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Fluctuating currents in stochastic thermodynamics. I. Gauge invariance of asymptotic statistics
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Stochastic thermodynamics uses Markovian jump processes to model random transitions between observable
mesoscopic states. Physical currents are obtained from antisymmetric jump observables defined on the edges
of the graph representing the network of states. The asymptotic statistics of such currents are characterized by
scaled cumulants. In the present work, we use the algebraic and topological structure of Markovian models to
prove a gauge invariance of the scaled cumulant-generating function. Exploiting this invariance yields an efficient
algorithm for practical calculations of asymptotic averages and correlation integrals. We discuss how our approach
generalizes the Schnakenberg decomposition of the average entropy-production rate, and how it unifies previous
work. The application of our results to concrete models is presented in an accompanying publication.
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I. INTRODUCTION

Stochastic thermodynamics provides a framework for a
thermodynamically consistent treatment of physical systems
modeled by Markov processes [1–5]. Stationary currents in
these models are the hallmark of sustained nonequilibrium
conditions [6]: they arise whenever a Markovian stochastic
system does not satisfy detailed balance. The fluctuations of
these currents are interesting from both an experimental [7,8]
and theoretical point of view (cf. [9], and references therein).
Their asymptotic statistics for long times are described by large
deviation theory [10–12]. However, an analytical determina-
tion of the large-deviation rate function is—apart from very
simple or very symmetric systems, cf. [4,13–15]—challenging
if not impossible. In most cases, it is already difficult
to find explicit expressions for the steady-state probability
distribution. This is particularly true if the transition rates
of a given model depend nonlinearly on multiple physical
parameters.

Here, we offer an approach to systematically characterize
the statistics of fluctuating currents: specifically, we present
a method to calculate the large-deviation properties of the
fluctuating currents in the form of scaled cumulants. The set
of scaled cumulants will be referred to as the fluctuation
spectrum. For models with finite state space, we show that
the fluctuation spectra of currents may be calculated without
the need to solve nonlinear equations. We explicitly show
how the linear structure of currentlike observables carries
over to the fluctuation spectra. This allows us to express the
statistics of all possible currents by the statistics of a finite
set of basis elements. Moreover, our analysis shows that this
linear representation can be simplified further: Our main result
states that the asymptotic statistics of fluctuating currents
are fully determined by topological cycles of the system.
Consequently, the same observable properties are produced
by an entire equivalence class of observables. This gauge
invariance of the theory produces convenient expressions for
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the fluctuation spectra of arbitrary currents. It generalizes the
observations of Hill [16] and Schnakenberg [2] about the
connection of topology and steady-state dynamics to the full
counting statistics of physical currents.

The practical application of our representation is an
efficient method to explore the parameter dependence of
the statistics of fluctuating currents in physical models. We
explicitly treat expectation values and time-correlation (Green-
Kubo) integrals of fluctuating currents. The potential of the
method is demonstrated in an accompanying paper, where we
demonstrate the effectiveness of our results for models of the
molecular motor kinesin [17].

The present paper is structured as follows. In Sec. II we
introduce fluctuating currents for Markov jump processes as
our central element of study. Large deviation theory is used
to quantify their asymptotic statistics in the form of scaled
cumulants. Section III concerns the algebraic structure of the
scaled cumulants resulting from decompositions of the space
of observables. In Sec. IV we use these decompositions to
introduce and prove a gauge invariance of the fluctuation
spectra. It entails a very convenient representation of the
fluctuation spectra. Finally in Sec. V we summarize our results
and relate them to other recent results on fluctuations of cur-
rents in Markov processes. Moreover, we provide an outlook
to prospective applications. Some additional mathematical
background concerning algebraic graph theory is summarized
in the Appendix.

II. ASYMPTOTIC STATISTICS OF FLUCTUATING
CURRENTS

In the present section we revisit the formalism describing
the time evolution of observables defined for ergodic Markov
processes. The statistics of their time-averaged currents can
be characterized by large deviation theory, and we will show
how all scaled cumulants characterizing these distributions can
explicitly be calculated by the implicit function theorem.

A. Currents for Markov jump processes

The set V = {v1,v2, . . . ,vN } of potential outcomes of
measurements on a physical system will be referred to as state
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space. Throughout this text, N := |V| shall be the number of
possible states. It will always be finite. Further, we assume
that at any given time the future evolution of the system
only depends on its present state—there is no memory of
the past evolution—and that the probability to encounter a
certain succession of states is the same at all times. Hence,
the evolution amounts to a time-homogeneous Markovian
jump process on V: any transition from a state vi ∈ V to
a different state vj ∈ V,j �= i happens stochastically with a
time-independent rate wi

j � 0. Moreover, we only consider
Markov jump processes with dynamical reversibility [2]: if
a transition from vi to vj is possible so shall be the reverse
transition, i.e., wi

j > 0 ⇔ w
j

i > 0. This condition is necessary
to apply stochastic thermodynamics [4,5,18].

Starting from a state γ0 ∈ V , a realization or random
trajectory γ of the Markov process is a sequence of states.
During a time T a trajectory γ = (γ0,γ1, . . . ,γn(T )) makes a
random number n(T ) of jumps. For Markovian systems an
ensemble is characterized by an initial probability distribution
p(0) = (p1(0),p2(0), . . . ,pN (0)) on V . It evolves according to
the master equation [19]

d

dt
pj (t) =

N∑
i = 1
i �= j

[
pi(t)w

i
j − pj (t)wj

i

] =
N∑

i=1

pi(t) wi
j ,

(1)

where w
j

j := −∑
i: i �=j w

j

i . Note that the master equation
guarantees conservation of probability, i.e.,

∑
j pj (t) ≡ 1 for

all t � 0.
The numbers wi

j defined in Eq. (1) can be gathered in
a square matrix W, yielding the master equation in matrix
form as ṗ = pW. Henceforth, we assume W to be irreducible,
meaning that any two states are connected by a finite trajectory.
Together with the assumption of dynamical reversibility,
this ensures the existence of a unique left eigenvector π

of W satisfying 0 = πW and
∑

i πi = 1. This vector π is
called steady-state distribution or ergodic measure of the
Markov process: all initial probability distributions p(0) relax
to π [20].

The steady-state probability current for the transition from
vi to vj is given by J i

j := πiw
i
j − πjw

j

i = −J
j

i where ∀i :
J i

i := 0. Using this current, the condition on the steady-state
distribution π amounts to

∀j : 0 = d

dt
πj =

∑
i

πiw
i
j =

∑
i

J i
j .

