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A Gallavotti�Cohen-Type Symmetry in the
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We extend the work of Kurchan on the Gallavotti�Cohen fluctuation theorem,
which yields a symmetry property of the large deviation function, to general
Markov processes. These include jump processes describing the evolution of
stochastic lattice gases driven in the bulk or through particle reservoirs, general
diffusive processes in physical and�or velocity space, as well as Hamiltonian
systems with stochastic boundary conditions. For dynamics satisfying local
detailed balance we establish a link between the average of the action functional
in the fluctuation theorem and the macroscopic entropy production. This gives,
in the linear regime, an alternative derivation of the Green�Kubo formula and
the Onsager reciprocity relations. In the nonlinear regime consequences of the
new symmetry are harder to come by and the large deviation functional difficult
to compute. For the asymmetric simple exclusion process the latter is deter-
mined explicitly using the Bethe ansatz in the limit of large N.

KEY WORDS: Fluctuation theorem; current fluctuations; asymmetric exclu-
sion process.

1. INTRODUCTION

The study of stationary nonequilibrium states (SNS) of macroscopic
systems evolving according to classical (or even quantum) mechanics,
which are kept out of equilibrium by contact with thermal reservoirs has
a long history. The interactions of the system with the reservoirs are
usually modeled by the addition of stochastic boundary terms to the deter-
ministic evolution equations describing the isolated system.(1�7) Fully deter-
ministic evolutions of systems coupled to infinitely extended reservoirs
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heave also been investigated, (8�10) as have fully stochastic models.(11�14)

A more recent development has been the study of SNS of systems evolving
via deterministic ``thermostatted'' dynamics.(15�17) In this scheme the SNS is
maintained by deterministic external driving forces which are balanced by
a ``friction term'' suitably chosen so that the system evolves on a compact
surface (generally one of constant energy) in phase space. The resulting
dynamics no longer conserves phase space volume, which is contracted on
the average.(19) Consequently, the SNS is singular with respect to the
Liouville (volume) measure induced on the surface.

While the jury is still out on what has or can be achieved by such a
dynamical systems approach, there are some intriguing theoretical results
which have emerged.(20, 21) In particular Gallavotti and Cohen(22) motivated
by results of computer simulations(23) discovered that under suitable
assumptions these SNS satisfy a certain symmetry, which they doobed a
``fluctuation theorem.'' Assuming that the dynamics satisfies time reversal
invariance and is sufficiently chaotic, so that the SNS is given by an SRB
measure, they prove that the probability distribution for the phase space
contraction averaged along a trajectory over the time span { has, for large {,
a highly non-obvious symmetry, whose specific form will be given below.
Near equilibrium this fluctuation theorem implies Onsager reciprocity and
the Einstein relations.(24) We refer to refs. 20, 22, and 25 for an exhaustive
discussion of the fluctuation theorem and of the ``chaotic hypothesis,''
which implies the validity of the said symmetry for more general SNS.
Transient fluctuations in the phase space volume contraction over the time
interval (0, t) starting from an initial state uniform on the (kinetic) energy
surface were considered by Evans and Searles.(26)

In a recent work Kurchan showed that, with proper definitions, the
fluctuation theorem is valid also for certain diffusion processes.(27) In the
present work we extend Kurchan's results and show that for Markov pro-
cesses the fluctuation theorem holds in great generality. Our proof is based
on the Perron�Frobenius theorem and goes much beyond the cases con-
sidered in ref. 27. While the assumed stochasticity of the dynamics should
provide ``for free'' a suitable modification of the chaotic hypothesis it is far
from obvious how to find the quantity that plays the role of the phase
space contraction. In analogy to the thermostatted case it is reasonable to
expect that it will have some relation to the production of Gibbs entropy.
In fact, this comes out from our general construction under the additional
assumption of local detailed balance. This condition seems to play, in
stochastic dynamics, the same role as time reversal invariance in deter-
ministic Gaussian thermostatted dynamics. When local detailed balance is
satisfied, then the action functional is proportional to the current of the
conserved quantity, e.g., in the case of bulk driven lattice gases it is the
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bulk particle current. If local detailed balance is not satisfied, then the
action functional can still be defined but it does not allow for such a direct
physical interpretation.

Near equilibrium the fluctuation theorem, generalized to systems with
several currents, yields the Onsager symmetry and the usual Kubo for-
mulae for the linear transport coefficients. These give a relation between
linear response and current fluctuations in equilibrium. In this sense the
fluctuation theorem, which holds also far from equilibrium, can be thought
of as a natural extension, in the spirit of GC, of the fluctuation-dissipation
theorem which holds for systems close to (local) equilibrium. In fact, when
the large deviation functional is approximately quadratic over a sufficiently
large range of the driving field, the fluctuation theorem does indeed yield
such an approximate extension. We do not, however, have a quantitative
criteria of when this approximation is valid. Even aside from this extension
it would be of great interest to have an experimentally verifiable conse-
quence of the novel symmetry predicted by the fluctuation theorem for the
distribution of large deviations in current carrying systems. This seems dif-
ficult to obtain for macroscopic systems since the time required for observing
a large deviation in such a system far exceeds any observation time.

The physical meaning of the fluctuation theorem can be understood
best through the application to simple models. We therefore determine here
the action functional for which such a fluctuation theorem holds in various
examples: bulk and�or boundary driven lattice gases, the Fokker�Planck
equation with driving forces and a spatially varying temperature, and
Hamiltonian particle systems driven by boundary reservoirs. In general, the
rate function appearing in the fluctuation theorem cannot be computed
explicitly and one has to rely on numerical simulations.(23, 28) In stochastic
models the task is easier as long as we stick to noninteracting particles. We
discuss one example of interacting particles, where the rate function can be
computed via the Bethe ansatz. When the size of the system goes to infinity
the rate function becomes singular. This is analogous to the behavior of
thermodynamic potentials at a phase transition. This is done in the
Appendix which may be read independently of the rest of the paper.

Our analysis extends directly to discrete time stochastic processes, i.e.,
to probabilistic cellular automata. In this situation it is natural to think of
the GC fluctuation theorem as a symmetry of discrete space-time Gibbs
measures, as has been pointed out in ref. 28 and at a more general level by
C. Maes.(29) In fact, the framework of space-time Gibbs measures used by
Maes contains as special cases both the stochastic dynamics studied here
and the thermostatted systems satisfying the chaotic hypothesis. In the
latter case the space-time Gibbs measure is constructed through a Markov
partition of phase space.
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2. THE FLUCTUATION THEOREM FOR JUMP PROCESSES

We start with the fluctuation theorem for a stochastic time evolution
governed by a master equation on a state space with a finite number of
points. This minimizes technical complications and at the same time
provides a blue-print for stochastic systems with Langevin type dynamics.
In this section we investigate the abstract structure, specific examples and
applications will be discussed in later sections.

2.1. Action Functional, Large Deviations

We consider a continuous time Markov jump process with finite state
space S. Points in S are denoted by _. The jump process is determined by
the rates, k(_, _$)�0, for jumping from _ to _$. More precisely, if the
system is in the state _ it waits a random time t�0 distributed according
to the exponential law r(_) e&r(_) t dt, r(_)=�_$ k(_, _$), and then jumps to
_$ with probability r(_)&1 k(_, _$), etc.. The generator acting on functions
f : S � R is given by

Lf (_)=:
_$

k(_, _$)[ f (_$)& f (_)] (2.1)

This means, if +(_, t) is the probability distribution of _ at time t, then the
rate of change of the average of f, ( f ) +(t)=�_ +(_, t) f (_), is given by

d
dt

( f ) +(t)=(Lf ) +(t) (2.2)

Taking f to be a Kronecker delta at _ (2.2) corresponds to the master
equation

�+(_, t)
�t

=:
_$

k(_$, _) +(_$, t)&r(_) +(_, t)=L*+(_, t) (2.3)

for the evolution of +(_, t), where L* denotes the adjoint of L.
We assume that if k(_, _$)>0, then also k(_$, _)>0, and that from

every _ all other _$ # S can be reached by a succession of steps with non-
zero rates. It follows then from the general theory of finite state Markov
processes that there exists a unique stationary measure, +s , which satisfies
L*+s(_)=0 and is strictly positive, +s(_)>0. Starting from any initial state
_0 , +s is approached exponentially fast in time.

