Blatt 5. Brownian Motion, Noise, and Fluctuations

The exercise marked by \star and \bigotimes are challenge to think about, to be discussed when we discuss the solutions.

Problems

5.1. Brownian motion as a Markov process

For reference in this exercise the cumulants for Brownian motion are given in Appendix A of this exercise sheet. In another exercise we will show that Brownian motion is a Gaussian process, i.e., the probability distribution for Brownian motion is completely specified by the first two cumulants.

a) Show that the probability distribution $P(v, t|v_0, 0)$ to find a velocity v at time t when it was v_0 at time 0 takes the form

$$P(v,t|v_0,0) = N(t) \exp\left[-\frac{(v-v_0 e^{-\lambda t})^2}{\frac{2d}{\lambda} (1-e^{-2\lambda t})}\right]$$

where N(t) is an appropriate normalization of this conditional probability.

What is the appropriate normalization N(t)?

Hint: This expression assumes $\mathcal{C}_0(v, v) = 0$ and $\langle v_0 \rangle = v_0$. Why is this justified?

- b) Under which condition on λ will Brownian motion become a Markov process for the velocities? What is special about the resulting conditional probability?
- c) Adopt the limit $\lambda \to \infty$ at a fixed diffusion coefficient $D = d/\lambda^2$. Show that in this limit the probability distribution $P(x, t|x_0, 0)$ to find the Brownian particle at position x at time t when it was at x_0 at time 0 takes the form

$$P(x,t|x_0,0) = (4\pi Dt)^{-1/2} \exp\left[-\frac{(x-x_0)^2}{4Dt}\right].$$
(5.1)

d) Brownian motion is Markovian iff Eq. (5.1) satisfies the Chapman-Kolmogorov-criterion that for any set of times $t_1 < t_2 < t_3$ and positions x_1, x_2, x_3 one must have

$$P(x_3, t_3 | x_1, t_1) = \int dx_2 \ P(x_3, t_3 | x_2, t_2) \ P(x_2, t_2 | x_1, t_1)$$

Verify that it holds!

5.2. Variance of positions in Brownian motion

In this exercise we derive the expression (A.1) for $C_t(x, x)$ that is given in the appendix. We start from

$$x(t) = x_0 + \frac{v_0}{\lambda} (1 - e^{-\lambda t}) + \int_0^t ds_1 e^{-\lambda s_1} \int_0^{s_1} ds_2 A(s_2) e^{\lambda s_2}$$

a) Introduce the function $W(s_1) = \int_0^{s_1} ds_2 A(s_2) e^{\lambda s_2}$ and use integration by parts to show that

$$x(t) = x_0 + \frac{v_0}{\lambda} \left(1 - e^{-\lambda t} \right) + \lambda^{-1} \int_0^t ds \left(1 - e^{\lambda (s-t)} \right) A(s).$$
 (5.2a)

b) Use Eq. (5.2a) to evaluate

$$\mathcal{C}_t(x,x) = \left\langle \left(x(t) - \langle x(t) \rangle \right)^2 \right\rangle$$

c) Show that in the limit of long times the resulting expression reduces to

$$\mathcal{C}_t(x,x) \simeq \left(\mathcal{C}_0(x,x) - \frac{D}{\lambda}\right) + \lambda^{-2} \left(\mathcal{C}_0(v,v) - \frac{d}{\lambda}\right) + 2Dt$$
(5.2b)

where we introduced the diffusion coefficient $D = d/\lambda^2$. Provide an interpretation for the three contributions to this expression.

d) The result Eq. (5.2b) suggests that $C_t(x, x)$ may take negetive values when $C_0(x, x) = C_0(v, v) = 0$ and small t.

What is wrong about this argument?

Find the expression that should rather be considered to discuss this special case of $\mathcal{C}_t(x, x)$.

5.3. Covariance of position and velocity for Brownian motion

a) Determine the covariance

$$\mathcal{C}_t(x,v) = \left\langle \left(x(t) - \langle x(t) \rangle \right) \left(v(t) - \langle v(t) \rangle \right) \right\rangle \,.$$

- b) Compare the result to the variance $\mathcal{C}_t(v, v)$. What do you observe?
- c) For an equilibrated velocity ensemble, where $C_0(v, v) = 0$, the asymptotics for large and small times becomes

$$\mathcal{C}_t(x,v) \simeq \begin{cases} dt/\lambda & \text{for} \quad \lambda \, t \ll 1 \,, \\ d/\lambda^2 & \text{for} \quad \lambda \, t \gg 1 \,. \end{cases}$$

What does this mean physically?

Which interpretation does this suggest for the diffusion coefficient $D = d/\lambda^2$?