Henceforth, we are interested in the jump observables ϕ

defined for a given Markov jump process. A jump observable
associates a value ϕi

j ∈ R to a transition from one state vi

to another state vj . Further, a jump observable needs to be
balanced: summing the values of ϕ along a realization γ of
the Markov process should only depend on the net number
of transitions between two states, requiring that ϕi

j = −ϕ
j

i .
For any nonadmissible transition with a vanishing transition
rate wi

j = w
j

i = 0 we define ϕi
j = ϕ

j

i := 0. More abstractly,
one can think of jump observables as a special kind of
antisymmetric matrices ϕ ∈ RN . A prominent example of

a jump observable is the logarithmic ratio of the transition
rates σ i

j = ln(wi
j/w

j

i ), which expresses the thermodynamic
dissipation in stochastic thermodynamics [4,5]. Other jump
observables may represent changes in particle numbers in
chemical reactions, configurational changes, or differences in
(thermodynamic) potentials [21].

The time average of a jump observable ϕ along a given
trajectory γ = (γ0,γ1, . . . ,γn(T )) is defined as

ϕT := 1

T

n(T )∑
k=1

ϕγk−1
γk

. (2)

If the trajectory γ stays unspecified, Eq. (2) defines a
time-averaged fluctuating current. It constitutes a real-valued
random variable, and the ergodic theorem states that it will
almost surely (a. s.) converge to ensemble averages [12,20],

lim
T →∞

ϕT =
N∑

i=1

N∑
j=i

J i
j ϕi

j a. s. (3)

In the following we characterize the distribution of these
time-averaged currents by calculating all scaled cumulants
of the distribution of ϕT . Formally, they characterize the
T → ∞ asymptotic behavior of the distributions. Typically,
the approach towards the asymptotic scaling form is exponen-
tially fast, such that the asymptotic statistics characterize the
fluctuations already for (sufficiently large) finite times T [11].

B. Large deviation theory: quantifying asymptotic fluctuations

Equation (3) states that in the infinite-time limit the
probability density of ϕT converges to a Dirac δ distribution.
In popular terms we say that fluctuations do not matter in
the asymptotic limit. For finite times T its fluctuations can
be quantified by means of the moments, or equivalently, the
cumulants of the distribution of ϕT . To fix our notation, we
briefly revisit the notion of cumulants before we use large
deviation theory [10,11] to quantify their scaling.

Let X be a real-valued random variable, and let ρX(x) =
Prob(X = x) be its probability distribution. The expectation
of a function ψ : R → R is 〈ψ(X)〉 := ∫

R ψ(x)ρX(x)dx. The
expectation of the identity ψ(x) = x is referred to as the
expectation value, 〈X〉, of X. The fluctuations of a random
variable around its expectation value are commonly quantified
by the variance, VarX = 〈(X − 〈X〉)2〉. When the distribution
is centered around the expectation value, the two numbers 〈X〉
and VarX provide a good estimate on the distribution. Higher
order cumulants further characterize its shape. They take non-
negligible values only when the distribution is not centered
or strongly asymmetric, and they characterize correlations in
the multivariate case. Formally, the cumulants are defined as
follows:

Consider an Rd -valued random variable X . Its cumulant-
generating function gX : Rd → R is defined as

gX (q) := ln 〈exp (q · X)〉. (4)

The partial derivatives of gX ,

κ(X(i1),X(i2), . . . ,X(iν )) := ∂

∂qi1

∂

∂qi2

. . .
∂

∂qiν

gX (0), (5)
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evaluated in the origin are the joint cumulants [19]. They
are multilinear in their arguments, even if the X(1), . . . ,X(d)

are not independent [22]. For independent random variables,
the mixed joint cumulants vanish and the cumulants become
purely additive. The cumulant-generating function gX (q) is
(nonstrictly) convex and satisfies gX (0) = 0 for all X . In the
univariate case, d = 1, one defines

κ(X, . . . ,X︸ ︷︷ ︸
ν times

) =: κν(X). (6)

Moreover, we have

κ1(X) = 〈X〉, κ2(X) = 〈(X − 〈X〉)2〉 = VarX,

κ3(X) = 〈(X − 〈X〉)3〉.
For ν � 4 the cumulants κν(X) differ from the centered
moments 〈(X − 〈X〉)ν〉. However, there is a bijection from
cumulants to (centered) moments [19,22].

The time averages defined in Eq. (2) are families of random
variables: for every given time T , the time average ϕT is a
random variable and has an associated probability density
ρϕT

. In order to characterize the correlations of d different
time-averaged currents, ϕ

(1)
T ,ϕ

(2)
T , . . . ,ϕ

(d)
T , it is convenient to

introduce the vector ϕT = (ϕ(1)
T ,ϕ

(2)
T , . . . ,ϕ

(d)
T ). It is a particular

type of an Rd -valued random variable X . In view of Eq. (3)
the associated density ρϕT

converges to a d-dimensional Dirac
δ function. Consequently, the cumulants of order greater than
1 decay to 0 for large T .

Large deviation theory is concerned with the rate of this
decay [10,11]. It asserts that the scaled cumulant-generating
function

λϕ(q) := lim
T →∞

1

T
ln〈exp[T q · ϕT ]〉 (7)

exists, where again q ∈ Rd . This generating function is related
to the (nonscaled) cumulant-generating function, Eq. (4), by
the scaling relation λϕ(q) := limT →∞ 1

T
gϕT

(T q). As a conse-
quence, the scaled cumulant-generating function inherits the
properties of the (nonscaled) cumulant-generating functions:
convexity and λϕ(0) = 0 for every fluctuating current.

The partial derivatives of the scaled cumulant-generating
function with respect to the components qi of q are the scaled
cumulants:

c(ϕ(i1),ϕ(i2), . . . ,ϕ(iν )) := ∂

∂qi1

∂

∂qi2

. . .
∂

∂qiν

λ(0). (8)

From the definition Eq. (7), the scaled cumulants c inherit mul-
tilinearity from the cumulants κ . Moreover, we immediately
obtain their scaling,

c(ϕ(i1), . . . ,ϕ(iν )) = lim
T →∞

T ν−1κ
(
ϕ

(i1)
T , . . . ,ϕ

(iν )
T

)
. (9)

In the following, the term fluctuation spectrum shall
refer to the set of all scaled cumulants of a given vector
ϕT of time-averaged currents. For time averages ϕT of a
single jump observable ϕ, the fluctuation spectrum is the se-
quence of scaled cumulants: cν(ϕ) = limT →∞ T ν−1κν(ϕT ) =
limT →∞ 1

T
κν(T ϕT ). Note that in the physics literature dealing

with large deviations, the word “scaled” is often implied when

speaking of “cumulants.” Furthermore, the joint scaled cumu-
lants of order 2 are identical to asymptotic time-correlation
(Green-Kubo) integrals [4].