We could as well take the state space S to be countable or replace S

by Rn. In the latter case one prescribes the rates k(x, x$) dx$ for a jump
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from x to the volume element x$+dx$. Setting r(x)=� k(x, x$) dx$, the
waiting time at x is exponential with rate r(x) and the jump probability to
x$+dx$ is r(x)&1 k(x, x$) dx$. Formally the difference is only in notation.
However, now one has to make sure that the jump process has a unique
invariant measure.

Let s � _s be a trajectory (or history) of the jump process and define
for it the quantity

W(t, [_s , 0�s�t])=|
t

0
:

_, _$

w_, _$(s) ds (2.4)

with w_, _$(s) a sequence of $-functions, located exactly at those times s
when _s jumps from _ to _$, with weight

w(_, _$)=log k(_, _$)&log k(_$, _) (2.5)

This means, if the trajectory _s , 0�s�t, visits in succession the states
_0 , _1 ,..., _n , where _0 is the state at time 0 and _n the one at time t, then

W(t, [_s , 0�s�t])=log _k(_0 , _1)
k(_1 , _0)

} } }
k(_n&1 , _n)
k(_n , _n&1)& (2.6)

(Note that at an allowed transition k(_, _$)>0 and, by assumption, also
k(_$, _)>0).

For lack of a better name we call W(t), and the similar quantities to be
defined below, an action functional. (We will generally not indicate explicitly
the dependence of W(t) on the stochastic trajectory [_s , 0�s�t]).

Let ( } ) denote the expectation over all trajectories in the stationary
process, i.e., starting in the steady state +s(_). We consider the generating
function (exp[&*W(t)]) of W(t) and define

lim
t � �

&
1
t

log (e&*W(t))=e(*) (2.7)

The fluctuation theorem we shall prove states that the limit (2.7) exists with
e(*) convex downwards, and that

e(*)=e(1&*) (2.8)

By a general result, analogous to the equivalence of ensembles in equi-
librium statistical mechanics, (2.7) implies a large deviation property for
the probability distribution pt(w) of W(t)�t, i.e., for large t

pt(w)$e&tê(w) (2.9)
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where ê is the Legendre transform of e. ê(w) is convex up, ê(w)�0,
ê(w0)=0 for w0=limt � � ( (1�t) W(t)) , and by (2.8) ê satisfies

ê(w)& ê(&w)=&w (2.10)

i.e., the odd part of ê is linear with slope &1�2.
To be more precise, from (2.7) one concludes that for every interval I

lim
t � �

&
1
t

log Prob \1
t

W(t) # I+=min
w # I

ê(w) (2.11)

with

ê(w)=max
*

[e(*)&*w]

=max
*

[e(1&*)&*w]=max
*

[e(*)&(1&*) w]

=ê(&w)&w (2.12)

Equation (2.10) is of the same form as the GC fluctuation theorem,
with the phase space contraction integrated along an orbit of the thermo-
statted dynamics in GC replaced by (2.5) summed over the jumps along
the stochastic trajectory. We note that the convexity of e(*) and (2.8) imply
that (w0) =(de(*)�d*) |*=0�0. This is analogous to the result (19) that the
mean phase space volume contraction in the stationary state is nonnegative.

To prove (2.8) we first define

g(_, t)=E_[e&*W(t)] (2.13)

as the expectation value of e&*W(t) conditioned on the system being in state
_ at time t=0. We then have

d
dt

g(_, t)=:
_$

k(_, _$) e&*w(_, _$)g(_$, t)&r(_) g(_, t)

=:
_$

k(_, _$)1&* k(_$, _)* g(_$, t)&r(_) g(_, t)

=L*g(_, t) (2.14)

Equation (2.14) is to be solved subject to the initial condition g(_, 0)=1.
Therefore

(e&*W(t))=:
_

+s(_) g(_, t)= :
_, _$

+s(_)(eL* t)__$ (2.15)
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Clearly (eL* t)__$>0 by our assumption on k(_, _$) above. The Perron�
Frobenius theorem states that L* has a unique maximal eigenvector f*

which is characterized by f*(_)>0 and satisfies L* f*(_)=&e(*) f*(_) with
real maximal &e(*). This implies the existence of the limit in (2.7).
Furthermore L* and L** have the same maximal eigenvalue. Using now the
definition (2.16) we see that

L**=L1&* (2.16)

Hence the maximal eigenvector f� * of L** satisfies

L** f� *(_)=&e(*) f� *(_)=L1&* f� *(_) (2.17)

Since L1&* f1&*(_)=&e(1&*) f1&*(_) and since f� *>0, we conclude by
uniqueness that f� *= f1&* and e(*)=e(1&*). We may add that the same
conclusion could be inferred from the Donsker�Varadhan theory of large
deviations.(30, 31)

2.2. Time Reversal

For a Markov chain with transition probability p(_, _$) from _ to _$
the history [_]=[_0 ,..., _n] has the probability

P([_])=+s(_0) p(_0 , _1) } } } p(_n&1 , _n) (2.18)

when starting in the stationary measure +s . In analogy to (2.6) we define
the action functional as

W(n, [_])=& :
n

j=1

log[ p(_j , _j&1)�p(_j&1 , _j )] (2.19)

If we now denote the time reversed history of [_] by R[_]=[_n ,..., _0],
then (2.19) can be rewritten as

W(n, [_])=&log[P(R[_])�P([_])]+log[+s(_n)�+s(_0)]

=W� (n, [_])+log[+s(_n)�+s(_0)] (2.20)

One now immediately verifies that (e&*W� (n))=(e&(1&*) W� (n)) , where the
average is with respect to P([_]). Thus for W� (n) the fluctuation theorem
holds even for finite n.

The form (2.20) is analogous to the form which the GC functional
takes for thermostatted systems when the latter deterministic dynamical
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evolution is described via Markov partitions and it shows explicitly the
role of time reversal in the original GC theorem. This observation forms
the basis of the analysis of C. Maes in ref. 29, where he studies the fluctua-
tion theorem for space-time Gibbs measures and also discusses symmetry
transformations different from time reversal.

For the time continuous jump process a path [_s , 0�s�t] is time
reversed as [_t&s , 0�s�t]. The time reversed process has the jump rates
kR(_, _$)=k(_$, _) +s(_$)�+s(_) whereas the inverse waiting times, r(_), and
the steady state, +s(_), remain unmodified. If P[0, t] denotes the path
measure of the stationary process in the time window [0, t] and PR

[0, t] the
one of the corresponding time reversed process, then PR

[0, t] has a density
relative to P[0, t] and

PR
[0, t]=e&W(t)(+s(_t)�+s(_0)) P[0, t] (2.21)

with W(t) from (2.4). Thus, up to boundary terms, the action functional
equals &log(dPR

[[0, t] �dP[0, t]) with dPR�dP denoting the Radon�Nikodym
derivative.

(2.21) remains meaningful for a stochastic dynamics which is not
Markov and it can thus be used as a definition of the action functional in
such a more general context.

One may wonder whether time-reversal could be replaced by some
other transformation on path space. An obvious candidate is an internal
symmetry S: S � S such that S b S=1. Using this transformation in (2.21)
the GC action functional becomes

W(t)=&|
t

0
ds log[r(S_s)�r(_s)] (2.22)

up to boundary terms. From the examples we have studied it seems that
only time-reversal leads to an action functional which has a simple physical
interpretation.

