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Die Philosophie steht in diesem großen Buch geschrieben, dem

Universum, das unserem Blick ständig offen liegt. Aber das Buch

ist nicht zu verstehen, wenn man nicht zuvor die Sprache erlernt

und sich mit den Buchstaben vetraut gemacht hat, in denen es

geschrieben ist. Es ist in der Sprache der Mathematik geschrieben,

und deren Buchstaben sind Kreise, Dreiecke und andere geometrische

Figuren, ohne die es dem Menschen unmöglich ist, ein einziges

Wort davon zu verstehen; ohne diese irrt man in einem dunklen

Labyrinth herum.

Galileo Galilei, Il Saggiatore, 1623

Die Mathematik ist das Instrument, welches die Vermittlung

bewirkt zwischen Theorie und Praxis, zwischen Denken und

Beobachten: sie baut die verbindende Brücke und gestaltet sie im-

mer tragfähiger. Daher kommt es, daß unsere ganze gegenwärtige

Kultur, soweit sie auf der geistigen Durchdringung und Dienst-

barmachung der Natur beruht, ihre Grundlage in der Mathematik

findet.

David Hilbert, Ansprache "‘Naturerkennen und Logik"’ am 8.9.1930

während des Kongresses der Vereinigung deutscher Naturwissenschafter

und Mediziner

Insofern sich die Sätze der Mathematik auf die Wirklichkeit

beziehen, sind sie nicht sicher, und insofern sie sicher sind, beziehen

sie sich nicht auf die Wirklichkeit.

Albert Einstein Festvortrag "‘Geometrie und Erfahrung"’ am 27.1.1921

vor der Preußischen Akademie der Wissenschaften





Preface

Die ganzen Zahlen hat der liebe Gott geschaffen,

alles andere ist Menschenwerk.

Leopold Kronecker

These notes are a draft of notes for my course “Stochastic Dynam-

ics” delivered at the University of Leipzig. At the moment they

comprise a random collection of notes that were produced for other

courses and remarks that might turn out useful to follow the lecture.

I hope that in the course of time they will grow into a proper set

of lecture notes. For the time being I recommend to also consult

the books by Haken (1983) and Feller (1968) that provide excellent

introductions into the topic from a physical and mathematical per-

spective, respectively. A good introduction that is somewhere in

between these extreme perspective is provided by Garcia-Palacios

(2007) acknowledge co-workers

I am eager to receive feedback. It is crucial for the development

of this project to learn about typos, inconsistencies, confusing or

incomplete explanations, and suggestions for additional material

(contents as well as links to papers, books and internet resources)

that should be added in forthcoming revisions. Everybody who

is willing to provide feedback will be invited to a coffee in Café

Corso.
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1

Probabilities

For the purpose of this lecture the results of an experiment will

be regarded as a set1 X of mutually distinct outcomes x ∈ X. 1 The pertinent mathematical notion of
sets and their properties are summa-
rized in Appendix A.When the cardinality of the set X is either finite or countable one

can characterize the likelihood to encounter a given outcome x by

a probability px. When the outcome of the observation is a real

number, for instance when looking for the position of a particle on

the real line, then X is not countable, and the probability will be

provided in terms of a probability density. In general, probabilities

will be described in terms of a relation between elements of a sigma

algebra of possible outcomes of the experiment and real numbers

in the interval [0, 1] that provide the associated probability to find

such an event. We discuss the three approaches one after the other.

1.1 A countable set of outcomes

Definition 1.1: Probability

Let X be a finite or countable set of distinct results of an ex-

periment. It will be denoted sample space. Then we assign the

probability px to an element x ∈ X when the number nx of

encounters of x in N repetition of the experiment converges

towards px, i.e. lim
N→∞

nx

N
= px .

Remark 1.1. By construction probabilities are normalized, ∑
x∈X

px = 1.

1.1.1 Examples: Flipping Coins and Throwing Dice

Coin flipping refers to an experiment where a coin is flipped into

the air, picked up, and it is recorded which side is recognized as the

top side after the kick.
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Example 1.1 (One-sided Coin). Some coins show head on both sides.

In that case the outcome is always head, h, the set of outcomes has

a single element, X1 = {h}, and the probability for that outcome is

one, ph = 1. ♦

Example 1.2 (Fair Coin Toss). When one can distinguish the two

sides of the coin, head h and tail t, the set of outcomes has two

elements, X1 = {h, t}, and their probabilities sum up to one, ph +

pt = 1. Often the flipping is arranged in such a way that ph =

pt = 1/2. The relation between frequencies of observations and

probabilities for coin tossing is further elaborated in worksheet 1. ♦

A typical die comprises a cubic body with its six sides marked

by the numbers {1, . . . , 6}. Throwing dice refers to an experiment

where one of several dice set in motion, and after they came to rest

it is noted which numbers are shown on their top sides.