C. Calculating the fluctuation spectrum

For ergodic Markovian jump processes with finite state
space the scaled cumulant-generating function λϕ(q) has an
interesting property: it is the unique dominant eigenvalue of
the matrix Wϕ(q) with components

(
Wϕ(q)

)
i
j := wi

j exp
(
q · ϕi

j

)
, (10)

where q ∈ Rd , and wi
j is the rate of jumps from vi to vj [10,11].

In general, it is impossible for N = |V| > 4 to find analytic
expressions for the dominant eigenvalue λϕ(q) of the matrix
Wϕ(q). After all, the solution of the eigenvalue problem
amounts to finding the root with the largest real part of a
polynomial of degree N . An analytical expression for λϕ(q)
is needed, however, to evaluate the (higher-order) scaled
cumulants as derivatives, Eq. (8), of the eigenvalue. In most
cases, this is where the derivation of exact analytic results
stops—unless there are very special properties of the system,
e.g., symmetries, that help find the eigenvalue (see [13–15]
for noticeable examples).

An important message of the present paper is that determin-
ing any cumulant of finite order does not require finding the
solution of any nonlinear equation. All relevant information is
contained in the characteristic equation

0 = det(Wϕ(q) − λE) =: χϕ(q,λ) =:
N∑

k=0

ak(q) λk (11)

solved by the eigenvalues λ of the matrix Wϕ(q). The
above equation, together with the property of the dominant
eigenvalue λϕ(0) = 0, implicitly defines the scaled cumulant-
generating function λϕ(q). Since the characteristic polynomial
is differentiable in both arguments, the implicit function theo-
rem can be applied to Eq. (11) to extract the partial derivatives
of λϕ(q). The implicit function theorem further guarantees
that the implicitly defined function is (locally) unique. Con-
sequently, the thus calculated partial derivatives agree with
the scaled cumulants. In practice, this means that Eq. (11)
provides the scaled cumulants iteratively and directly from
the coefficients ak(q) of the characteristic polynomial: take
partial derivatives with respect to various q� of the equation 0 =
χϕ(q,λϕ(q)) , and keep track of the dependence of λϕ(q) and
its derivatives on the variable q. Evaluating these expressions
at q = 0 and λϕ(0) = 0 makes the scaled cumulants appear
as inner derivatives. More importantly, they appear linearly
in the expressions and thus can be solved for. Hence, their
dependence on the (possibly parameter-dependent) transition
rates wi

j and jump observables ϕi
j is analytically accessible—

in contrast to that of the dominant eigenvalue λϕ(q).
Regarding the application of the implicit function theorem,

one has to ensure that the coefficient a1(0) = ∂λχϕ(0,0) does
not vanish. This is in fact given: since Wϕ(0) = W, the
values ak(0) = ak are independent of the observable ϕ. They
only depend on the transition matrix W, and the matrix tree
theorem [23] ensures that a1(0) = a1 �= 0 for every irreducible
transition matrix.
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To be explicit, we give the general expressions for the first two scaled cumulants c(ϕ(�)) and c(ϕ(�),ϕ(m)) of the vector ϕT in
terms of the coefficients ak(q) of the characteristic polynomial:

c(ϕ(�)) = −∂�a0

a1
=: c(�), (12a)

c(ϕ(�),ϕ(m)) = −∂2
�ma0

a1
+ (∂ma1)(∂�a0) + (∂�a1)(∂ma0)

a2
1

− 2(∂�a0)(∂ma0)a2

a3
1

,

= −∂2
�ma0 + (∂�a1)c(m) + (∂ma1)c(�) + 2a2c

(m)c(�)

a1
, (12b)

where the partial derivatives ∂�ak ≡ ∂ak (q)
∂q�

|
q=0

and the coeffi-

cients ak are evaluated at q = 0. The higher cumulants have
a similar but more involved representation in terms of the
coefficients ak(q). Note the following facts: The coefficients
up to order k are sufficient to uniquely determine the cumulants
up to order k. Consequently, if one is interested only in scaled
cumulants of order 2 and 1, one only needs the coefficients
a0(q) ≡ detWϕ(q), a1(q) and a2(q)—irrespective of the de-
gree, |V| ≡ N , of the characteristic polynomial. Furthermore,
Eqs. (12a) and (12b) are agnostic to the dimension d of the
vector ϕi

j of jump observables.

D. Summary

We conclude that the implicit function theorem allows us to
calculate the fluctuation spectrum based on only the transition
matrix W and the observable ϕ. At no step do we make use
of analytical expressions for the scaled cumulant-generating
function λϕ(q) or for the steady-state distribution π . The
combinatorics sometimes used to calculate π is dealt with
implicitly, and much more elegantly, by the characteristic
polynomial (cf. Ref. [24] for explicit considerations of the
combinatorics involved in a scaled cumulant of second order).
In other words, the relevant information about the steady-state
distribution is hidden in the coefficients ak(q).

In the following section, we present a method to calculate
the scaled cumulants in a systematic and efficient way: due to
the vector-space structure of the current observables and the
multilinearity of scaled cumulants, it is enough to calculate the
cumulants of a reduced set of fundamental observables, acting
as a basis.

III. ALGEBRAIC STRUCTURE OF FLUCTUATION
SPECTRA

Kirchhoff established two laws characterizing the station-
ary distributions of electrical currents in electrical networks
[25]. The current law states that steady-state currents balance
at each vertex. The voltage law states that the sum of potential
differences vanishes when integrated along a cycle. The field
theory of electrodynamics reformulates these observations
in the context of vector calculus. We will now explore a
corresponding structure for Markovian jump processes. In
Sec. IV we thus establish a corresponding gauge invariance
for the asymptotic statistics of fluctuating currents. Adopting
the language of graph theory [23,26,27] allows us to do this in
a concise and elegant way.

A. The network of states as a graph

The structure of a Markovian jump process can be thought
of as a graph where the states V are the vertices or nodes. For
every nonvanishing transition rate wi

j > 0 we draw a directed
edge (vi → vj ) that we denote by ei

j . The set of all directed
edges will be denoted as Ed and the pair (V,Ed) is a graph,
cf. Fig. 1(a). The Markovian jump process performs steps
along edges ei

j of the graph with stochastic rates wi
j .