5.4. Noise spectrum for measured noise

The relation between the fluctuations $\alpha(t)$ of an observable $\Omega(t)$, and the fluctuations $\alpha_{out}(t)$ in the measured signal $\Omega_{out}(t)$ can be expressed through a filter, K(t),

$$\alpha_{\rm out}(t) = \int_{-\infty}^{t} K(t-s) \,\alpha(s) \,\mathrm{d}s \,.$$

a) Causality implies that K(t) = 0 for t < 0. What does this imply for the integral

$$\int_{-\infty}^{\infty} K(t-s) \,\alpha(s) \,\mathrm{d}s \,\mathrm{d}s$$

b) Let $\alpha(\omega)$ and $\alpha_{out}(\omega)$ be the Fourier transforms of $\alpha(t)$ and $\alpha_{out}(t)$. Show that

$$\alpha_{\rm out}(\omega) = k(\omega) \ \alpha(\omega)$$

Determine $k(\omega)$.

c) Let $G(x), x \in \{\alpha(t), \alpha_{out}(t)\}$ be the average noise intensity

$$G(x) = \lim_{T \to \infty} \frac{1}{2T} \int_{t_0 - T}^{t_0 + T} |x|^2 \, \mathrm{d}t$$

Under which condition will G(x) not depend on t_0 ? Show that

$$G(\alpha_{\text{out}}) = |k(\omega)|^2 G(\alpha)$$

d) For an ideal measurement one would like to approach $G(\alpha_{out}) = G(\alpha)$ as closely as possible. What does this imply for the filter function K(t)?

5.5. Fluctuation relations

In 1999 Lebowitz and Spohn established a very powerful symmetry relation that holds for fluctuations in stochastic dynamics.¹ It applies to fluctuations of the observable $\sigma_k^j = \ln(r_k^j/r_j^k)$ for a Markov process with dynamically reversible transition rates r_k^j between the states j and k. Let $\tau(t)$ we a trajectory of this process, and $\Sigma(\tau, t)$ the value observed when σ_k^j is integrated along the trajectory. Then the theorem states that the cumulant generating function, $Z(\mathbf{q})$, for the cumulants of the distribution of $\Sigma(\tau, t)$ obeys the symmetry

$$Z(\mathbf{q}) = Z(\mathbf{1} - \mathbf{q}) \tag{5.5a}$$

where **1** is the vector whose entries are all one.

 \star a) Take a look into the Lebowitz/Spohn paper, and provide a qualitative argument why the theorem holds.

Hint: The proof is easier when one rather considers the observable

$$\omega_k^j = \ln \frac{p_j r_k^j}{p_k r_j^k} \,,$$

where p_j is the steady-state probability density of state p_j . Where does this help? Why is it admissible?

b) Verify that Equation (5.5a) entails the following fluctuation relation for the probability $P(\Sigma, t)$ to find the value Σ for $\Sigma(\tau, t)$:

$$\lim_{t \to \infty} \ln \frac{P(\Sigma, t)}{P(-\Sigma, t)} = \Sigma.$$
(5.5b)

c) Check that the fluctuation relation (5.5b) holds trivially for

¹Joel L. Lebowitz and Herbert Spohn: A Gallavotti-Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics. Journal of Statistical Physics **95** (1999) 333–365.

- the displacement in a random walk on a line with probabilities r and l to take a step to the right and left, respectively. Steps are taken at integer times and r + l < 1.
- the displacement in a random walk on a line with rates r and l to take a step to the right and left, respectively.
- a Gaussian distribution.
- d) Provide a sketch of the distribution and provide a geometric interpretation of the fluctuation relation.

5.6. 2 Estimating the diffusive displacement

In 1879 Nageli² dismissed the role of molecular collisions as origin of Brownian motion. In this exercise we revisit his argument that is based on his estimate of the speed, $U_B \simeq 1 \,\mu \text{m/s}$, of a Brownian particles with a diameter of about $R_B \simeq 2 \,\mu \text{m}$.

a) According to Stokes' law the friction force on a solid spherical particle is

$$F_S = 6\pi R_B \rho_s \nu_s U_B$$

where ρ_s and ν_s are the density and the kinematic viscosity of the surrounding fluid, respectively. For water they take the values $\rho_s \simeq 1 \times 10^3 \,\mathrm{kg}\,\mathrm{m}^{-3}$ and $\nu_s \simeq 1 \times 10^{-6} \,\mathrm{m}^2/\mathrm{s}$. Show that for these parameters the damping takes the value $\lambda \simeq 1 \times 10^6 \,\mathrm{s}^{-1}$.

Bonus: Note that smaller particles have a larger damping. Which radius will result in the damping $\lambda \simeq 1 \times 10^7 \, \text{s}^{-1}$ that was quoted in the lecture?

b) When the particle is at thermal equilibrium it should have a velocity U_E

$$\frac{1}{2} \; \frac{4 \pi \rho_B R_B^3}{3} \; U_E^2 = \frac{3}{2} \; k_B \, T$$

Estimate U_E for a particle that has roughly the same density as water.

c) Assume that water molecules have an effective radius of about $R_w \simeq 4 \times 10^{-10}$ m. What would the momentum balance

$$M_B U_B \simeq M_w U_w$$

imply about typical vertocity U_B for our Brownian particle when it collides with water molecules in thermal equilibrium?