Example 1.3 (Throwing Dice). For a single die the set of outcomes

has six elements, XD = {1, . . . , 6}, and their probabilities sum up to

one, ∑6
i=1 pi = 1. The die throwing is called fair, when ∀i : pi = 1/6.

Otherwise, we refer to the die as a loaded die.2 ♦
2 The notion of a loaded die refers
to the observation that a certain
outcome, is encountered with a higher
probability than 1/6 when the center
of mass of the die is not located in
the center but rather close to the side
opposing the preferred outcome.

Example 1.4 (Board games). In German board games a stone is

commonly moved by trowing a die, moving forward by the encoun-

tered number of steps, and being allowed to throw again and move

again if one encountered a six. In principle, by thowing n times

six and then m ∈ {1, . . . , 5} one can reach any number of steps

N = 6n + m ∈N. This example is discussed in worksheet 3. ♦

1.1.2 Joint probabilities and conditional probabilities

In some games we through two or even three dice at a time, and in

some circumstances we might be interested in the outcomes of N

successive coin flips.

Definition 1.2: Joint Probability

Let X = X1, . . . , XN be the sample spaces of N joint obser-

vations. Then the joint probability P(x1, . . . , xN) provides the

probability to encounter the values x1 ∈ X1, . . . , xN ∈ XN in

a given observation.

For throwing dice the different die behave independently from

each other, In such a case the joint probability amounts to the prod-

uct of the probabilities of the individual events.

http://localhost:8888/notebooks/Sage/01_coinFlipping.ipynb
http://localhost:8888/notebooks/Sage/02_throwingDice.ipynb
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Definition 1.3: Independent Probabilities

Let X and Y be the possible outcomes of two experiments

with probability distribution PX(x) and PY(y), respectively.

Then the experiments are independent iff the joint distribution

PX,Y(x, y) factorizes, i.e., when PX,Y(x, y) = PX(x) PY(y).

Counterexample 1.5 (Colors of Balls selected from a bag). There are

NR red balls and NG green balls in a bag, i.e. N = NR + NG balls

in total. When we draw a ball at random its color will be a red with

probability P1(r) = NR/N and green with probability P1(g) =

NG/N. Let now P2(xy) with x, y ∈ {r, g} be the joint probability

of two balls drawn from the bag. When the first ball is red the

probability to also draw another red ball is (NR − 1)/(N − 1).

Otherwise, the probability that it is red is NR/(N − 1). In any

case the second probability is different from the first one because

there is a different number of balls in the bag. It is different from

the product of the probability The problem is further discussed in

Problem 1.1. ♦

The probability for the color of the second ball drawn from the

bag is most conveniently described by a conditional probability.

Definition 1.4: Conditional Probabilities

The conditional probability P(x|y) describes the probability to

encounter y under the condition that we also observe x in

another experiment. Therefore,

P(x, y) = P(x) P(x|y) (1.1.1)

When the outcome of y does not depend on the condition x

then events are independent and P(x|y) = P(y). Consequently,

P(x, y) = P(x) P(x|y) = P(x) P(y) as stated in Definition 1.3.

Summing over x and y provides 1 by normalization of the proba-

bility,

∑
x∈X

∑
y∈Y

P(x, y) = 1

Summing over only x or y recovers the probability of the other

observable
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Definition 1.5: Marginal Probability Distribution

A marginal probability distribution is obtained from a joint dis-

tribution PX×Y(x, y) by summing over all events that observe

a certain constraint. In particular, the sum over all values

(x, y) with a given value of x comes down to

∑
y∈Y

PX×Y(x, y) = PX(x)

and for (x, y) with a given value of y

∑
x∈X

PX×Y(x, y) = PY(y)

Remark 1.2. Often the probability distribution of a some events

can be calculated most straightforwardly by formulating them as a

marginal probability distribution of a joint probability that is more

easily accessible. For instance the probability to have a sum s as a

the result of throwing two dice can easily be obtained from their

joint probability distribution P(n1, n2) that the dice show n1 and n2

eyes, respectively,

P(s) =
6

∑
n1=1

P(n1, s− n1) =
6

∑
n1=1

P1(n1) P1(s− n1)

where P1(n) takes the value 1/6 when 1 ≤ n ≤ 6 and otherwise it is

zero.

1.1.3 Moments and Cumulants of a distribution

For the setting of Example 1.4 one might be interested in how far

one can move on average in each round of the game, whether one

will typically move more or less the same distance, and whether

outliers lie rather towards small or large distances. These questions

are addressed by the moments and cumulants of the distribution.