In a dynamically reversible Markov process, we have a
pair of edges {ei

j ,e
j

i } connecting each pair of vertices {vi,vj },
if transitions between these vertices are admissible. In that
case we define −ei

j := e
j

i since the edges only differ by their
direction. For every pair of connected vertices {vi,vj } we can
choose one of the edges as a reference. We shall call this
an oriented edge. The set Eo of oriented edges satisfies Eo ∪
−Eo = Ed; see Fig. 1. The Markov process defines a random
walk on the graph (V,Eo) where steps are also allowed in
the reversed direction of an oriented edge e ∈ Eo. Note that,
in contrast to (V,Ed), the graph (V,Eo) is simple: There is at
most one edge connecting two vertices. In the following let
M := |Eo| = 1

2 |Ed| be the number of connected pairs of states.
Henceforth, we enumerate the oriented edges by a single index,
i.e., Eo = {e1, . . . ,eM}; cf. Fig. 1(b).

Recall that the realization of a Markovian jump process is
a random walk γ . Instead of writing γ = (γ0,γ1, . . . γn) as a
tuple of subsequent vertices, we can alternatively define a walk
by its n edges and write γ = (ei1 , . . . ,ein ). An example of a
walk from v4 to v3 on the oriented graph in Fig. 1(b) is the
sequence (e4,e1,−e2,−e5,−e4,−e3).

(a) v4v1

v3v2

(b) v4v1

v3v2

e4

e2

e3e5
e1

FIG. 1. An example graph representing the network of states
of a dynamically reversible Markov process, as used in models of
stochastic thermodynamics. It is represented either as (a) a graph
(V,Ed) with two directed edges connecting each pair of states, or
(b) by choosing a reference orientation as a simple graph (V,Eo). We
will use the latter throughout this text.
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B. Vector-space algebra for graphs and fluctuation spectra

Graph theory also provides a complementary perspective
on the jump observables defined in Sec. II A. Above, we
introduced jump observables as antisymmetric matrices with
vanishing entries whenever a transition is not admissible. In
the present context, it is more appropriate to use an (equivalent)
definition based on the oriented edges Eo, rather than on (pairs
of) vertices. To that end, we consider the set

O := {ϕ : Eo → R} ≡ REo (13)

of all real functions ϕ defined on the oriented edges. As
a function space it inherits a vector-space structure. Via
antisymmetry, it naturally extends to all the directed edges e ∈
Ed: ϕ(−e) ≡ −ϕ(e) . Such a structure is called (antisymmetric)
edge space in the mathematics literature [27]. Henceforth,
a jump observable is an element ϕ ∈ O of the edge space.
Note that with this definition, all the results obtained in the
present paper also hold for physical models with multiple
(bidirectional) edges between states, like the ones considered
(for instance) in Refs. [14,28].

There is a canonical way of defining a basis for the jump
observables: For every edge e ∈ Eo the corresponding indicator
function is an observable that takes the value 1 on this edge and
0 everywhere else. For convenience, we denote this observable
also by e. In this sense, the edges are observables themselves,
Eo ⊂ O. Every jump observable ϕ ∈ O can be written as a
linear combination ϕ = ∑M

m=1 ϕmem with ϕm = ϕ(em) ∈ R,
and thus the oriented edges serve as a basis. The natural scalar
product on O,

〈ϕ,ψ〉 :=
∑
e∈Eo

ϕ(e)ψ(e) =
M∑

m=1

ϕmψm, (14)

treats the oriented edges Eo as an orthonormal basis. After
all, irrespective of the choice of orientation one has 〈em,ek〉 =
em(ek) = δmk . Consequently, the initially arbitrary orientation
of the edges amounts to the choice of a basis. Moreover, the
ergodic theorem, Eq. (3), may thus be stated as limT →∞ ϕT =
〈ϕ,J 〉 .

The multilinearity of the scaled cumulants implies that the
statistics of every jump observable can be described by the
(joint) scaled cumulants of a basis:

cν(ϕ) =
⎛
⎝ ν∏

m=1

∑
em∈Eo

ϕm

⎞
⎠c(e1,e2, . . . ,eν). (15)

Here the em need not be the canonical basis introduced
above, but can be any basis—given that the ϕm represent the
coefficients of ϕ in that basis. A representation of this form
is not necessarily useful for practical calculations. The effort
to calculate the fluctuation spectra for the entire basis exceeds
the one of calculating the fluctuation spectrum of a single
observable. Regardless, Eq. (15) provides valuable conceptual
insights. On the one hand, it establishes a connection between
the fluctuations of different observables, which is interesting in
its own right. On the other hand, we will see later that a practical
computational algorithm emerges through an informed choice
of the basis. In the remainder of the present section we further
explore the linear structure of the vector space O. In Sec. IV

we will combine these insights to establish a gauge invariance
for the fluctuation spectra that will allow us to choose a basis
minimizing the effort involved in calculating scaled cumulants.

C. Cycles and co-cycles

In order to formulate the analogy between Markov pro-
cesses and electrodynamics, we consider jump observables
as “discretized vector fields” that point along the edges of the
graph. The jump observables are the elements of the edge space
O = REo , i.e., (antisymmetric) real functions on the edges.
The analogous notion of “scalar fields on discrete sets” is the
so-called vertex space, i.e., the space of real functions on the
vertices U := RV = {u : V → R}. We identify the vertex set
V with its indicator functions and regard the vertex space U as
the linear span of V . This makes the vertices a subset V ⊂ U of
the vertex space, just as we regard Eo ⊂ O. Again, the natural
scalar product on U treats the basis V as orthonormal.

Analogously to vector calculus, there are natural difference
operators that map vector fields to scalar fields, and vice versa:
The boundary operator ∂ : O → U and the co-boundary
operator ∂∗ : U → O, respectively. On the basis elements they
act as ∂ : ei

j �→ vi − vj and ∂∗ : vi �→ ∑
j :j �=i ei

j ; cf. Figs. 2(a)
and 2(c), respectively. Being linear operators they commute
with sums, i.e., with any linear combinations of edges and
vertices. It is easy to check that, as notation suggests, they
are dual operators with respect to the natural scalar products.
As exemplified in Fig. 2, these linear difference operators
have a very natural interpretation when jump observables are
understood as discrete vector fields: the operator ∂ acts like
a discrete divergence, while ∂∗ resembles a negative discrete
gradient.