2.3. Sum of Several Generators

We can generalize the above analysis to the case where the generator
in (2.1) is the sum of several generators: L=�m

j=1 L( j) with

L( j)f (_)=:
_$

k( j)(_, _$)[ f (_$)& f (_)] (2.23)

We require that for transitions between a given pair _, _$ at most one of
the rates k( j) is different from zero. It follows then from our assumptions
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on k(_, _$) that if k( j)(_, _$)>0, then also k( j)(_$, _)>0. With this decom-
position we define, in complete analogy with (2.4)�(2.6), the j th action
functional

W ( j)(t, [_s , 0�s�t])=|
t

0
:

_, _$

w ( j)
_, _$(s) ds (2.24)

and the logarithm of the generating function

e(*1 ,..., *m)= lim
t � �

&
1
t

log �exp _& :
m

j=1

*jW ( j)(t)&� (2.25)

Repeating the arguments of Section 2.1 we conclude that the fluctuation
theorem now takes the form

e(*1 ,..., *m)=e(1&*1 ,..., 1&*m) (2.26)

The corresponding analog of (2.10) is

ê(w1 ,..., wn)&ê(&w1 ,..., &wm)=& :
m

j=1

wj (2.27)

We shall use the general form (2.26) in Section 8 to prove the Onsager
relations but note here that there are many ways of splitting L into a sum
of L( j)'s. In fact we can choose a different L( j) for every pair of points
(_, _$) for which k(_, _$){0. In all cases setting *j=* for all j we recover
(2.8) and (2.10) for W=�m

j=1 W ( j). We do not expect in general that the
distribution of (1�t) W ( j)(t) separately satisfies any fluctuation theorem. On
the other hand we can consider, as a degenerate case of (2.23), a situation
in which our system is composed of several independent systems with
generators L( j). In that case, of course, each L( j) satisfies the symmetry
relation, ej (*j )=ej (1&*j ), êj (wj )&êj (&wj )=&wj , and e(*1 ,..., *m)=
�m

j=1 ej (* j ), ê(w1 ,..., wm)=�m
j=1 êj (wj ).

2.4. Entropy Production

For the probability distribution +(_, t) at time t the Gibbs entropy is,
as usual, given by

SG(+(t))=&:
_

+(_, t) log +(_, t) (2.28)

341Gallavotti�Cohen-Type Symmetry



Using (2.3) the rate of change of SG can be written in the form

d
dt

SG(+(t))=R(+(t))&A(+(t)) (2.29)

where

R(+(t))=
1
2

:
_, _$

[k(_, _$) +(_, t)&k(_$, _) +(_$, t)] log _ +(_, t) k(_, _$)
+(_$, t) k(_$, _)&�0

(2.30)

and

A(+(t))=(I) +(t) , I(_)=:
_$

k(_, _$) log _k(_, _$)
k(_$, _)& (2.31)

(When the generator is a sum, L=�m
j=1 L( j), as in the previous section,

then the rate of change in Gibbs entropy is also a sum over j and conse-
quently R=�m

j=1 R( j), A=�m
j=1 A( j)).

The breakup in (2.30) has the property that R is non-negative, while
A is linear in +. This suggests that we identify R as the entropy produced
by the stochastic jumps and A with the entropy flow which can have either
sign. Defining now the ``integrand'' in A, I(_), as a ``microscopic'' entropy
flux we note that the expectation value of W(t), starting with some initial
distribution +(_, 0), is given by

(W(t)) +(0)=|
t

0
ds(I) +(s) (2.32)

We can therefore say that the average action equals the entropy flow
integrated over the time span t. There is of course some arbitrariness in this
identification. We could for example add some positive linear term to R
and subtract it from A. Our choice of splitting is however quite natural in
the examples discussed below.

When the system is in the steady state +s , (d�dt) SG(+s)=0 and the
entropy flow balances the entropy production, i.e.,

R(+s)=A(+s) (2.33)

Thus

(t&1W(t))=R(+s)=A(+s) (2.34)
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and hence the average action equals the rate of entropy production in the
steady state. This suggests to identify W with the microscopic production
of Gibbs entropy, a role played by the phase space contraction in the con-
text of thermostatted systems; see also Section 7.

We remark that R(+s)=A(+s)=0 in case k(_, _$) satisfies detailed
balance with respect to the invariant measure +s(_)te&V(_), i.e.,

e&V(_)k(_, _$)=e&V(_$)k(_$, _) (2.35)

Then each term in the sum defining R(+s) in (2.30) vanishes. This implies
by (2.29) that A(+s)=(I) +s

=0. The action functional (2.6) now becomes
a telescoping sum with

W(t)=V(_0)&V(_t) (2.36)

It then follows from (2.7) that e(*)=0 and the fluctuation theorem
becomes empty. More generally if

k(_, _$)=k0(_, _$) k1(_, _$) (2.37)

and k0(_, _$) satisfies detailed balance while k1 is a nonequilibrium driving
``force,'' then the log k0 terms of W(t) sum to a boundary value as before
and only the weight corresponding to k1 contributes in W(t). We will
encounter such a situation for driven lattice gases.

3. BULK DRIVEN LATTICE GASES

An important example of an SNS with spatial structure is a stochastic
lattice gas where particles jump at random to neighboring lattice sites. We
envisage two mechanisms for how the conserved particle density is driven
away from equilibrium. The first one, studied in this section, is a global
driving force which corresponds to driven diffusive systems (DDS). In the
second one, considered in the next section, particles are injected�removed
at the boundaries whereas the bulk is governed by reversible dynamics
satisfying detailed balance with respect to an equilibrium stationary
measure. In both cases the full dynamics does not satisfy detailed balance
with respect to the stationary measure +s .

We consider particles with exclusion hopping on a regular lattice Zd.
The configuration is specified by the occupation variables 'x , x # Zd, taking
the values 0 (empty) and 1 (occupied). Particles on different sites may
interact by making the jump rate of a given particle depend on the con-
figurations on nearby sites. As explained in Section 2, the fluctuation
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theorem holds in general. For notational simplicity we restrict ourselves
however to the one-dimensional lattice, d=1.

We first study particles subject to a uniform drive. This will set up a
steady state current in a finite system of particles jumping on a ring,
x=1,..., l, with x=l+1 identified with x=1. A particle configuration is
denoted by '=('1 ,..., 'l). We denote by cxx+1(') the exchange rate for the
pair of sites (x, x+1), i.e., if 'x=1 (0) and 'x+1=0 (1), then cxx+1(') is
the rate at which the particle at x (x+1) jumps to the empty site at x+1
(x).

In equilibrium the distribution of particles is determined by the Gibbs
measure +eqtexp[&;H] where ; is the inverse temperature and H(') is
the energy function. The rates cxx+1 satisfy the condition of detailed
balance with respect to +eq whenever

e&;H(')cxx+1(')=e&;H('xx+1)cxx+1('xx+1) (3.1)

Here 'xx+1 denotes the configuration ' with the occupations at x, x+1
interchanged. A simple example of H(') is the energy of a system with
nearest neighbor interactions

H(')=&J :
l

x=1

'x'x+1 (3.2)

but such an explicit form is not used here. Rates satisfying (3.1) lead the
system to equilibrium. In order to drive the lattice gas by a uniform exter-
nal force field of strength F we add to H(') the linear term &�x Fx'x .
While this term does not respect the boundary conditions, energy differences
always do. Therefore the rates for a uniform drive are assumed to satisfy

cF
xx+1(')=cF

xx+1('xx+1) exp[&;(H('xx+1)&H(')&F('x&'x+1))]

(3.3)

We have called this condition local detailed balance, (11, 13) because locally
a particle feels a linear potential. It is only through the periodic boundary
condition, that the steady state becomes a nonequilibrium one. For a
closed system the particles would pile up at the right (for F>0).