In all these settings x must characterize a distance. Typically it is

sampled from a set X ⊂ R.
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Definition 1.6: Moments

Let PX(x) be a probabilitiy distribution with values x ∈ X ⊂
R. Then the νth moment Mν of the distribution is defined as

Mν = ∑
x∈X

xν PX(x) ≡ 〈xν〉X

where 〈.〉X introduces a shorthand for the expression with

the sum. The first moment is also called expectation or mean

value of the distribution.

Remark 1.3. The zeros moment M0 always takes the values 1 due to

the normalization of the probability distribution.

Remark 1.4. This definition can be generalized in straightforward

manner to metric spaces, i.e. settings where the absolute value of x

is defined with |x| ∈ R,

Mν = ∑
x∈X
|x|ν PX(x) = 〈|x|ν〉X

Example 1.6 (Moments of tossing dice). For throwing a die the first

moments take the values3 3 The results of the sums are provided
by Faulhaber’s formula.

M1 =
1
6

[1 + 2 + 3 + 4 + 5 + 6] =
1
6

62 + 6
2

=
7
2

M2 =
1
6

[
12 + 22 + 32 + 42 + 52 + 62

]
=

1
6

2 · 63 + 3 · 62 + 6
6

=
91
6

M3 =
1
6

[
13 + 23 + 33 + 43 + 53 + 63

]
=

1
6

64 + 2 · 63 + 62

4
=

147
2

M4 =
1
6

[
14 + 24 + 34 + 44 + 54 + 64

]
=

2275
6

At least in principle, all integer moments can be calculated. ♦

Example 1.7 (Flip and go). We consider a process very similar to

the board games. We move as follows based on tosses of a fair coin:

Stay when we hit tail; with probability 1/2. Move one step and flip

again when we hit head; with probability 1/2 in each step. The

probability to take n steps is therefore P(n) = 2−n−1 with n ∈ N0.

The νth moments of this distribution take the values

Mν = ∑
n∈N0

nν 2−n−1

One can look up the first few values, M1 = 1, M2 = 3, M3 = 13,

M4 = 75, but the sum can not readily be avaluated in a closed form.

♦

https://en.wikipedia.org/wiki/Faulhabers_formula
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The evaluation of moments can greatly be simplified by moment

generating functions and characteristic functions.

Definition 1.7: Moment generating functions

The moment generating function G(q) and characteristic

function F(k) for a probability distribution P(x) are defined

as

G(q) = ∑
x∈X

eq x P(x) = 〈eq x〉X (1.1.2)

F(k) = ∑
x∈X

ei k x P(x) = 〈ei k x〉X (1.1.3)

The νth moments of the distribution P(x) is related to the νth

derivative of these functions,

Mν =
dν

dqν
G(q)

∣∣∣∣
q=0

= i−n dν

dkν
F(k)

∣∣∣∣
q=0

Remark 1.5. The two functions are related by F(k) = G(ik) such that

the choice is a matter of taste and convenience.

When the distribution has a non-trivial first moment, one is

often more interested in the deviation from this value than in the

moments themself.

Definition 1.8: Centered Moments

Let PX(x) be a probabilitiy distribution with values

x ∈ X ⊂ R and expectation x̄. Then the νth centered mo-

ment Mc
ν of the distribution is defined as

Mc
ν = ∑

x∈X
(x− x̄)ν PX(x) = 〈(x− x̄)ν〉X

The second centered moment of the distribution is called

variance, VarX .

Remark 1.6. The first centered moment vanishes by construction,

and the second centered moment is related to the moments by

VarX = 〈(x− x̄)2〉X = 〈x2〉 − x̄2 = M2 −M2
1

Further the distribution can also be characterized by its cumu-

lants. That are best introduced as derivatives of the cumulant gen-

erating function.



1.2 Probability Distributions 7

Definition 1.9: Cumulants and cumulant generating func-

tions

The cumulant generating function C(q) for a probability

distribution P(x) is defined as the logarithm of the moment

generating function M(q) of the distribution

C(q) = ln G(q) (1.1.4)

Its νth derivatives evaluated at q = 0 define the cumulants of

the distribution,

µν =
dν

dqν
C(q)

∣∣∣∣
q=0

Remark 1.7. The first cumlants take the values

µ0 = C(0) = 0

µ1 =
G′(q)
G(q)

∣∣∣∣
q=0

= M1

µ2 =
G(q) G′′(q)−

(
G′(q)

)2(
G(q)

)2

∣∣∣∣∣
q=0

= M2 −M2
1 = VarX

1.2 Probability Distributions

One can no longer assign probabilities to specific values when x

is sampling the positions in the continuum, taking real values in

an interval or area. In that case the attributions of probabilities is

commonly based on a probability density P(x).