Kirchhoff’s current law states that the net current into each
vertex of an electrical network balances the net outflow. In
abstract terms, the formulation of this statement applied to
the probability current J reads ∂J = 0. It is equivalent to the
steady-state master equation (1), 0 = πW. Another way to

FIG. 2. (Color online) The action of the boundary and the co-
boundary exemplified using the graph of Fig. 1(b). The reference
orientation is omitted here. (a) The boundary operator ∂ maps an edge
(left) to a linear combination of the two vertices that are connected
by the edge (right). (b) A linear combination of edges that does not
have any sinks or sources has boundary zero—the defining property
of a cycle; see the main text. (c) The co-boundary operator ∂∗ maps
a single vertex (left) to the sum of edges pointing away from that
vertex (right). The coefficients for the linear combinations of edges
and vertices are encoded as indicated at the bottom right. Note that a
negative coefficient associated to an edge is equivalent to a positive
coefficient with reversed orientation.
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formulate the result is that probability (or electrical charge)
is conserved and there are neither sinks nor sources. Then,
such currents must run in cycles and we define the cycle space
as Z := ker ∂; cf. Fig. 2(b) for an example of a cycle. In
the picture of discrete vector fields, these are “divergence-
free fields.” The “gradient fields” form the co-cycle space
Y := im ∂∗. It is the orthogonal complement to the cycle
space, Z⊥ = Y , and we have O = Z ⊕ Y reminiscent of the
Helmholtz decomposition for vector fields in R3.

Also Kirchhoff’s voltage law has an abstract analog. The co-
cycles y ∈ Y satisfy 〈y,z〉 = 0 for all z ∈ Z . In particular, they
add up to zero when summing along any mesh of the graph.
Hence, co-cycles (like the voltages for electrical networks)
correspond to the differences in potential functions defined
on the edges. The potentials are simply the elements u ∈ U .
The co-boundary operator ∂∗u then yields the corresponding
“voltages” as their edgewise differences.

In the next section, we provide a topological perspective to
cycles of the graph that provides insight into the dimensions of
the cycle and co-cycle spaces, and that admits the construction
of nice bases for practical calculations.

D. Topological approach to the cycle space

In his pioneering work, Hill [1,16] developed a cycle theory
for biological networks described by master equations. It was
later extended to a consistent network theory by Schnakenberg
[2] and others [29]. In order to prepare the discussion of
the gauge invariance of the fluctuation spectra in Sec. IV we
rephrase these concepts in the language of the algebraic graph
theory introduced in the preceding subsection.

Two topologically special classes of graphs are circuits and
trees: a circuit is a connected graph in which every vertex
has exactly two neighbors. Thus, for a circuit (V,Eo) we have
|V| = |Eo|. A tree is a connected graph (V,T ) that does not
contain any circuit as a subgraph. Consequently, every tree
satisfies |T | = |V| − 1.

Every connected graph (V,Eo) contains a spanning tree
(V,T ) as a subgraph. This is a tree spanning all vertices and
possibly less edges, T ⊆ Eo. In general, a graph contains many
different spanning trees, as demonstrated in Fig. 3, where the
edges that comprise the respective trees are indicated in green.
The edgesH = Eo \ T that are not part of the spanning tree are
called chords of the spanning tree. These chords are colored
in dark blue.

Adding any chord η ∈ H to its spanning tree creates the
subgraph (V,T ∪ {η}). This graph contains exactly one circuit.
Aligning all its edges in parallel to η and summing these,

(a) (b) (c)

FIG. 3. (Color online) Three different spanning trees for the
oriented graph given in Fig. 1(b). The edges T of the different trees
are marked green (gray), while the chords H are depicted in dark blue
(dark gray). Up to symmetries, every other spanning tree of the graph
looks like one of the depicted ones.

(a)

(b)

FIG. 4. (Color online) Fundamental cycles of the spanning trees
in Fig. 3: every chord η ∈ H (dashed here, dark blue in Fig. 3)
generates a fundamental cycle, that is also marked in dark blue (dark
gray) here. The light gray edges are not part of the fundamental
cycles. Note that the spanning tree in Fig. 3(c) generates the exact
same fundamental cycles as the one in Fig. 3(b), but with different
chords. In contrast, the spanning tree in Fig. 3(a) shares only one
fundamental cycle with the spanning trees (b) and (c).

creates a so-called fundamental cycle ζη ∈ Z . The spanning
trees in Fig. 3 give rise to the fundamental cycles shown in
Fig. 4. By construction, every fundamental cycle contains
a different chord. Thus, the fundamental cycles are linearly
independent. Moreover, in the Appendix we show that the fun-
damental cycles {ζη|η ∈ H} form a basis of the cycle space Z ,
which we defined algebraically in Sec. III C. Consequently, we
have |H| = |Eo| − |V| + 1 = dimZ , irrespective of the choice
of the spanning tree. This number is a topological constant
also known as cyclomatic number or first Betti number. It
immediately tells us why trees and circuits are so important:
trees have a trivial cycle space Z = {0}, while circuits give
rise to a one-dimensional cycle space. In other words, circuits
and trees are the topological building blocks of graphs.

Since the oriented edges Eo = H ∪ T are an orthonormal-
ized basis of O, we have another orthogonal decomposition:
O = RH ⊕ RT . The chord space RH and the tree space RT

depend on the choice of the spanning tree, while the definitions
of Z and Y are independent of the choice of a spanning tree.
Moreover, no single edge is a cycle nor a co-cycle. Thus,
Z �= RH and Y �= RT even though dimZ = |H| = dimRH

and dimY = |T | = dimRT .
Note that the fundamental cycles are not orthonormalized

with respect to the standard scalar product: |〈ζη1 ,ζη2〉| counts
the number of edges shared by the two fundamental cycles
corresponding to the chords η1 and η2. The sign of their scalar
product indicates whether the shared edges are aligned parallel
or antiparallel. Nonetheless, for a fundamental cycle ζ and a
chord η we have

〈ζ,η〉 = ζ (η) =
{

1, if ζ = ζη,

0, else.

Now we know that the fundamental cycles are a basis of
the cycle space. Thus, every cycle can be written as z =∑

η zη ζη. Consequently, evaluating the cycle on a chord η′
directly gives the coefficients of this linear combination:
z(η′) = ∑

η zη ζη(η′) = zη′ . So, knowing the values of a cycle
z ∈ Z on the chords H ⊂ Eo alone is sufficient to reconstruct
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its values on all the edges Eo. The most important special case
is the steady-state probability current: J ∈ Z .