To state the fluctuation theorem we merely have to apply the results
of Section 2. The logarithmic ratio in (2.5) is

&;(H('xx+1)&H('))+;F('x&'x+1) (3.4)

with ' the configuration before and 'xx+1 the configuration after the jump.
The energy difference summed over the jumps is telescoping and yields a
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pure surface term as in (2.36) Therefore the relevant part of the action
functional is given by

W(t)=;F |
t

0
:
l

x=1

Jx, x+1(s) ds (3.5)

Jx, x+1(s) is the actual particle current across the bond (x, x+1), i.e., for
a given history ['(s), 0�s�t], Jx, x+1(s) is a sequence of $-functions
located at the times of jump through the bond (x, x+1) with weight +1
(&1) if the jump is from x (x+1) to x+1 (x). The action functional is ;F
times the total current integrated over the time span t, which equals the
signed number of all jumps up to time t.

The entropy production R(+) can be read off from (2.30). If we set
+(')= g(') Z&1e&;H(') and denote by ( } ) eq the average over Z&1e&;H('),
then

R(+)=
1
2

:
l

x=1

(cF
xx+1(')[e&;F('x&'x+1)g('xx+1)& g(')]

_[log e&;F('x&'x+1)g('xx+1)&log g(')]) eq (3.6)

We clearly have R(+)>0 unless F=0.(32) The identification of R(+) as
entropy production is further supported by taking + to be a state of local
equilibrium. In the limit of slow density variations R coincides with the
phenomenological entropy production based on the nonlinear diffusion
equation as a macroscopic equation for the density.(32)

We emphasize that the action functional is equal to the total current
only if the condition (3.3) of local detailed balance holds. To illustrate this
point we consider nearest and next nearest neighbor jumps. Local detailed
balance for next nearest neighbor jumps means

cF
xx+2(')=cF

xx+2('xx+2) exp[&;(H('xx+2)&H(')&2F('x&'x+2))]

(3.7)

As before, W(t) constructed according to the rule (2.5) equals the total
current. There are many ways to violate (3.7). Just as an example, if in
(3.7) we replace 2F by :F, then the action functional is W(t)=;F � dt_
�x(Jx, x+1(t)+:Jx, x+2(t)) which equals the particle current only if :=2.
Thus, while the fluctuation theorem holds in great generality, the specific
physical interpretation is linked to local detailed balance. We could also in
this case consider the generator as the sum of two generators, one for
nearest and one for next nearest neighbor jumps, and have more general
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fluctuation theorems as in Section 2.3. The physical interpretation would
however remain obscure.

4. BOUNDARY-DRIVEN LATTICE GASES

We use the same set-up as in the previous section. Only now the box
consisting of sites [1, 2,..., l] is not periodic, and there is no driving force.
Instead particles are injected and removed at the left (x=1) and right
(x=l) boundary. The generator, L, for the full dynamics is naturally
decomposed as a sum of three pieces,

L=Lb+L1+Ll (4.1)

Lb is the dynamics inside the box satisfying detailed balance with respect
to e&;H, cf. (3.1) with x=1,..., l&1. Lb conserves the number of particles.
Li models the particle source�sink at the right and left boundaries and has
the form

Li f (')=ci (')[ f ('i )& f (')], i=1, l (4.2)

ci (') is the rate for the transition 'i to 1&'i while the remaining configura-
tion is untouched. The configuration after this transition is denoted by 'i.
As before we will require the rate ci (') to satisfy local detailed balance in
the form(13)

ci (')=ci ('i ) exp[&;(H('i )&H('))+;#i (1&2'i )] (4.3)

where local refers now to the boundary points which are coupled to reser-
voirs with chemical potentials #1 and #l . Thus if we consider the dynamics
generated only by Lb+Li , then the dynamics will satisfy detailed balance
with respect to the stationary distribution Z&1 exp[&;H(')+;# iN(')]
(achieved in the long time limit) with N(')=�l

x=1 'x the number of
particles. The same will be true for the full L in (4.1), if #1=#l . If on the
other hand #1{#l , then the sources are unbalanced and there will be in
the steady state a net flux of particles through the system going from the
reservoir with high to the reservoir with low chemical potential, i.e., from
left to right if #1>#l .

We now apply the results of Section 2 (with *j=*). The logarithmic
ratio (2.5) reads

&;(H('xx+1)&H('))&; :
i=1, l

(H('i )&H('))+ :
i=1, l

;#i (N('i )&N('))

(4.4)
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where ' is the configuration before and 'xx+1, resp. 'i, the configuration
after the jump. Again the energy differences sum to a surface term. Let Ji (t)
be the boundary current, i=1, l. It is a sequence of delta functions located
at times when 'i jumps to 1&'i with weight 1 (&1) for the transition from
0 to 1 (from 1 to 0). When the boundary current J1 is positive there is a
net flux of particles from the ith reservoir into the system. Then

W(t)=; |
t

0
(#1J1(s)+#l Jl(s)) ds (4.5)

Because of particle conservation there are many equivalent expressions
for W(t) in the sense that they differ only by surface terms and have there-
fore the same rate function. Let us denote by N[x, y](t), x� y, the number
of particles in the interval [x, y] at time t. By the conservation law for the
number of particles we have

N[x, y](t)&N[x, y](0)=|
t

0
(Jx&1, x(s)&Jy, y+1(s)) ds (4.6)

Since N[x, y](t)�| y&x|+1, �t
0 Jx&1, x(s) ds and � t

0 Jy, y+1(s) ds must have
the same large deviations. If we include in the mass balance also the
boundary currents, then we can replace in (4.5) J1(t) by any Jx, x+1(t) and
Jl(t) by any &Jx, x+1(t) without modifying the rate function ê(w). While
this gives many equivalent choices, the simplest one is perhaps

Wx(t)=;(#1&#l) |
t

0
Jx, x+1(s) ds=;(#1&#l) W� x(t) (4.7)

Wx(t) differs from W(t) only by a surface term. The action functional
W� x(t) is the time integrated particle current across the bond (x, x+1). The
generating function for W� x(t) satisfies the fluctuation theorem in the form
e~ (*)=e~ (;(#1&#l)&*), with e~ independent of the choice of x.

The conservation law (4.6) can be used also in the driven lattice gas of
the previous section to produce equivalent action functionals. For example
W(t) of (3.5) is equivalent to

W� (t)=l;F |
t

0
Jx, x+1(s) ds (4.8)

However the symmetric form (3.5) seems to be more accessible to analytic
computations, as can be seen from the examples described in the Appendix.
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5. FLUCTUATION THEOREM FOR DIFFUSION PROCESSES

We consider next a general diffusion process xt # Rn. It is specified by
a drift vector c(x) (a vector field on Rn) and a positive definite diffusion
matrix a(x)>0 (an n_n matrix valued function on Rn). For later con-
venience we write the generator as

L= 1
2 { } (a{)+c } { (5.1)

with { representing differentiation with respect to x. xt is the solution of
the stochastic differential equation

dxt=(c+ 1
2 ({ } a))(xt) dt+- a (xt) db(t) (5.2)

with db(t)�dt standard white noise. We use Ito's convention for stochastic
differentials.