Definition 1.10: Probability densities

Let the sample space X be a compact set of distinct results

of an experiment. Then we assign the probability density P(x)

assings the probability

p[a,b] =
∫ b

a
dx P(x)

to the interval [a, b] when the number n[a,b] of results that lie

in the interval in N repetitions of the experiment converges

to p[a,b], i.e.

lim
N→∞

n[a,b]

N
= p[a,b] .
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Remark 1.8. Normalization of the probability entails that

∫
X

dx P(x) = 1

Remark 1.9. Rather than as a functions, the densities P(x) should be

considered as distributions. The probability distribution of the die

can then be written in terms of six delta function,

P(x) =
1
6

6

∑
n=1

δ(x− n)

With this understanding the definitions of the moments, cumulants

and their generating functions can immediately be inferred,

Mν =
∫

X
dx xν P(x) = 〈xν〉X (1.2.1)

G(q) =
∫

X
dx eq x P(x) = 〈eq x〉X (1.2.2)

C(q) = ln G(q) = ln〈eq x〉X (1.2.3)

Marginal densities can be evaluated by introducing the constraint

by means of a delta function. In particular, we will have

P(x) =
∫

dx′ dy′ δ(x− x′) P(x′, y′)

P(y) =
∫

dx′ dy′ δ(y− y′) P(x′, y′)

P(R) =
∫

dx dy δ

(
R−

√
x2 + y2

)
P(x, y)

1.3 Formal introduction of probabilities
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1.4 Problems

1.4.1 Rehearsing Concepts

Problem 1.1. Colors of Balls selected from a bag

For the setting of Example 1.5:

a) Determine the conditional probability P(x|y) that the second

ball takes the color y when initially we draw a ball with color x.

Employ Equation (1.1.1) to show that the joint probability takes

the values

P2(rr) =
NR (NR − 1)

N (N − 1)
, P2(gg) =

NG (NG − 1)
N (N − 1)

P2(rg) = P(gr) =
NR NG

N (N − 1)
.

b) Verify that the probabilities are normalized.

c) Compare P2(xy) and P1(x) P1(y).

Problem 1.2. Uncorrelated vs. independent variables

We consider the following probability distribution

p(x, y) = c (x2 + y2) for (x, y) ∈ [−1, 1]× [−1, 1] .

a) Determine the normalization constant.

b) Determine the marginal probabilities p1(x) =
∫

dy p(x, y) and

p2(y) =
∫

dx p(x, y).

c) Determine the conditional probabilities p(x|y) and p(y|x).

d) Determine the expectation values 〈x〉, 〈y〉, and 〈x y〉.

Problem 1.3. Cumulants and centered moments

a) Verify that the third cumulant of a distribution always agrees

with the third centered moment.

b) Show that the centered moments and cumulants differ for orders

higher than and equal to four.

c) Determine the centered moments and the cumulants for the

normal distribution.



10 Probabilities

1.4.2 Practicing Concepts

Problem 1.4. Marginal Probabilities for the 2d Gaussian Distribu-

tion

We consider a Gaussian distribution in the two variables,

P(x, y) =
1

2πσ2 e−(x2+y2)/2σ2
with (x, y) ∈ R2 .

a) Determnine the marginal probability densities p1(x) =
∫

dy P(x, y)

and p2(y) =
∫

dx P(x, y).

b) Demonstrate that the conditional probability density P(x|y) :=

P(x, y)/p2(y) amounts to p1(x). Is there a faster way to see that

x and y are independent variables?

c) Determine the probability density p3(R) to find a value (x, y)

with modulus R =
√

x2 + y2.

d) Determine the probability density p4(φ) to find a value (x, y) in

direction φ with respect to the positive x axis.

Problem 1.5. The characteristic function of the Lorentz-Cauchy

distribution

The Lorentz-Cauchy distribution is defined as

pLC(x) =
1
π

Γ
(x−m)2 + Γ2 with parameters m, Γ ∈ R (1.4.1a)

a) Verify that the distribution is normalized.

b) Determine the expectation value of the distribution.

What about the variance?

c) Show that the characteristic function of pLC(x) is

χLC(t) =
〈

ei tx
〉
= ei m t−Γ |t| (1.4.1b)

What does this tell about the normalization, expectation and

variance?

(bonus) Consider the distribution

p4(x) =
4
π

Γ3

(x−m)4 + 4 Γ4 with parameters m, Γ ∈ R

(1.4.1c)

Determine the characteristic function.
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Show that it provides m and 2Γ2 for the expectation and the

variance, respectively.

