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The exercise marked by ? and
�

are challenge to think about, to be discussed when we discuss the

solutions.

Problems

5.1. Brownian motion as a Markov process

For reference in this exercise the cumulants for Brownian motion are given in Appendix A of this

exercise sheet. In another exercise we will show that Brownian motion is a Gaussian process, i.e.,

the probability distribution for Brownian motion is completely specified by the first two cumulants.

a) Show that the probabiltiy distribution P (v, t|v0, 0) to find a velocity v at time t when it was

v0 at time 0 takes the form

P (v, t|v0, 0) = N(t) exp

[
−
(
v − v0 e−λt

)2
2 d
λ (1− e−2λt)

]
,

where N(t) is an appropriate normalization of this conditional probability.

What is the appropriate normalization N(t)?

Hint: This expression assumes C0(v, v) = 0 and 〈v0〉 = v0. Why is this justified?

b) Under which condition on λ will Brownian motion become a Markov process for the velocities?

What is special about the resulting conditional probability?

c) Adopt the limit λ → ∞ at a fixed diffusion coefficient D = d/λ2. Show that in this limit the

probabiltiy distribution P (x, t|x0, 0) to find the Brownian particle at position x at time t when

it was at x0 at time 0 takes the form

P (x, t|x0, 0) = (4πDt)−1/2 exp

[
− (x− x0)

2

4D t

]
. (5.1)

d) Brownian motion is Markovian iff Eq. (5.1) satisfies the Chapman-Kolmogorov-criterion that

for any set of times t1 < t2 < t3 and positions x1, x2, x3 one must have

P (x3, t3|x1, t1) =

∫
dx2 P (x3, t3|x2, t2) P (x2, t2|x1, t1)

Verify that it holds!

5.2. Variance of positions in Brownian motion

In this exercise we derive the expression (A.1) for Ct(x, x) that is given in the appendix. We start

from

x(t) = x0 +
v0
λ

(
1− e−λ t

)
+

∫ t

0

ds1 e−λ s1
∫ s1

0

ds2 A(s2) eλ s2
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a) Introduce the function W (s1) =
∫ s1
0

ds2 A(s2) eλ s2 and use integration by parts to show that

x(t) = x0 +
v0
λ

(
1− e−λ t

)
+ λ−1

∫ t

0

ds
(

1− eλ (s−t)
)
A(s) . (5.2a)

b) Use Eq. (5.2a) to evaluate

Ct(x, x) =
〈(
x(t)− 〈x(t)〉

)2〉
.

c) Show that in the limit of long times the resulting expression reduces to

Ct(x, x) '
(
C0(x, x)− D

λ

)
+ λ−2

(
C0(v, v)− d

λ

)
+ 2D t (5.2b)

where we introduced the diffusion coefficient D = d/λ2.

Provide an interpretation for the three contributions to this expression.

d) The result Eq. (5.2b) suggests that Ct(x, x) may take negetive values when C0(x, x) = C0(v, v) =

0 and small t.

What is wrong about this argument?

Find the expression that should rather be considered to discuss this special case of Ct(x, x).

5.3. Covariance of position and velocity for Brownian motion

a) Determine the covariance

Ct(x, v) =
〈(
x(t)− 〈x(t)〉

) (
v(t)− 〈v(t)〉

)〉
.

b) Compare the result to the variance Ct(v, v). What do you observe?

c) For an equilibrated velocity ensemble, where C0(v, v) = 0, the asymptotics for large and small

times becomes

Ct(x, v) '

{
dt/λ for λ t� 1 ,

d/λ2 for λ t� 1 .

What does this mean physically?

Which interpretation does this suggest for the diffusion coefficient D = d/λ2?

5.4. Noise spectrum for measured noise

The relation between the fluctuations α(t) of an observable Ω(t), and the flucutations αout(t) in the

measured signal Ωout(t) can be expressed through a filter, K(t),

αout(t) =

∫ t

−∞
K(t− s) α(s) ds .

a) Causality implies that K(t) = 0 for t < 0. What does this imply for the integral∫ ∞
−∞

K(t− s) α(s) ds ?
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b) Let α(ω) and αout(ω) be the Fourier transforms of α(t) and αout(t) . Show that

αout(ω) = k(ω) α(ω) .

Determine k(ω).

c) Let G(x), x ∈ {α(t), αout(t) be the average noise intensity

G(x) = lim
T→∞

1

2T

∫ t0+T

t0−T
|x|2 dt .

Under which condition will G(x) not depend on t0? Show that

G(αout) = |k(ω)|2 G(α) .

d) For an ideal measurement one would like to approach G(αout) = G(α) as closely as possible.

What does this imply for the filter function K(t)?

5.5. Fluctuation relations

In 1999 Lebowitz and Spohn established a very powerful symmetry relation that holds for fluctuations

in stochastic dynamics.1 It applies to fluctuations of the observable σjk = ln
(
rjk/r

k
j

)
for a Markov

process with dynamically reversible transition rates rjk between the states j and k. Let τ(t) we a

trajectory of this process, and Σ(τ, t) the value observed when σjk is integrated along the trajectory.

Then the theorem states that the cumulant generating function, Z(q), for the cumulants of the

distribution of Σ(τ, t) obeys the symmetry

Z(q) = Z(1− q) (5.5a)

where 1 is the vector whose entries are all one.

? a) Take a look into the Lebowitz/Spohn paper, and provide a qualitative argument why the

theorem holds.