To construct an action functional for (5.2) such that it satisfies the
fluctuation theorem, we follow the same strategy as for Markov jump
processes: We add to the generator L an operator linear in * such that
L*=L*1&* . More systematically, we consider the process xR

t defined as
time-reversal of xt and their Radon�Nikodym derivative, compare with
(2.21). By either argument the action functional W(t) for diffusion pro-
cesses turns out to be given by

W(t)=2 |
t

0
(a&1c(xs)) } dxs+|

t

0
a {(a&1c)(xs) ds (5.3)

We may think of W(t) as the limit of the symmetrized (Stratonovich)
approximation,

W(t)= lim
= � 0

= :
t�=

j=0

(a&1c(x( j+1) =)+a&1c(xj=)) } (x( j+1) =&xj=) (5.4)

If a is diagonal and independent of x, then aii�2 corresponds physically to
the temperature ;&1. In this case W(t)�; equals the work done by the force
c on the system during the time span t, in accordance with the physical
meaning of the action functional for lattice gases.

As before, we expect that the equilibrium forces do not show up in the
large deviations of W(t). For diffusion processes detailed balance with
respect to e&U(x) means that

c=&1
2 a{U (5.5)
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Inserting into (5.3), by Ito's lemma, (33)

&|
t

0
{U(xs) } dxs&

1
2 |

t

0
a{{U(xs) ds=U(x0)&U(xt) (5.6)

which is indeed a pure surface term. Only driving forces make a contribu-
tion to W(t) proportional to t.

Since a>0 by assumption, we are in the uniformly elliptic case, where
the transition probability, eLt, has a density and (eLt)x, x$>0 for t>0. We
require that the drift c is sufficiently confining. Then xt has a unique
stationary measure with density +s(x)>0, satisfying +seLt=+s .

Let us denote by ( } ) expectation with respect to the stationary pro-
cess xt (starting in the invariant measure +s). Then

lim
t � �

&
1
t

log (e&*W(t))=e(*) (5.7)

and the fluctuation theorem

e(*)=e(1&*) (5.8)

should hold.
To prove (5.8), as for jump processes, we first define the function

g(x, t)=Ex(exp[&*W(t)]) as the expectation with respect to the station-
ary diffusion process xt conditioned to start at x. Then g(x, t) satisfies

�
�t

g(x, t)=L*g(x, t) (5.9)

with

L*= 1
2 { } (a } {)+c } {&2*c } {&*({ } c)&2*(1&*) c } a&1c (5.10)

where the last two terms act as multiplication operators. We conclude that

(e&*W(t))=|| +s(x)(eL* t)x, x$ dx dx$ (5.11)

On the other hand, from (5.10),

L**=L1&* (5.12)

which implies (5.8) by Perron�Frobenius.
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Equations (5.10) and (5.11) can also be viewed as an application of
the Cameron�Martin�Girsanov formula.(33) The path measure of the pro-
cess generated by L* has a density relative to the path measure of the
process generated by L. We write this density as exp[R]. Then, according
to ref. 33, Section 6.4,

R=&2* | a&1c(xt) } dxt+2* | (a&1c) } (c+ 1
2 {a)(xt) dt

&2*2 | c } a&1c(xt) dt&2*(1&*) | c } a&1c(xt) dt&* | { } c(xt) dt

=&2* | a&1c(xt) } dxt&* | a{(a&1c)(xt) dt

=&*W(t) (5.13)

where we used the identity

a(:)
d

d:
a&1(:)=&\ d

d:
a(:)+ a&1(:) (5.14)

valid for a parameter-dependent matrix a(:).
From the argument of Section 2, we conclude that W(t)�t has large

deviations as stated in (2.11) with a rate function satisfying the symmetry
(2.10).

6. PARTICLE UNDER MECHANICAL AND THERMAL DRIVE

In the stochastic differential equations of Section 5 the diffusion acts
everywhere on the configuration space Rn. This is appropriate for strongly
overdamped stochastic systems such as those considered in time-dependent
Ginzburg�Landau theories. In many physical situations, however,
stochasticity is assumed to act only in velocity space. Then the matrix a in
(5.1) has zero eigenvalues and, the results of Section 5 are not directly
applicable. To understand the required modifications we consider, as an
example, a mechanical particle of mass m with position x in the d-dimen-
sional torus T d and velocity v in Rd subject to noise and friction. The
particle has the mechanical energy H= 1

2mv2+U(x), where U is some peri-
odic potential. In equilibrium the stationary distribution is given by
exp[&;H(x, v)] with ;&1 the temperature. We envision two mechanisms
to drive the system out of equilibrium: (i) There is a mechanical driving
force F(x). The standard example is a constant electric field E, i.e.,

350 Lebowitz and Spohn



F(x)=E. If F has a periodic potential part, it may be added to U but as
we will see this has no effect on the large deviation of the action functional.
(ii) There is a nonuniform temperature ;(x)&1. The case of a periodic
variation in ; (and constant friction) has been studied recently in the
context of Brownian motors(34, 35) with the at first sight surprising result
that the steady state maintains a nonzero current. The dynamics of the par-
ticle is governed by the stochastic differential equation

m
d 2

dt2 xt=&{U(xt)+F(xt)&m#(xt) vt+(2m#(xt)�;(xt))
1�2 !(t) (6.1)

Here #(x)>0 is the friction coefficient, ;(x)>0 the inverse temperature
and !(t) standard white noise. The generator of the corresponding Fokker�
Planck equation reads

L=v } {x+\&
1
m

{U+
1
m

F&#(x) v+ } {v+(#(x)�m;(x)) {2
v (6.2)

Using either a modified generator or time-reversal the action functional for
the fluctuation theorem turns outer to be

W(t)=|
t

0
;(xs) F(xs) } dxs+|

t

0
H(xs , vs) d;(xs) (6.3)

for xs , vs a solution to (6.1). The first term is ;_(work done by F ) and the
second term represents ;_(work due to thermal gradients) integrated
along the trajectory xs , 0�s�t. If F=&{V, then up to a surface term
�t

0 ;(xs) F(xs) } dxs=� t
0 V(xs) d;(xs) which, in (6.3), should be added to the

energy H(x, v).
Let ( } ) denote the stationary average for (6.1). Then

lim
t � �

&
1
t

log (e&*W(t))=e(*) (6.4)

and &e(*) is the maximal eigenvalue of

L*=L&*(;(x) F(x) } v+H(x, v) v } {x;(x)) (6.5)

the last two terms being considered as multiplication operators. The corre-
sponding maximal eigenvector is denoted by f*(x, v)>0. Let R be the
velocity reversal operator, Rf (x, v)= f (x, &v). Then

Re&;(x) HL*e ;(x) HR&1Re&;(x) Hf*(x, v)=&e(*) Re&;(x) Hf*(x, v) (6.6)
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By a straightforward computation

Re&;(x) HL*e ;(x) HR&1=L*1&* (6.7)

Therefore

L*1&*Re&;Hf*=&e(*) Re&;Hf*=&e(1&*) Re&;Hf* (6.8)

by Perron�Frobenius, since Re&;(x) Hf*(x, v)>0. We conclude that the
fluctuation theorem holds and e(*)=e(1&*).

As for lattice gases, we expect that the action functional W(t) is linked
to the entropy balance. To spell out the details we consider the time-depen-
dent probability density \t(x, v) of (xt , vt). It satisfies (���t) \t=L*\t . As
usual the Gibbs entropy is given by SG(\t)=&� \t log \t dx dv and
changes in time as

d
dt

SG(\t)=_(\t)+ js(\t) (6.9)

The first term

_(\t)=| #
1
\t

[- m; v\t+
1

- m;
{v\t&

2

dx dv (6.10)

is positive definite. We identify it as the entropy production in the system.
The remainder reads

js(\t)=
d
dt | \t;H dx dv&| \t ;F } v dx dv&| \tHv } {x; dx dv (6.11)

We regard it as the entropy flow from the system to the mechanical and
heat reservoirs.

According to the rules used before, we construct W(t) by integrating
the linear functional defining the entropy flow along a stochastic trajectory.
Using (6.11) this yields

|
t

0 {&
d
ds

;H(xs , vs)+;F(xs) } vs+H(xs , vs) vs } {;(xs)= ds (6.12)

Since the first summand is a surface term, we recover (6.3).