What happens for higher moments?

1.4.3 Mathematical Background

Problem 1.6. σ algebras for throwing dice

We consider the outcomes of rolling a die with faces Ω =

{1, 2, 3, 4, 5, 6}. The die is a cube with three independent axes that

correspond to the sides X = {1, 6}, Y = {2, 5}, and Z = {3, 4},
respectively.

a) Construct the σ-algebra that admits distinction only of the axes.

b) Provide a generating set for this σ algebra.

c) We throw two dice and are interested in the overall sum of

points. What are the mutually exclusive sets of events that can be

used to generate the algebra for this problem? What are proba-

bilities of the events?

d) We again throw two dice, but we are only interested in doubles,

i.e., outcomes where both dice show the same number of points.

How is this problem related to Russion roulette?

Problem 1.7. Probabiliy of non-exclusive events

The events X, Y and Z in exercise 1.6 are mutually exclusive, and

for a fair die they appear with equal probability.

a) What is the probability for the events A = {X, Y} that either X

or Y is encountered, and for B = {X, Z} that either X or Z is

encountered. Provide an intuitive and a formal argument.

b) What are the probabilities for Π(A ∪ B) and Π(A ∩ B)?

c) Use the axioms for probabilities to derive a general relation

between the probabilities Π(M1), Π(M2), Π(M1 ∪ M2), and

Π(M1 ∩M2).

1.4.4 Transfer and Bonus Problems, Riddles

Problem 1.8. Bertrand’s paradox

A line is dropped randomly on a circle. The intersection will be a

chord. What is the probability that the length of the chord is larger

than that of a side of the inscribed equilateral triangle?
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Bertrand’s paradox states that the resulting probabiliy depends

on the rule how the lines are selected. To understand this observa-

tion we consider intersections with the unit circle at the origin.

a) Specify the line by two points: The first point is P1 = (0, 1) on the

circle and a second point P2 = (x, y) is selected at random in R2.

Determine the probability distribution for the length of the

chords, and its expectation value.

Hint: What is the probability density to find the second point in

a direction φ with respect to the x-axis, when looking from P1?

b) Pick as first point P1 = (0, 1) on the circle, as before. How-

ever, now the second point P2 = (x, y) is selected at random in

[−L, L]× [−L, L] for some L ∈ R+.

Determine the probability distribution for the length of the

chords and its expectation value.

How does the result depend on L?

c) Employ rotational symmetry and only consider horizontal lines

(x, yh) with x ∈ R and fixed yh. Let yh be uniformly distributed

in [−1, 1].

Determine the probability distribution for the length of the

chords and its expectation value.

d) Write a Python program to support your findings and explore

other settings.

Problem 1.9. Total sum on N dice

We throw N dice and explore the distribution PN(n) that the

sum of points of their point is n. For sake of simplifying notations

we assume n ∈N and assign zero probabilities where appropriate.

a) In Example 1.3 we obtained that

P1(n) =

 1/6 for n ≤ 7

0 else

Proof the recursion

PN+1(n) =
n

∑
m=1

P1(m) PN(n−m)

and show that the resulting distributions are normalized.

b) Determine P2(n) and compare to the data in worksheet 2. Ex-

pand the worksheet by the recursion relation, and explore how

http://localhost:8888/notebooks/Sage/01_coinFlipping.ipynb
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PN(n) approaches a normal distribution for large N.

c) Calculate the first and second moment of distribution.

Hint: Use the recursion relation. Do you see how the derivation

can be expanded to calculate moments of higher orders?





A

Basic notions of set theory

In this chapter we provide a brief introduction into relevant aspects

of set theory, and how relations, and functions are defined on this

background. These mathematical notions will be employed when

providing a formal definition of probability and probability distribu-

tions.

A.1 Sets

In mathematics and physics we often wish to make statements

about a collection of objects, numbers, or other distinct entities.

Definition A.1: Set

A set is a gathering of well-defined, distinct objects of our

perception or thoughts.

An object a that is part of a set A is an element of A; we write

a ∈ A.

If a set M has a finite number n of elements we say that its

cardinality is n. We write |M| = n.

Remark A.1. Notations and additional properties:

a) When a set M has a finite number of elements, e.g., +1 and −1,

one can specify the elements by explicitly stating the elements,

M = {+1,−1}. The order does not play a role and it does not

make a difference when elements are provided several times. In

other words the set M of cardinality two can be specified by any

of the following statements

M = {−1,+1} = {+1,−1} = {−1, 1, 1, 1, } = {−1, 1,+1,−1}

b) If e is not an element of a set M, we write e 6∈ M. For instance
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−1 ∈ M and 2 6∈ M.

c) There is only one set with no elements, i.e., with cardinality zero.