E. Summary

We formulated the jump observables as a vector space O,
and showed that the multilinearity entails a representation,
Eq. (15), of fluctuation spectra as superpositions of the spectra
of the basis vectors of the vector space. The vector space has
two different natural decompositions into linear subspaces:
either universally as cycles and co-cycles O = Z ⊕ Y or
with a given spanning tree as O = RH ⊕ RT . The former
representation allowed us to formulate analogies (Kirchhoff’s
laws, Helmholtz decomposition) between electrodynamics and
currents arising from Markov processes. The latter allows
the connection to the network theories of Hill [1] and
Schnakenberg [2]. In the following section we will use both
representations to identify a gauge invariance of fluctuation
spectra. This gauge freedom substantially simplifies the
calculation of fluctuation spectra introduced in Sec. II.

IV. GAUGE FREEDOM OF FLUCTUATION SPECTRA

Now everything is in place to state the fundamental result
of the present work: the fluctuation spectrum of an arbitrary
observable ϕ ∈ O only depends on its component in the cycle
space Z . On the one hand, this entails that observables share
identical fluctuation spectra if they differ only by co-cyclic
parts. On the other hand, this allows us to choose particularly
easy representations.

The orthogonal decomposition of the edge space O =
Z ⊕ Y guarantees that every jump observable ϕ ∈ O can be
written as a unique sum ϕ = z + y of a cycle z ∈ Z and a
co-cycle y ∈ Y . In view of the fact that the scaled cumulants
are multilinear, we can calculate the scaled cumulants of ϕ

from the scaled cumulants of z and y. In fact, the co-cyclic
part can be neglected as stated in the following:

Proposition 1. The scaled cumulant-generating function
λϕ(q) of a jump observable ϕ = z + y ∈ O satisfies λϕ(q) =
λz(q) where z ∈ Z and y ∈ Y are the unique cycle and co-cycle
parts of ϕ, respectively.

Proof. The matrix M := Wϕ(q) − λE has entries

Mi
j =

{
−λ − ∑

k �=i w
i
k, if i = j,

wi
j exp

[
q ϕ

(
ei
j

)]
, if i �= j.

With the symmetric group SN , i.e., the group of permutations
of N symbols, we write the characteristic polynomial ofWϕ(q)
as

χϕ(q,λ) = detM =
∑

σ∈SN

sgn(σ )M1
σ (1)M

2
σ (2) . . .M

N
σ (N).

We will show that all contributions to χϕ(q,λ) that have a
dependence on ϕ cannot distinguish between ϕ and its cycle
part z, i.e., χϕ(q,λ) = χz(q,λ).

Every permutation σ ∈ SN is a composition of several
cyclic permutations of different lengths. There are several
cases of how a given permutation σ ∈ SN contributes to the
determinant:

(i) There might be a state vi ∈ V such that wi
σ (i) = 0.

In that case the transition from vi to vσ (i) is not allowed,

FIG. 5. Geometrical interpretation of the chord representative:
Projecting ϕ in parallel to Y onto the chord space RH gives ϕH.

or equivalently, vi and vσ (i) are no neighbors. Then also
Mi

σ (i) = 0 and the entire summand in the determinant vanishes.
In particular, the summand is independent of ϕ.

(ii) Every fixed point of the permutation j = σ (j ) con-
tributes with Mj

j which is independent of ϕ.
(iii) For every neighboring transposition, i.e., k = σ 2(k),

we can use antisymmetry, ϕ(ek
σ (k)) + ϕ(eσ (k)

k ) = 0, to conclude

Mk
σ (k)M

σ (k)
k = wk

σ (k)w
σ (k)
k , which is independent of ϕ.

(iv) Every remaining contribution must necessarily be a
permutation along a properly oriented circuit of the graph. A
properly oriented circuit has no boundary and consequently is
a cycle. That means the summand in the determinant contains
a product along a cycle ζ . In the exponent, this translates to
summing the observable ϕ along a cycle, i.e., taking the scalar
product 〈ϕ,ζ 〉 = 〈z,ζ 〉, which is insensitive to the co-cyclic
part of the observable.

Thus, we have shown that the characteristic polynomial
only depends on the cyclic part: χϕ(q,λ) = χz(q,λ). Conse-
quently, also its dominant root only depends on the cyclic part:
λϕ(q) = λz(q). �

Proposition 1 establishes the “gauge freedom” referred
to in the title. We use this terminology for two reasons:
First, it expresses the fact that observable results, i.e., the
scaled cumulants of time-averaged currents are the same
for all jump observables in the subspace ϕ + Y ⊂ O. In
particular, they agree with that of both ϕ and its cycle part
z; cf. Fig. 5. Second, Polettini recently discussed various
aspects of stochastic thermodynamics as a gauge theory,
for both discrete [30] and continuous [31] situations. In
the discrete case, the gauge invariance he discusses is that

of the jump observables σ i
j = ln

wi
j

w
j

i

and σ̃ i
j = ln

πiw
i
j

πj w
j

i

yielding

the steady-state entropy production. Their difference, ln πi

πj
, is

the gradient field (∂∗ ln π ). Thus, it corresponds to a co-cyclic
gauge. Here, we have established this invariance for arbitrary
jump observables with any statewise difference y ∈ Y serving
as a gauge.

The gauge freedom implies that one may choose any
convenient representative in the class ϕ + Y to calculate the
asymptotic statistics. Often, the most convenient choice is
neither ϕ nor z but a representation that vanishes on some
edges of the graph. In Schnakenberg’s network theory, similar
considerations yield the Schnakenberg decomposition for the
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steady-state entropy production [2]. The generalized notion
for an arbitrary observable ϕ is its chord representation,

ϕH :=
∑
η∈H

〈ϕ,ζη〉 η ≡
∑
η∈H

ϕ̊η η, (16)

where ζη ∈ Z is the fundamental cycle corresponding to the
chord η ∈ H and ϕ̊η := 〈ϕ,ζη〉. This special observable van-
ishes everywhere on the spanning tree. The values it takes on
the chords can be interpreted in the picture of vector fields: the
coefficient ϕ̊η is the “circulation” of ϕ along a corresponding
fundamental cycle. It is obtained by summing the values of
ϕ for all edges that form the cycle ζη [32]. The circulation
should not be confused with the value of the observable on the
corresponding chord: ϕ̊η �= ϕ(η). Geometrically speaking, the
chord representation is the nonorthogonal (oblique) projection
of ϕ parallel to Y onto RH, as depicted in Fig. 5. Thus,
ϕH is the unique element in the intersection RH ∩ (ϕ + Y).
These considerations are formally equivalent to using the
nonorthogonal decomposition O = RH ⊕ Y; cf. Ref. [33]. As
a consequence, the scaled cumulant-generating functions of ϕ

and ϕH agree. Moreover, ϕH is the representative within ϕ + Y
that is supported on a minimum number of edges. This special
gauge minimizes the effort to calculate the scaled cumulants.