7. STOCHASTIC AND THERMOSTATTING HEAT RESERVOIRS

Physical systems with stationary flows of heat, momentum, etc., are
usually modeled by coupling the system to thermal reservoirs represented by
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stochastic forces acting near the boundaries.(1�7) Away from the boundary
the time evolution obeys the same laws as an isolated system. To be specific,
let us consider one such model of heat flow through a classical system of N
particles of mass m with position qj , momentum pj , j=1,..., N, inside the
slab 4=[&l&a, l+a]_[0, l]2. Let the boxes 4&=[&l&a, &l]_
[0, l]2, 4+=[l, l+a]_[0, l]2 be the left and right boundary zones.
The indicator functions of these sets are denoted by /\ . The particles inter-
act through a short range pair potential V and are confined to the slab by
the wall potential Vw . The equations of motion are

d
dt

qj=
1
m

pj

(7.1)
d
dt

pj=Fj+Fw(q j )+ :
$=\

/$(q j )(&#pj+(2m#�;$)1�2 !j (t))

where qj # 4, pj # R3, F j is the force acting on the j th particle, F j=
&�N

i{ j=1 {V(qj&qi ), Fw=&{Vw is the force from the wall. [! j (t)] are
a collection of independent white noises. The friction and the stochastic
forces operate only when the particle is in the boundary layers acting
there like thermal reservoirs at inverse temperature ;$ . If ;+=;=;& ,
then the steady state is Z&1 exp[&;H], H=�N

j=1 ((1�2m) p2
j +Vw(qj ))+

1
2 �N

i, j=1 V(qi&qj ). If ;+{;& , there is, in the steady state, a constant heat
flux from the higher to the lower temperature reservoir. (This is a variation
of the model used to describe heat flow in a crystal where the Langevin
forces act on the particles in the end layers(3, 10)). Note that, since phase
space is unbounded, even the existence of the SNS requires considerable
effort, compare with ref. 36.

We now follow the method explained in Section 6. For the similarity
transformation we use

exp _& :
N

j=1

;(q j ) { 1
2m

p2
j +Vw(qj )+

1
2

:
N

i=1

V(qi&q j )=& (7.2)

The local inverse temperature ;(q)=;$ for q # 4$ and ;(q) interpolates
smoothly otherwise. For each choice of ;(q) we obtain a distinct action
functional W(t). By local conservation of energy, these differ only through
boundary terms. For later purposes it is convenient to choose a step inter-
polation as ;(q)=;& for q1<0 and ;(q)=;+ for q1�0. Then the action
functional is

W(t)=(;+&;&) |
t

0
ds J0(s) (7.3)
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with J0 the energy current through the plane [q1=0],

J0= :
N

j=1

1
m

pj { 1
2m

p2
j +

1
2

:
N

i{ j=1

V(qi&qj )= $(qj1)

+
1
2

:
N

i, j=1

1
2m

[(( pj+ pi ) } F(qj&q i ))(qj&q i )]

_|
1

0
d* $(*qj1+(1&*) q i1) (7.4)

where qj1 is the x-component of the j th particle position vector.
As an advantageous numerical alternative deterministic thermostatting

reservoirs have been developed.(16) We mention here a model for thermal
reservoirs originally proposed by refs. 37 and 38 and further studied in
refs. 22 and 39. The equations of motions are Newtonian in the bulk. At
the boundary layers 4+ and 4& additional friction terms are added which
are constructed in such a way that the total kinetic energy of the particles
in 4+ , resp. 4& , is kept constant. The particular boundary temperature is
then fixed through the initial conditions. The equations of motion read

d
dt

qj=
1
m

pj

(7.5)
d
dt

pj=Fj+Fw(qj )+ :
$=\

/$(q j ) :$p j

The ``friction'' coefficients :+ , :& are given by

:$=_ :
N

j=1

/$(qj ) p2
j &

&1

:
N

j=1
{ 1

m
pj } {/$(qj )

1
2m

p2
j

+
1
m

/$(qj )(F j+Fw) } p j= , $=\1 (7.6)

For thermostatted systems the action functional is the phase space
contraction integrated along a trajectory of the dynamical system, which in
our case equals

3N_=3N+ :++3N&:&+O(1) (7.7)

with N\ the number of particles in 4\ . The fluctuation theorem holds
provided the dynamics is sufficiently hyperbolic for the SNS to be
described by an SRB measure. This is not expected to be true in general.
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It is then an assumption, embodied in the chaotic hypothesis, that the fluc-
tuation theorem remain valid for realistic physical systems. The numerical
simulation in ref. 40 gives strong support for the validity of the fluctuation
theorem in one such model. There the two heat reservoirs are linked through
an anharmonic chain, rather than a fluid. Further numerical support comes
from a study of shear flow for hard disks in a box(41) where momentum but
no energy is transferred to the system at opposite boundaries. The fluctua-
tion theorem is well verified, (42) although it seems to be difficult to get
beyond the quadratic approximation.

The action functional defined with the phase space contraction (7.7)
appears to be rather different than the one of (7.3). However the conserva-
tion law can be used again to transform a boundary flux to an interior flux.
Let H1 be the total energy of particles in the left half box [&a&l, 0]_
[0, l]2. We have

d
dt

H1(t)=&J0(t)&_ :
N

j=1

/&(qj ) p2
j & :&

=&J0(t)&
1

;&

3N&:& (7.8)

since �N
j=1 /&(q j ) p2

j is a constant of motion and initially fixed to
3N& �;& . We conclude that

|
t

0
ds 3N_(s)=&H(t)+H(0)+(;+&;&) |

t

0
ds J0(s) (7.9)

Up to a boundary term the phase space contraction is just the energy flux
across the plane [q1=0], the same quantity which has been obtained for
stochastic reservoirs, compare with (4.7).

It is tempting to assume that for stochastic and thermostatted boun-
daries, the rate functions of the fluctuation theorem are identical. This
requires however a very strong form of equivalence of ensembles, in the
sense that in the interior of the system even the large deviations of the
current are in the steady state independent of the mechanism, by which
the boundaries are cooled�heated. This appears to be the case for the model
studied in ref. 40. On the other hand recent simulations ref. 43 suggest that
this equivalence fails for the model described in refs. 41�42.

8. GREEN�KUBO FORMULA, ONSAGER RECIPROCITY

As observed in ref. 24 the fluctuation theorem yields the Green�Kubo
formula at equilibrium, see also refs. 39, 44, and 45 for discussions of linear

355Gallavotti�Cohen-Type Symmetry



response for chaotic thermostatted systems. We follow the derivation in
ref. 24 for the stochastic models considered here. For the sake of concrete-
ness we consider a k-species lattice gas on a d-dimensional lattice. The
lattice gas is driven by an external field, cf. Section 3, and satisfies local
detailed balance. For each species the driving field is a d-component vector.
It is convenient to regard the driving field as the m-component vector
F9 =(F1 ,..., Fm), m=d_k. There are m different types of jump, labeled by
the species and lattice directions. Therefore the generator of the lattice gas
is the sum

L= :
m

j=1

L( j) (8.1)

where each L( j) satisfies the conditions of Section 2.3, compare with (2.23).
To each L( j) there is associated the current J j (t).