- d) Show that the diffusion coefficient takes a value of the order to $D \simeq 1 \times 10^{-13} \text{ m}^2/\text{s}$, and calculate the diffusive displacement $\Delta X(t) = 2 D t$ for time intervals t = 0.1, 1.0, 10, 100 s.
- e) Compare now Nageli's estimate of $U = 1 \times 10^{-6} \,\mathrm{m \, s^{-1}}$ to the velocity $U_t = \Delta X(t)/t$. What does this imply about the time and space resolution of Nageli's observation? Observe also that $U_E > U_t > U_P$. Why would one expect this relation?

²K. von Nageli, Sitzungsberichte der Königlich Bayrischen Akademie der Wissenschaften München, Mathematisch-physikalische Klasse 9 (1879) 389–453.

A Cumulants for Brownian Motion

Velocity

$$\begin{split} v(t) &= v_0 \; \mathrm{e}^{-\lambda \, t} + \int_0^t \mathrm{d}s \; A(s) \; \mathrm{e}^{\lambda \, (s-t)} \\ \text{with velocity} \quad v(t) \quad \text{at time } t \\ v_0 \quad \text{at initial time } 0 \\ \text{relaxation rate} \quad \lambda \\ \text{random forces} \quad A(t) \\ \text{where} \quad \langle A(t) \rangle &= 0 \\ \text{where} \quad \langle A(t_1) \; A(t_2) \rangle &= 2 \, d \, \delta(t_1 - t_2) \end{split}$$

Expectation

$$\mathcal{C}_t(v) = \langle v(t) \rangle = \langle v_0 \rangle e^{-\lambda t} + \int_0^t \mathrm{d}s \, \langle A(s) \rangle e^{\lambda (s-t)} = \langle v_0 \rangle e^{-\lambda t}$$

Starting from its initial value $\langle v_0 \rangle$ the expectation decays exponentially to zero.

Variance

$$\begin{split} \mathfrak{C}_{t}(v,v) &= \left\langle (v(t) - \langle v(t) \rangle)^{2} \right\rangle = \left\langle \left((v_{0} - \langle v_{0} \rangle) e^{-\lambda t} + \int_{0}^{t} \mathrm{d}s \; A(s) e^{\lambda (s-t)} \right)^{2} \right\rangle \\ &= \left\langle (v_{0} - \langle v_{0} \rangle)^{2} \right\rangle e^{-2\lambda t} + 2 e^{-\lambda t} \int_{0}^{t} \mathrm{d}s \left\langle (v_{0} - \langle v_{0} \rangle) A(s) \right\rangle e^{\lambda (s-t)} + \left\langle \left(\int_{0}^{t} \mathrm{d}s \; A(s) e^{\lambda (s-t)} \right)^{2} \right\rangle \\ &= \mathfrak{C}_{0}(v,v) e^{-2\lambda t} + \int_{0}^{t} \mathrm{d}s_{1} e^{\lambda (s_{1}-t)} \int_{0}^{t} \mathrm{d}s_{2} e^{\lambda (s_{2}-t)} \langle A(s_{1}) \; A(s_{2}) \rangle \\ &= \mathfrak{C}_{0}(v,v) e^{-2\lambda t} + 2 d \int_{0}^{t} \mathrm{d}s_{2} e^{2\lambda (s_{2}-t)} \\ &= \left(\mathfrak{C}_{0}(v,v) - \frac{d}{\lambda} \right) e^{-2\lambda t} + \frac{d}{\lambda} \end{split}$$

Starting from ints initial value $C_0(v, v)$ the variance decays exponentially to the value d/λ .

Position

$$x(t) = x_0 + \int_0^t \mathrm{d}s \ v(s) = x_0 + \frac{v_0}{\lambda} \ \left(1 - \mathrm{e}^{-\lambda t}\right) + \int_0^t \mathrm{d}s_1 \ \int_0^{s_1} \mathrm{d}s_2 \ A(s_2) \ \mathrm{e}^{\lambda (s_2 - s_1)}$$

Expectation

$$\mathcal{C}_t(x) = \langle x(t) \rangle = \langle x_0 \rangle + \frac{\langle v_0 \rangle}{\lambda} \left(1 - \mathrm{e}^{-\lambda t} \right)$$

When the expectation of the velocity in the initial ensemble vanishes, $\langle v_0 \rangle = 0$, the expectation of the position remains constant at $\langle x_0 \rangle$. Otherwise, it decays exponentially to its asymptotic value $\langle x_0 \rangle + \langle v_0 \rangle / \lambda$.

Variance

$$C_t(x,x) = \left\langle \left(x(t) - \langle x(t) \rangle \right)^2 \right\rangle$$

= $C_0(x,x) + \frac{\left(1 - e^{-\lambda t}\right)^2}{\lambda^2} \left(C_0(v,v) - \frac{d}{\lambda} \right) + \frac{2d}{\lambda^3} \left(\lambda t - \left(1 - e^{-\lambda t}\right) \right)$ (A.1)

The derivation and interpretation is given as an 5.1.