It is denoted as ∅.

Example A.1 (Sets). • Set of capitals of German states:
A2 = {Berlin, Bremen, Hamburg, Stuttgart, Mainz, Wiesbaden,

München, Magdeburg, Saarbrücken, Potsdam, Kiel, Hannover,

Dresden, Schwerin, Düsseldorf, Erfurt}

• Set of small letters in German:
A3 = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y,

z, ä, ö, ü, ß}

• Set of month with more than 28 days:11 Most of them even have more days.
A1 = {January, February, March, April, May, June, July, August,

September, October, November, December}
The cardinalities of these sets are

|A1| = 12, |A2| = 16, and |A3 = 30|. ♦

Example A.2 (Sets of sets). A set can be an element of a set. For

instance the set

M = {1, 3, {1, 2}}

has three elements 1, 3 and {1, 2} such that |M| = 3, and

1 ∈ M , {1, 2} ∈ M , 2 6∈ M {1} /∈ M .

♦

Often it is bulky to list all elements of a set. In obvious cases

we use ellipses such as A3 = {a, b, c, . . . , z, ä, ö, ü, ß} for the set

given in Example A.1. Alternatively, one can provide a set M by

specifying the properties of its elements x in the following form

M︸︷︷︸
The set M

=︸︷︷︸
contains

{︸︷︷︸
all elements

x︸︷︷︸
x,

:︸︷︷︸
with :

A(x)︸ ︷︷ ︸
properties . . .

}.

where the properties specify one of several properties of the ele-

ments. The properties are separated by commas, and must all be

true for all elements of the set.

Example A.3 (Set definition by property). The set of digits

D = {1, 2, 3, 4, 5, 6, 7, 8, 9} can also be defined as follows

D = {x : 0 < x ≤ 9, x ∈ Z} or even D = {1, . . . , 9}. ♦

In order to specify the properties in a compact form we use logi-

cal junctors as short hand notation. In the present course we adopt
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the notations not ¬, and ∧, or ∨, implies⇒, and is equivalent⇔
for the relations indicated in A.1.

A 0 0 1 1

B 0 1 0 1

¬A 1 1 0 0 not A
¬B 1 0 1 0 not B

A ∨ B 0 1 1 1 A or B
A ∧ B 0 0 0 1 A and B

A⇒ B 1 1 0 1 A implies B
A⇔ B 1 0 0 1 A is equivalent to B

A ∨ ¬B 1 0 1 1 A or not B
¬A ∧ B 0 1 0 0 not A or B
A ∧ ¬B 0 0 1 0 A and not B

Table A.1: List of the results of differ-
ent junctors acting on two statements
A and B. Here 0 and 1 indicate that a
statement is wrong or right, respec-
tively. In the rightmost column we
state the contents of the expression
in the left column in words. The final
three lines provide examples of more
complicated expressions.

The definition of the digits in Example A.3 entails that all el-

ements of D are also numbers in Z: we say that D is a subset of

Z.

Definition A.2: Subsets and Supersets

The set M1 is a subset of M2, if all elements of M1 are also

contained in M2. We write2M1 ⊆ M2. We denote M2 then as

superset of M1, writing M2 ⊇ M1.

The set M1 is a proper subset of M2 when at least one of its

elements is not contained in M2. In this case |M1| < |M2|
and we write M1 ⊂ M2, or M2 ⊃ M1.

2 Some authors use ⊂ instead of ⊆,
and ( to denote proper subsets.

Example A.4 (Subsets). • The set of month with names that end

with “ber” is a subset of the set A2 of Example A.1

{September, October, November, December} ⊆ A3

• For the set M of Example A.2 one has

{1} ⊆ M , {1, 3} ⊆ M , {1, 2} 6⊆ M , {2, {1, 2}} 6⊆ M .

Note that {1, 2} is an elements of M. However, it is not a subset.

The last two sets are no subsets because 2 6∈ M.

♦

Two sets are the same when they are subsets of each other.
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Theorem A.1: Equivalence of Sets

Two sets A and B are equal or equivalent, iff

(A ⊆ B) ∧ (B ⊆ A) .

Proof. A ⊆ B implies that a ∈ A⇒ a ∈ B.

B ⊆ A implies b ∈ B⇒ b ∈ A.

If A ⊆ B and B ⊆ A, then we also have a ∈ A⇔ a ∈ B.

Remark A.2. In the logical ∈ and 6∈ are always evaluated with

higher priority than junctors like⇒,⇔, ∧, and ∨.