We define

e(F9 ; *1 ,..., *m)= lim
t � �

&
1
t

log �exp _&; :
m

j=1
|

t

0
*j Jj (s) ds&�F9

(8.2)

where we have, in the action, absorbed Fj into the *j 's and indicated
explicitly the dependence of the stationary state and the dynamics on F9 .
The fluctuation theorem now takes the form

e(F9 ; *1 ,..., *m)=e(F9 ; F1&*1 ,..., Fm&*m) (8.3)

We have (Jj (t)) 0=0, since F9 =0 corresponds to equilibrium. Differ-
entiating (8.2) at *=0, we obtain

�
�*j

e(F9 ; 0)=;(Fj (t)) F9 (8.4)

the average j th current.
Now the linear response in the average current to a small driving field

is given by

�
�Fj

1
;

�
�*i

e(0; 0)=_ij (8.5)
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Differentiating (8.3) with respect to F9 and *9 at F9 =*9 =0 we conclude that

;_ij=&;_ ij+;2_̂ij (8.6)

and therefore

_ij=
1
2 ;_̂ ij (8.7)

where

_̂ij=&
1
;2

�
�*i

�
�*j

e(0; 0)=|
�

&�
dt(J i (t) Jj (0)) 0 (8.8)

This is the standard Einstein�Green�Kubo relation between linear
response in the current and the time-integrated current-current correlation,
which satisfies the Onsager relation _̂ij=_̂ ji .

We remark that the derivation in ref. 24 and here of the Onsager sym-
metry (8.7) differs considerably from the standard computation based on
linear response. We refer to ref. 32 for an exposition of the latter. There one
differentiates, at finite volume, the steady state current ( jF9 ) F9 at F9 =0,
which by definition equals _ij . This gives two terms: one from differentiat-
ing the current function jF9 and one from differentiating the steady state
( } ) F9 . Their sum is then (8.8), because (Ji (t) Jj (0)) 0 has a $-peak at t=0,
whose weight is the first term, and a smooth piece, whose time integral
equals the second term.

9. CONCLUSIONS

Within the framework of stochastic dynamics the fluctuation theorem
holds in great generality. For finite state spaces, like stochastic lattice gases,
we have given a proof. For the nondegenerate diffusion processes of
Section 5 we could provide sufficient conditions on the driving forces and
the diffusion matrix which ensure the validity of (5.8). The situation is
more delicate for degenerate diffusion processes, in particular for deter-
ministic bulk systems driven by stochastic boundaries. Since the noise
vanishes on large parts of the phase space, even the convergence to the
steady state is not obvious. To our knowledge there are only a few rigorous
investigations of SNS of this type.(3�5, 7, 10) In refs. 5 and 7 classical point
particles are considered. At a collision with the wall they are reflected with
a Maxwellian distribution at the local temperature of the wall. Existence
and uniqueness of the invariant measure is established provided the forces
are repulsive and have a range of the size of the box. This latter property
prevents pockets in phase space which never see the wall. In ref. 3 explicit
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SNS measures are obtained for a harmonic chain coupled to stochastic
reservoirs specified by Langevin forces at the ends of the chain. While in
ref. 10 an anharmonic chain is coupled to a free field leading to similar
boundary conditions. For this system existence and uniqueness of the
invariant measure is established in under a Ho� rmander condition. We
expect that for these systems the GC fluctuation theorem can be proved.
Thermostatted boundaries are beyond our mathematical abilities at the
present time.

Viewed from the physics point of view the fluctuation theorem is a
consequence of time-reversal. For a given stationary stochastic process one
considers the density of the path measure of the time-reversed process
relative to the original one. The logarithm of this density is the action func-
tional which satisfies the fluctuation theorem. At this level of generality it
is somewhat unexpected that in concrete models, which satisfy the condi-
tion of local detailed balance, the action functional has a direct physical
interpretation. By separating the rate of change of Gibbs entropy into a
production and flow term we identify the observable whose average defines
the entropy flow. The action functional is then this observable integrated
along a stochastic trajectory. Generically it is the current, multiplied by the
driving force, corresponding to the conserved field. The GC fluctuation
theorem is then a symmetry property for the large deviations in the current.
Such large deviations are not readily observed in physical systems, because
they refer to exponentially small probabilities. Also in numerical
experiments special efforts are needed.(23, 42, 28) Even worse, the action func-
tional is extensive and the probabilities are exponentially small also in N.
Thus it would be desirable to have a local quantity satisfying (at least
approximately) the fluctuation theorem but this does not appear to be the
case for the systems investigated numerically thus far.(42, 43)

There is one prediction of the fluctuation theorem which is worthwhile
to emphasize. We use the convention of the previous section where the
symmetry reads e(*)=e(F&*), i.e., e is even relative to *=F�2, and we
may expand as e(*)=e0+ 1

2e2*(F&*)+ } } } . Assuming that in the interval
&$<*<F+$ with some small $>0 the quadratic approximation is valid,
then by differentiating at *=0 we obtain ( j) F=e2 F�2, where e2=
��

&� dt((J(t) J(0)) F&(J(t)) F (J(0)) F) will generally depend on F. The
nonlinear response in the current is then linked to the time-integral over
the current-current correlation. The knowledge of e(*) thus provides infor-
mation about, the range of validity of the Einstein relation and linear
response theory, see also ref. 23. We should note, however, that even when
e(*) looks approximately Gaussian the ``best fit'' Gaussian may not
correspond to the curvature at the top, i.e., we might have e(*)=e0+
1
2e� 2*(F&*) with e� 2{e2 .(54)
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APPENDIX: LARGE DEVIATION FUNCTION FOR THE
ASYMMETRIC EXCLUSION PROCESS

To determine the large deviation function in any of the models we
have discussed is like computing a free energy in equilibrium statistical
mechanics. Therefore it is not surprising that even in the stochastic frame-
work explicit results are available only for a few models. We discuss here
the large deviation function for the asymmetric simple exclusion process in
one dimension where particles random walk with an average drift and
interact through the constraint that there can be at most one particle per
lattice site. As a warm up we consider this model without constraint, i.e.,
independent biased random walks on a lattice. It would be of interest to
have also an example for the boundary driven lattice gases of Section 4.
Besides independent particles, the simplest model is symmetric exclusion in
the bulk and boundary reservoirs as discussed in Section 4. Its large deviation
function, for W� x(t), satisfies then e(*)=e(;(#1&#l)&*), cf. (4.7). Thus in
the limit #1 � �, i.e., at the left boundary particles are only injected, the GC
fluctuation theorem predicts limt � � (&1�t) log Prob([W� x<at])=0 for
a<0.

We first consider N independent particles, i.e., no exclusion, on a ring
of size l driven by a uniform force of strength F. Since particles are inde-
pendent, it suffices to study the one-particle problem. For N particles we
merely have to multiply by N at the end. It is convenient to set ;F�2=E.
The generator for the dynamics reads

LE f (x)=(eE�2 cosh E ) f (x+1)+(e&E�2 cosh E ) f (x&1)& f (x) (A.1)

The elementary jump time is normalized such that for E � � the jump rate
to the right is one. W(t) is now the total number of signed jumps up to
time t. To compute the generating function (e&*W(t)) for large t we need
the maximal eigenvalue of

LE, * f (x)=(eE&*�2 cosh E ) f (x+1)+(e&E+*�2 cosh E ) f (x&1)& f (x)

(A.2)

Clearly f =1 solves LF, * f =&e(*) f with

e(*)=1&(cosh(E&*)�cosh E ) (A.3)

Its Legendre transform is given by

ê(w)=&Ew+1+w argsinh(w cosh E )&- w2+(cosh E )&2 (A.4)
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ê vanishes at the average current j=tanh E. On general grounds we know
that e(*) is convex down, e(0)=0, e$(0)=&j, the average current,
e(*)=e(2E&*) and that ê(w) is convex up, ê(w)�0, ê(w0)=0 for w0=
j=(1�t)(W(t)) , ê(w)&ê(&w)=&2Ew.

Note that in the limit E � �, ê degenerates to ê(w)=1&w+w log w
for w�0 and ê(w)=� for w<0, which merely reflects that left jumps have
probability zero for E=�.