Since the scaled cumulant-generating function satisfies
λϕ(q) = λϕH (q), we use the multilinearity (15) and the cy-
cle representation in order to express the fluctuation spec-
trum of arbitrary observables by the fluctuation spectrum
of chord cumulants. More precisely, the νth cumulants
c(ϕ(i1),ϕ(i2), . . . ,ϕ(iν )) of a set of arbitrary observables are fully
determined by their circulations ϕ̊(ik )

η and the νth cumulants of
the chords, c(η1,η2, . . . ,ην):

c(ϕ(i1), . . . ,ϕ(iν )) =
⎛
⎝ ν∏

k=1

∑
ηk∈H

ϕ̊(ik)
ηk

⎞
⎠c(η1, . . . ,ην) (17a)

such that

c(ϕ(�)) =
∑
η∈H

ϕ̊(�)
η c(η) =

∑
η∈H

ϕ̊(�)
η J (η), (17b)

c(ϕ(�),ϕ(m)) =
∑
η1∈H

∑
η2∈H

ϕ̊(�)
η1

ϕ̊(m)
η2

c(η1,η2). (17c)

Equation (17) separates the asymptotic fluctuation proper-
ties of the Markov process from the details of the (physical)
observables ϕ(ik) under consideration. This means that we do
not need to apply the method based on the implicit function
theorem (Sec. II C) for each combination of observables
individually. Instead, we use it only to obtain the analytical
expressions for the scaled cumulants c(η1,η2, . . . ,ην) of the
chord observables η ∈ H ⊂ O. Remember that this can be
done explicitly to any order, either by hand or using a computer
algebra system [cf. Eq. (12) for the first two orders].

Equation (17) states that the set of νth-order scaled
cumulants c(η1,η2, . . . ,ην) fully determines the fluctuation
spectrum of arbitrary observables at the order ν. The chord
cumulants are a unique property of the Markov process,
because the corresponding tilted generator depends on the
transition matrix W only. Cumulants of specific (physical)
observables ϕ(ik ) are obtained as multilinear combinations.

All the information required about an observable ϕ(ik ) is its
circulation ϕ̊(ik)

η on the fundamental cycles. In our accompa-
nying publication [17], we adopt this approach and present
an algorithm to obtain the first (average currents) and second
cumulants (correlation integrals) of arbitrary observables. An
implementation of this algorithm in Python is available as a
git repository [34].

The previous paragraph stresses the importance of the
circulations, or equivalently the chord representation, as the
fundamental characteristic properties of jump observables.
Equation (17a) is the generalization of the Schnakenberg
decomposition [2] for arbitrary observables and arbitrary
orders of the fluctuation statistics. The choice of a spanning
tree is part of the gauge freedom that may help to simplify
the analysis of a jump observable ϕ ∈ O even more: in some
cases a spanning tree might be chosen such that the chord
representative ϕH vanishes on a large number of chords. Then
the scaled cumulants of the fluctuating current ϕT involve a
minimal number of joint cumulants of chord currents. This can
be seen as an optimal gauge for a given observable.

Finally, our result has practical significance for measuring
the full asymptotic statistics of the entropy production σ . For
thermodynamically consistent models, the Hill-Schnakenberg
conditions [1,2] relate the cycle affinities σ̊η to thermodynamic
drivings. Then, the entropy production is most easily obtained
via the chord representative σH; cf. our accompanying publi-
cation [17]. In experiments one usually measures the statistics
of individual transitions, and thus obtains the fluxes πiw

i
j

rather than the transition rates wi
j . In this situation the entropy

production is accessible using σ̃ with entries ln (πiw
i
j /πiw

i
j )

rather than σ with entries ln (wi
j/w

i
j ). Our result states that

this distinction does not matter much: the statistics from either
choice σ , σH, or σ̃ converge to each other exponentially fast
in time, which has been previously noted in simulations [35].

V. DISCUSSION AND CONCLUSION

We have characterized the fluctuations of time-averaged
currents in Markov processes in terms of the spectrum of
the associated scaled cumulants. They can be calculated by
applying the implicit function theorem to the characteristic
equation (11) of the cumulant-generating function. Solely
by taking derivatives and solving linear equations, one thus
obtains analytic expressions (12) for the scaled cumulants.
Due to the multilinearity of cumulants and the vector-space
structure of the observables one can express each scaled
cumulant as a superposition, Eq. (15), of the cumulants of
a small set of observables whose currents form a basis of the
vector space. The vector space has two natural decompositions
into linear subspaces: a decomposition in terms of cycles and
co-cycles O = Z ⊕ Y resembles the Helmholtz decomposi-
tion of vector fields in R3 and provides the connection to
Kirchhoff’s theory of electrical circuits; a decomposition based
on a spanning tree asO = RH ⊕ RT highlights the topological
structure investigated by Hill and Schnakenberg. With the
former decomposition we identified a gauge invariance of the
fluctuation spectra, Proposition 1. This invariance, combined
with the second decomposition, identifies the most effective
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representation, Eq. (17), of the scaled cumulants from the
point of view of practical calculations. Algebraically this
representation is rooted in a combined nonorthogonal
decomposition of the jump observables as O = RH ⊕ Y; cf.
Fig. 5 and Ref. [33].

Special cases to the general expressions in Eqs. (12) were
found in Ref. [36] for periodic systems. A univariate version
was also used in the Appendix to Ref. [37]. The systematic
theory for the multivariate case and for statistics to arbitrary
order was developed independently and concurrently in Refs.
[38,39].

For the first cumulant, i.e., the expectation value, the repre-
sentation in Eq. (17b) is a generalization of the Schnakenberg
decomposition for the dissipation rate [2] to general jump
observables. Equation (17a) generalizes this decomposition
for all orders of the fluctuation statistics and all jump
observables—it stresses the importance of the circulations,
or equivalently the chord representation, as the fundamental
characteristic properties of jump observables. For the dissipa-
tion rate, these circulations are the cycle affinities that play
the central role in the theory developed by Hill [16] and
Schnakenberg [2]. For general observables, their importance
in the cyclic decomposition was addressed in a previous
publication [32]. The results presented here emphasize the
role of the cycle topology of a network of states. Preserving
the circulations of observables is also important in the context
of coarse-graining of stochastic models [40].