The description of sets by properties of its members, Exam-

ple A.3, suggests that one will often be interested in operations

on sets. For instance the odd and even numbers are subsets of the

natural numbers. Together odd and even numbers form the set

of natural numbers. One is left with the even numbers when re-

moving the odd numbers from the natural numbers. We define the

following operations on sets to formally express these statements.

Figure A.1: Intersection of two sets.

Figure A.2: Union of two sets.

Figure A.3: Difference of two sets.

Figure A.4: Complement of a set.

Definition A.3: Set Operations

For two sets M1 and M2 we define the following operations:

• Intersection: M1
⋂

M2 = {m : m ∈ M1 ∧m ∈ M2},

• Union: M1
⋃

M2 = {m : m ∈ M1 ∨m ∈ M2},

• Difference: M1\M2 = {m : m ∈ M1 ∧m /∈ M2},

• The complement of a set M in a universe U is defined for

subsets M ⊆ U as follows MC = {m ∈ U : m /∈ M}.

• The cartesian product of two sets M1 and M2 is defined as

the set of ordered pairs (a, b) of elements a ∈ M1 and

b ∈ M2,
M1 ×M2 = {(a, b) : a ∈ M1, b ∈ M2} .

The oprations are graphically illustrated in Figures A.1

to A.4.

Example A.5 (Set operations for participants in my class). Consider

the set of participants P in my class. The sets of female F and male

M participants of the class are proper subsets of P with an empty

intersection F
⋂

M. The set of non-female participants is P\W. The

set of heterosexual couples in the class is a subset of the Cartesian
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name symbol description

natural numbers N {1, 2, 3, . . .}
natural numbers with 0 N0 N

⋃
{0}

negative numbers −N {−n : n ∈N}
even numbers 2N {2 n : n ∈N}
odd numbers 2 N− 1 {2 n− 1 : n ∈N}
integer numbers Z (−N)

⋃
N0

rational numbers Q
{

p
q : p ∈ Z, q ∈N

}
real numbers R see below

complex numbers C R + iR, where i =
√
−1

Table A.2: Summary of important sets
of numbers.

product F × M. Furthermore, the union of the union of W
⋃

M is

a proper subset of P, when there is at least one participant who is

neither female nor male. ♦

A.1.1 Sets of Numbers

Many sets of numbers that are of interest in physics have infinitely

many elements. We construct them in Table A.2 based on the natu-

ral numbers

N = {1, 2, 3, . . .}

or the natural numbers with zero

N0 = N
⋃
{0} .

Remark A.3. Some authors adopt the convention that zero is in-

cluded in the natural numbers N. In case of doubt one must check

which convention is adopted.

There are many more sets of numbers. For instance, in mathe-

matics the set of constructable numbers is relevant for certain proofs

in geometry, and in physics we occasionally use quaternions. In any

case one needs intervals of numbers.
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Definition A.4: Intervals of real numbers R

An interval is a continuous subset of a set of numbers. We

distinguish open, closed, and half-open subsets.

• closed interval: [a, b] = {x : x ≥ a, x ≤ b} ,

• open interval: (a, b) = ]a, b[ = {x : x > a, x < b} ,

• right open interval: [a, b) = [a, b[ = {x : x ≥ a, x > b} ,

• left open interval: (a, b[ = ]a, b] = {x : x > a, x ≥ b} .

Subsets of R will be denoted as real intervals.

A.2 Problems

A.2.1 Rehearsing Concepts

Problem A.1. Es gibt vier paarweise verschiedenen Elemente A, B, C, D.

Verwenden Sie die Symbole ∈, 6∈,3, 63,⊂, 6⊂,⊃, 6⊃,= in den Kästchen,

so dass wahre Aussagen entstehen.

(a) {A, B} � {A, B, C},

(b) {A} � B,

(c) {∅} � ∅,

(d) {{A}} � {{A} , {B}},

(e) A � {A, B, C},

(f) {A, C, D}
⋂
{A, B} � {A, B, C, D},

(g) {A, C, D} \
{A, B} � {A, B, C},

(h) {A, C, D}
⋃
{A, B} � A.

Problem A.2. Wir betrachten hier die Menge M := {(x, y) ∈ Z×Z : 1 ≤ x, y ≤ 6}.
Bildlich kann man sie sich als Raster aus sechs mal sechs Punkten

vorstellen. Die Abbildung unten zeigt die beiden Teilmengen M1

und M2 von M (dünne Punkte zählen nicht).