We expect more structure for particles interacting through hard core
exclusion. This corresponds to H(')=0 in the notation of Section 3. The
jump rates with a uniform driving field are then

cE
xx+1(')=(eE�2 cosh E ) 'x(1&'x+1)+(e&E�2 cosh E )(1&'x) 'x+1

(A.5)

We normalized the rates such that for E � � a particle jumps with unit
rate to the right. (A.5) are the jump rates of the asymmetric simple exclu-
sion process (ASEP).

The action functional W(t) is the total current integrated over the time
span t. Expectations, ( } ) , are taken in the stationary process at a given
number of particles N, 1�N�l&1. For the ASEP this means that at time
t=0 all allowed configurations have equal weight. Then

lim
t � �

&
1
t

log (e&*W(t))=eE (*, l, N ) (A.6)

and &eE is the maximal eigenvalue of L* with

L* f (')=(2 cosh E )&1 :
l

x=1

[(eE&*'x(1&'x+1)+e&(E&*)(1&'x) 'x+1)

_ f ('xx+1)&(eE'x(1&'x+1)+e&E (1&'x) 'x+1) f (')] (A.7)

The fluctuation theorem reads

eE (*)=eE (2E&*) (A.8)

which can be seen also directly from (A.7).
L* is a linear operator with a structure which is similar to that of the

hamiltonian for a quantum spin chain. To make contact with that model
we rewrite L* in terms of the Pauli spin 1

2 matrices _� x=(_1
x , _2

x , _3
x)
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associated to every lattice site x. We identify 'x=1 with spin up, _3
x=1,

and 'x=0 with spin down, _3
x=&1. Then

&L*=H*= :
l

x=1

[(1�4)(1&_3
x_3

x+1)&(eE&*�2 cosh E ) _+
x _&

x+1

&(e&E+*�2 cosh E ) _&
x _+

x+1] (A.9)

where _\
x = 1

2 (_1
x\i_2

x) are the spin raising and lowering operators. We
note that H**{H* , unless E=*, and H* does not have directly a quantum
mechanical interpretation, except through analytic continuation in *.

To determine the ground state energy of H* , the only technique
available is the Bethe ansatz. Fortunately, H* is covered by the famous
paper of Sutherland and Yang.(46) However, the analysis of the nonlinear
Bethe equations still require a considerable effort, which in our section of
parameter space has been carried out only recently. We use the results by
D. Kim.(47) He is in fact interested in the energy gap, but also gives
eE (*, l, N ) to leading order in N in the limit l � �, N � �, \=N�l fixed.
We expect that also order 1 terms could be obtained, but such an analysis
is certainly beyond the scope of our paper. In the limiting case E � �, the
Bethe equations simplify. This has been exploited recently by Derrida et
al.(48, 49) They determine e�(*, l, N ) fairly explicitly and discuss the order
1 corrections to the infinite volume limit.

To leading order in N, N�l=\, we have

eE (*, l, N )$le� E (*, \) (A.10)

i.e., eE is extensive. e� E has a flat piece, e� E (*, \)=0 for 0�*�2E. At *=0,
e� E has the slope \(1&\) tanh E and the asymptotics(47)

e� E (*, \)=\(1&\)(tanh E ) *

&
1

20 \
3?
2 +

2�3

(4\(1&\))4�3 (tanh E ) |*| 5�3 (1+O( |*| 2�3)) (A.11)

for *<0. By symmetry e� E has the same asymptotics at *=2E. For E � �,
the right zero eE(*, l, N ) moves to � and the flat piece of eE (*, l, N )
never levels off, in agreement with refs. 48 and 49.

e� $(0) is just the average current which is \(1&\) tanh E. e� "(0) is for-
mally the integral over the total current-current correlation and therefore
the mobility of the lattice gas.(32) In our case e� "(0)=�, which reflects the
fact that in the ASEP density fluctuations propagate superdiffusively.(50)
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At E=0 (A.6) gives the large deviations in the total current at equi-
librium, i.e., for the symmetric simple exclusion process. The fluctuation
theorem reduces then to e0, l, N(*)=e0, l, N(&*), which also follows from
time reversibility. e� 0(*, \) has no longer a flat piece. For small *,
e� 0(*, \)=&1

2*
2\(1&\). Thus the mobility _(\)=\(1&\) and the diffu-

sion constant, which is _ divided by the compressibility, D(\)=1, inde-
pendent of the density in agreement with the known bulk diffusion of the
symmetric simple exclusion process. The more precise asymptotics(47) is
given by

e� 0(*, \)=&1
2 \(1&\) *2& 1

20 21�3(2?)2�3 (\(1&\))4�3 |*|8�3 (1+O( |*|4�3)

(A.12)

On a formal level the ``Burnett coefficients'' correspond to higher deriva-
tives of e� E (*) at *=0.(51) (A.12) shows that for the symmetric simple exclu-
sion process the Burnett coefficients are infinite.

Just as free energies, the large deviation function may become singular
in the infinite volume limit and this happens already for the first nontrivial
example. To understand the origin of this behavior, it is necessary to
analyze those configurations which give the main contribution to (e&*W(t)).
If * � � only left jumps are permitted and similarly for * � &� only
right jumps are permitted, essentially independent of the driving field E,
E>0 for the sake of discussion. However, in the intermediate regime
0�*�2E, the particles have two opposing instructions. Should they
follow E or *? In fact, neither. As can be inferrred from the maximal eigen-
vector, they just stick and form one big cluster.(52) The clustering is seen
most easily at *=E, where H* is the ferromagnetic, anisotropic Heisenberg
model and the maximal eigenvector its ground state. At our parameters, H*

is in the ferromagnetic phase. Since the magnetization is fixed, typical con-
figurations condense into one large cluster. In our units the corresponding
ground state energy is of order 1 independent of l. In parentheses we
remark that in the context of chaotic thermostatted systems configurations
typical for the large deviation functional are studied in ref. 53.

It is instructive to reconsider our result from the point of view of the
probability distribution of W(t)�t, which is obtained from the Legendre
transform of e� E (*). To make it well defined, we note that, for large N,
eE (*) smoothly interpolates between eE (0)=0=eE (2E ), such that e$E (0)=
Nj(\), e$E (2E )=&Nj(\), j(\)=\(1&\) tanhE, and eE (E )=O(1). Thereby
we obtain, for E�0,

e�^ E (w, \)={0
&2Ew

for 0�w� j(\)
for & j(\)�w�0

(A.13)
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For w slightly larger than j(\) we have e�^ E (w, \)& (w& j(\))5�2 and
e�^ E (w, \)&w log w in the limit of large w. For w< & j(\) the values of e�^ E
are fixed by the fluctuation theorem.

To understand the N-dependence of êE (w, l, N )�l, we note that for
W(t)�Nt to have a value larger than j(\) we have to speed up all j particles.
For it to have a value smaller than j(\) it suffices to slow down a single
particle, since the other particles pile up behind. Typical configurations
consist of essentially a single cluster. The large deviation rate is O(1�N )
which on our scale corresponds to e�^ E=0. Such a mechanism works only
for (W(t)�Nt)�0. To have a negative total current, again all N particles
are forced to move, now opposite to E. The linear decrease of
êE (w<N, l)�l with corrections of O(1�N ) for & j(\)�w�0 follows from
the fluctuation theorem. In the limit E � �, êE (w, l, N )=� for w<0.
This just reflects the fact that the underlying process does not allow for
histories with negative currents.

From our discussion of e�^ we conclude that the non-smooth behavior
of e� (*) for large N comes from blocking through slow particles, which
suggests that, if we go to higher spatial dimension or soften the hard core,
a smooth large deviation function may be recovered. But this remains to be
seen. The symmetric case, E=0, warns against too fast a conjecture.
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