Hint: The proof is easier when one rather considers the observable

ωjk = ln
pjr

j
k

pkrkj
,

where pj is the steady-state probability density of state pj .

Where does this help? Why is it admissible?

b) Verify that Equation (5.5a) entails the following fluctuation relation for the probability P (Σ, t)

to find the value Σ for Σ(τ, t):

lim
t→∞

ln
P (Σ, t)

P (−Σ, t)
= Σ . (5.5b)

c) Check that the fluctuation relation (5.5b) holds trivially for

1Joel L. Lebowitz and Herbert Spohn: A Gallavotti-Cohen-Type Symmetry in the Large Deviation Functional for
Stochastic Dynamics. Journal of Statistical Physics 95 (1999) 333–365.
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� the displacement in a random walk on a line with probabilities r and l to take a step to

the right and left, respectively. Steps are taken at integer times and r + l < 1.

� the displacement in a random walk on a line with rates r and l to take a step to the right

and left, respectively.

� a Gaussian distribution.

d) Provide a sketch of the distribution and provide a geometric interpretation of the fluctuation

relation.

5.6.
�

Estimating the diffusive displacement

In 1879 Nageli2 dismissed the role of molecular collisions as origin of Brownian motion. In this

exercise we revisit his argument that is based on his estimate of the speed, UB ' 1µm/s, of a

Brownian particles with a diameter of about RB ' 2µm.

a) According to Stokes’ law the friction force on a solid spherical particle is

FS = 6π RB ρs νs UB

where ρs and νs are the density and the kinematic viscosity of the surrounding fluid, respectively.

For water they take the values ρs ' 1× 103 kg m−3 and νs ' 1× 10−6 m2/s. Show that for

these parameters the damping takes the value λ ' 1× 106 s−1.

Bonus: Note that smaller particles have a larger damping. Which radius will result in the

damping λ ' 1× 107 s−1 that was quoted in the lecture?

b) When the particle is at thermal equilibrium it should have a velocity UE

1

2

4πρBR
3
B

3
U2
E =

3

2
kB T

Estimate UE for a particle that has roughly the same density as water.

c) Assume that water molecules have an effective radius of about Rw ' 4× 10−10 m. What would

the momentum balance

MBUB 'MwUw

imply about typical verlocity UB for our Brownian particle when it collides with water molecules

in thermal equilibrium?

d) Show that the diffusion coefficient takes a value of the order to D ' 1× 10−13 m2/s, and

calculate the diffusive displacement ∆X(t) = 2D t for time intervals t = 0.1, 1.0, 10, 100 s.

e) Compare now Nageli’s estimate of U = 1× 10−6 m s−1 to the velocity Ut = ∆X(t)/t.

What does this imply about the time and space resolution of Nageli’s observation?

Observe also that UE > Ut > UP . Why would one expect this relation?

2K. von Nageli, Sitzungsberichte der Königlich Bayrischen Akademie der Wissenschaften München,
Mathematisch-physikalische Klasse 9 (1879) 389–453.
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A Cumulants for Brownian Motion

Velocity

v(t) = v0 e−λ t +

∫ t

0

ds A(s) eλ (s−t)

with velocity v(t) at time t

v0 at initial time 0

relaxation rate λ

random forces A(t)

where 〈A(t)〉 = 0

where 〈A(t1)A(t2)〉 = 2 d δ(t1 − t2)

Expectation

Ct(v) = 〈v(t)〉 = 〈v0〉 e−λ t +

∫ t

0

ds 〈A(s)〉 eλ (s−t) = 〈v0〉 e−λ t

Starting from its initial value 〈v0〉 the expectation decays exponentially to zero.

Variance

Ct(v, v) =
〈
(v(t)− 〈v(t)〉)2

〉
=

〈(
(v0 − 〈v0〉) e−λt +

∫ t

0

ds A(s) eλ (s−t)
)2
〉

=
〈
(v0 − 〈v0〉)2

〉
e−2λt + 2 e−λt

∫ t

0

ds
〈
(v0 − 〈v0〉)A(s)

〉
eλ (s−t) +

〈(∫ t

0

ds A(s) eλ (s−t)
)2
〉

= C0(v, v) e−2λt +

∫ t

0

ds1 eλ (s1−t)
∫ t

0

ds2 eλ (s2−t) 〈A(s1) A(s2)〉

= C0(v, v) e−2λt + 2 d

∫ t

0

ds2 e2λ (s2−t)

=

(
C0(v, v)− d

λ

)
e−2λt +

d

λ

Starting from ints initial value C0(v, v) the variance decays exponentially to the value d/λ.

Position

x(t) = x0 +

∫ t

0

ds v(s) = x0 +
v0
λ

(
1− e−λ t

)
+

∫ t

0

ds1

∫ s1

0

ds2 A(s2) eλ (s2−s1)
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Expectation

Ct(x) = 〈x(t)〉 = 〈x0〉+
〈v0〉
λ

(
1− e−λ t

)
When the expectation of the velocity in the initial ensemble vanishes, 〈v0〉 = 0, the expectation of

the position remains constant at 〈x0〉. Otherwise, it decays exponentially to its asymptotic value

〈x0〉+ 〈v0〉/λ.

Variance

Ct(x, x) =
〈(
x(t)− 〈x(t)〉

)2〉
= C0(x, x) +

(
1− e−λ t

)2
λ2

(
C0(v, v)− d

λ

)
+

2 d

λ3
(
λ t−

(
1− e−λ t

))
(A.1)

The derivation and interpretation is given as an 5.1.
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