M1 {(x, y) ∈ M : x ≥ 5} M2 {(x, y) ∈ M : x ≥ 3}
⋃
{(x, y) ∈ M : y ≥ 4}

x

y

6

3 4 5

5

4

3

2

1

1 2 6 x

y

6

3 4 5

5

4

3

2

1

1 2 6
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(a) Beschreiben Sie die in der Abbildung unten definierten Mengen

M3 und M4:

M3 M4

x

y

6

3 4 5

5

4

3

2

1

1 2 6 x

y

6

3 4 5

5

4

3

2

1

1 2 6

(b) Zeichnen Sie die Menge M5 = {(x, y) ∈ M : 3 | x + y }.3
3 Hier bedeutet a | b,
dass a ein Teiler ist von b.

A.2.2 Practicing Concepts

Problem A.3. Schnittmengen.

Beschreiben Sie die folgenden Schnittmengen:

(a) 32Z
⋂

8Z. (b) 25Z
⋂

4Z. (c) 6Z
⋂

14Z.

(d) Stellen Sie eine allgemeine Regel für die Beschreibung der

Schnittmenge mZ
⋂

nZ auf.

Problem A.4. Grundlagen der Mengenlehre.

(a) Man zeige: {6 z : z ∈ Z} ⊂ {2 z : z ∈ Z}.

(b) Stellen Sie [1; 17]
⋂
]0; 5[ als Intervall dar. Begründen Sie Ihre

Aussage!

(c) Stellen Sie
⋂

n∈N[− 1
n ; 1 + 1

n ] als Intervall dar. Begründen Sie Ihre

Aussage!

(d) Man zeige: {2 z : z ∈ Z}
⋂
{3 z : z ∈ Z} = {6 z : z ∈ Z}.

(e) Untersuchen Sie, ob für alle a, b ∈ N gilt T(a)
⋃

T(b) = T(a · b),
wobei T(n) die Menge der Teiler der Zahl n ist.

Problem A.5. Intervalle.

(a) Beschreiben Sie [−1, 4]\[1, 2[ als Vereinigung disjunkter Inter-

valle.

(b) Beschreiben Sie [2, 4[
⋃
([3, 10]\(]3, 4[

⋃
[6, 7])) als Vereinigung

disjunkter Intervalle.
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(c) Stellen Sie die Menge

([1, 3] \ ]1, 2[)
⋃

([4, 11] \ (]5, 10[ \ [6, 7]))
⋃
{9}

als disjunkte Vereinigung von Intervallen oder Elementen dar.

Problem A.6. Teilmengen des R2 und R3.

(a) Schreiben Sie die Strecke zwischen den Punkten (1; 2) und (4; 0)

als Teilmenge des R2.

(b) Man zeige: {(s, 0) : s ∈ R} =
{
(x, y) ∈ R2 : y = 0

}
.

(c) Man zeige:

r ·

 2

3

 : r ∈ R

 =


 x

y

 ∈ R2 : 3x− 2y = 0

 .

(d) Schreiben Sie die x-z-Ebene im R3 auf (mindestens) drei ver-

schiedene Arten.

(e) Definieren Sie die quadratische Fläche mit den Eckpunkten

(2; 3), (2; 5), (4; 3), (4; 5).

(f) Definieren Sie die Kreisfläche des Kreises mit Radius 3 um den

Mittelpunkt (1;−2).

A.2.3 Proofs

Problem A.7. Beweise mit Mengen.

(a) Es seien A, B Mengen. Man zeige: A \ B ⊂ A.

(b) Es seien A, B, C Mengen. Man zeige: A \ (B
⋃

C) = A \ B
⋂

A \C.

(c) Es seien A, B, C Mengen. Formulieren Sie einen Beweis des

Distributivitätsgesetzes

A
⋂
(B
⋃

C) = (A
⋂

B)
⋃
(A
⋂

C)

Überführen Sie dazu die Aussage x ∈ A
⋂
(B
⋃

C) schrit-

tweise, durch sukzessives Einsetzen der Definitionen und Ver-

wendung elementarer logischer Schlüsse, in die Aussage x ∈
(A
⋂

B)
⋃
(A
⋂

C). Tun Sie danach dasselbe in die entgegengeset-

zte Richtung, d.h. formen Sie die Aussage x ∈ (A
⋂

B)
⋃
(A
⋂

C)

schrittweise in die Aussage x ∈ A
⋂
(B
⋃

C) um.

A.2.4 Transfer and Bonus Problems

Problem A.8. Wir betrachten die Menge M =
{
(x, y) ∈ M : y = (x− 7)2 + 1

}
.

Geben Sie für diese Menge eine Darstellung in der Form

M = {(x, y) ∈ M : a · x + b · y = c} ,
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wobei a, b und c (möglichst hübsch gewählte) reelle Zahlen sein

sollen.
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