An instance of the connection of Schnakenberg’s network
theory to statistics is the work by Andrieux and Gaspard
[41]: They proved a Gallavotti-Cohen type symmetry for the
currents along the chords. This was later slightly extended
to other bases in the cycle space by Faggionato and Di Pietro
[42]. The present work establishes that not only the Gallavotti-
Cohen symmetry, but all the large-deviation properties depend
on the cycles alone.

There are also other approaches to access the fluctuation
spectra analytically [43,44]. These methods rely on analytical
knowledge of the steady-state distribution π . In principle this
unique distribution exists as long as the Markov process is
ergodic. Nonetheless, it is very difficult to find analytic expres-
sions for π if the transition matrixW depends on parameters in
an analytical way and this dependence should be carried over
into the steady state. On the contrary, using our method to cal-
culate first the steady-state probability currents J , and then to
calculate the steady-state probability distribution π based on J

and W proved to be a lot faster in our experience, cf. Ref. [17].
In addition to analytical methods, there are advanced

numerical methods to calculate the large deviation properties
of the entropy flow [45], general currentlike observables
[46], and other classes of observables [47]. Numerical ap-
proaches, however, intrinsically have the disadvantage that
they must be re-evaluated for every change of parameters
and every change of observable. This makes systematic
parameter scans and (possibly in addition) the comparison
of several observables computationally very costly. The
approach presented here overcomes this limitation and is
especially efficient for low orders of the fluctuation spectrum,
i.e., the statistics that can be measured reliably in experi-
ments; cf. the accompanying work [17] for a more thorough
discussion.

In conclusion, we established an efficient algorithm to
characterize the fluctuations of time-averaged currents in finite
Markov processes. We explicitly stress the following points:

(i) The asymptotic fluctuation spectrum of every physical
current can be calculated analytically without the need to solve
nonlinear equations; cf. Sec. II C.

(ii) Due to the multilinearity of the scaled cumulants,
one can first calculate the fluctuation spectrum of a basis
set of fundamental observables. The scaled cumulants of
other observables then amount to appropriate multilinear
combinations, Eq. (15).

(iii) Every jump observable can be written as a unique
sum of a cycle and a co-cycle, and asymptotic fluctuations (as
characterized by large deviation theory) of arbitrary currents
admit a co-cyclic gauge, Proposition 1: the co-cyclic part of
the observables does not contribute to fluctuations.

(iv) This gauge yields a representation of the fluctuation
spectrum in terms of scaled cumulants of fundamental cycle
contributions, Eqs. (17). An informed choice of the cycles
leads to an efficient algorithm for determining all scaled
cumulants.

The formalism introduced here admits a systematic and
efficient calculation of all scaled cumulants for all observables
of arbitrary finite, dynamically reversible Markov processes.
In stochastic thermodynamics, such models are commonly
used as models of molecular motors, i.e., macromolecules
which facilitate biochemical processes in living cells [9,21].
Hence, our results facilitate the comparison of experiments
and the predictions of stochastic thermodynamics, as well as
pinpointing differences of the predictions of different models.
In an accompanying paper [17] we demonstrate the power of
our method for the study of models parametrized by physical
driving forces. In particular, we report on the molecular energy
transduction between different nonequilibrium reservoirs and
the nonequilibrium response theory of the molecular motor
kinesin.

ACKNOWLEDGMENTS

The authors thank M. Polettini, F. Telschow, and H.
Touchette for insightful discussions. F. Angeletti provided
useful comments on the manuscript. A.W. is grateful for
support from a Ludwig Prandtl internship awarded by FOKOS
e. V., Göttingen, and to M. Esposito for his support. J.V.
acknowledges support from a research grant from the “Center
for Earth System Research and Sustainability (CliSAP)” at
the KlimaCampus Hamburg, while the final version of this
manuscript was drafted.

APPENDIX: DIMENSION OF THE CYCLE SPACE
AND FUNDAMENTAL CO-CYCLES

The space of jump observables has an orthogonal decom-
position as O = Z ⊕ Y; cf. Sec. III C. We will now elaborate
on the dimensions of these orthogonal subspaces. As pointed
out in Sec. III D, every chord η ∈ H of a spanning tree T
defines a fundamental cycle ζη. We already established that
the fundamental cycles have vanishing boundary and thus
are elements of the cycle space, ζη ∈ Z . Moreover, they are
linearly independent. Here we give a short argument for why
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FIG. 6. (Color online) Fundamental co-cycles of the spanning
tree in Fig. 3(a): removing an edge τ ∈ T (dashed) from the spanning
tree, decomposes the graph into two disconnected components
marked in dark and light gray, respectively. The green arrows form
the corresponding fundamental co-cycle: they are the set of edges
pointing from one component to the other.

they are a basis of the cycle space. A more detailed account
on the methods of algebraic topology applied to graph theory
can be found in [27].

Our argument starts from an additional set of independent
vectors that lie in the co-cycle space Y: Removing an edge
τ ∈ T from the spanning tree of a graph separates the latter
into two components, the smallest possible component being
a single vertex without any edge. The set H ∪ {τ } contains
a minimal subset that separates these two components and

it is therefore called cut. Reorienting the edges of this cut
to be parallel to τ and summing these edges results in the
fundamental co-cycle corresponding to the removed edge τ ;
cf. the examples in Fig. 6.

It is easy to check that every fundamental co-cycle indeed is
a co-cycle: it is the co-boundary of a scalar field u ∈ U taking
the value 1 on the one disconnected component and the value
0 on the other. Moreover, each fundamental co-cycle contains
a different edge of the spanning tree and thus these co-cycles
are linearly independent.

Obviously, the total number of fundamental cycles and
co-cycles equals the total number of edges in the graph. Con-
sequently, the fundamental cycles and co-cycles together are a
maximal set of linearly independent vectors and thus span the
space O of jump observables. This implies that the fundamen-
tal cycles are a basis for the cycle space while the fundamental
co-cycles are a basis of the co-cycle space. This results in
dimZ = |H| = |Eo| − |V| + 1 and dimY = |T | = |V| − 1.

Note that this reasoning is independent of the choice of a
spanning tree. The spanning tree, however, defines the cycles
and co-cycles that are regarded fundamental.
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