result can be written in the form

E =
θ̇2

2
+ Φeff(θ) = const

where Φeff(θ) =
C2

sin2 θ
− g

`
cos θ

Again a closed solution for θ(t) is out of reach. However, Φeff(θ)

can serve as an effective potential for the 1DOF motion of θ with
kinetic energy θ̇2/2. This interpretation of the dynamics provides
ready access to a qualitative discussion of of the solutions of the
EOM based on a phase-space plot.

For C = 0 the particle swings in a fixed plane selected by φ =

const. Its motion amounts to that of a mathematical pendulum.
Figure 6.11 shows the effective potential and phase space por-

traits for different positive values of C. Conservation of angular
momentum implies that for C 6= 0 the particle can no longer access
the region close to its rest position at the lowermost point of the
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Figure 6.11: The left panel shows the
effective potential for the spherical
pendulum at parameter values C2 ∈
{0, 0.01, 0.1, 0.5, 1, 2, 3} from bottom
to top. The subsequent panels show
phase-space portraits of the motion for
C2 = 0.01, 0.1, and 1, respectively.

sphere. Rather it always has to go in circles around the bottom of
the well, and the sign of C specifies whether it moves clockwise or
anti-clockwise. The divergence of the effective potential at θ = ±π

is called rotation barrier. It emerges due to a combination of the
conservation of energy and angular momentum. add problem: rotation

barrierThe effective potential has a single minimum for 0 < θc(C) <

π/2, and not further extrema. The minimum describes motion
where the particle moves at constant height with a constant speed
in a circle. When this orbit is perturbed oscillations are superim-
posed on the circular motion. In a projection to the plane vertical
to the action of gravity, this will lead to trajectories similar to those
drawn by a Spirograph, Problem 2.42.

The take-home message of this example is that cyclic variables
entail conservation laws of the dynamics. In the very same manner
as for the Kepler problem they can be used to eliminate a variable
from the EOM of the other coordinates. The additional contribu-
tions in the EOMs for the other coordinate(s) are interpreted as part
of an effective potential.

6.4.2 Double pendulum

6.5 Dynamics of 2-particle systems

revisit Kepler

6.6 Conservation laws, symmetries, and the Lagrange formal-
ism

6.7 Worked problems: spinning top and running wheel

spinning top

rolling wheel
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6.8 Problems

horizontal driven double pendulum

stabilizing satellites

Lagrange points

steel can pendulum
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Take Home Message
Hints for Exam Preparation

The aim of the present course has been to give a first gimps into
scientific modeling. It focussed on mechanics problems. Firstly,
they are easily visualized. Secondly, they readily provide interest-
ing mathematical challenges when one strives for a comprehensive
description. Thus, they provide a unique set of problems to get
acquainted with the use of mathematics as a language to address
scientific problems. The involved mathematical concepts can further
be underpinned in forthcoming mathematics classes. Further phys-
ical problems will be addressed in forthcoming experimental and
theoretical physics lectures.

What are the next steps to be taken? To begin with you should
re-read the script and revisit the exercise sheets in order to prepare
for the exam. Take a particular look at exercises that were challeng-
ing at the first encounter. In doing so you should focus on under-
standing the rules of the game, and hands-on application of the
mathematical formalism, rather than understanding the concepts in
full depth. The concepts might be dealt with again in other classes.
Most likely they will not put as much emphasis, however, on prac-
ticalities about the careful and efficient setup of the mathematical
setup for concrete calculations.

Best wishes, success and fun for your further studies!





A
Physical constants, material constants,
and estimates

1 year ' π × 107s (A.0.1)

A.1 Solar System

The solar system has 1.0014 solar masses, which amounts to 1.991× 1030 kg.
The Earth-Sun distance is 1 AU ' 500 light second ' 1.5× 1011 m.

object Sun Mecury Venus Earth Mars Jupiter Saturn Uranus Neptun
distance 0.005 0.387098 0.723332 1 1.523679 5.2044 9.5826 19.2184 30.11
radius 109 0.3829 0.9499 1 0.533 11.209 9.449 4.007 3.883
mass 333, 000 0.055 0.815 1 0.107 317.8 95.159 14.536 17.147
period 0.240846 0.615198 1 2.1354 11.862 29.4571 84.0205 164.8

Table A.1: Properties of Sun and
planets of our solar system, provided
in multiples of the Earth values. The
distance referes to the semi-major
axis in AU. For the sun the distance
denotes the sun surface, i. e. its radius.

object Moon Ceres Pluto Eris
distance 0.00257 2.769 39.482 67.864
radius 0.2727 0.073 0.1868 0.1825
mass 0.0123 0.00016 0.00218 0.0028
period 0.08085 4.61 247.94 559.07 Table A.2: Properties of the Moon and

dwarf planets of our solar system.
The properties of the Moon refer to
its distrance to and period around
Earth. Ceres is the largest object in
the meteorite belt between Mars and
Jupiter. Eris is a dwarf planet in the
Kuiper belt that is larger in mass than
Pluto.
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