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Homework Exercises 11

Your solution to the problems should be handed in/presented

either during a seminar on Monday, Jan 13, at 11:00,

or in my mail box in the Linnéstr, by January, Dec 13, 13:00.

Please submit only Problem 11.3a–c when you participate in the seminar.

Warm-up

Problem 11.1. Soda Bins

In 1984 RedBull introduced a slim 250 mL soda bin with a diameter of DRB = 53 mm

and a height of HRB = 135 mm. Up to that point the usual size was 300 mL with a

bin diameter of DC = 67 mm and a height of HC = 115 mm (this is the size of classic

beer- and Coke-bins).

a) A fist impression of the size is given by the visual cross section D×H. Check it

out: The cross section of RedBull and Coke bins is not too different — in spite

of their substantial volume difference.

b) From an environmental point of view one would try to use as little aluminum for

the bins as possible. This has indeed been achieved by reducing their wall thick-

ness (cf. https://www.youtube.com/watch?v=hUhisi2FBuw). However: What

would be the optimal form to maximize volume for a given surface area? Show

in this respects that the surface area for fixed volume is proportional to

A = K α−2/3 (1 + α) where α =
H

R

is the aspect ratio and K some constant. Determine the constant K, and the

aspect ratio, αopt, that minimizes the aluminum use.

Homework Problems

Problem 11.2. Error analysis: rotational governor

A rotational governor is used in steam engines to control the pressure. When a thres-

hold value for the rotational frequency, Ωc, is reached a valve is opened to reduce
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the pressure. For smaller frequencies, Ω < Ωc, the two balls attached to the arms are

hanging down. For high frequencies, Ω > Ωc, they are pushed outwards, and steam is

released. Due to the symmetry both balls have the same kinetic and potential energy.

Hence, we consider only one ball.

Wikimedia Commons

We describe its position by the the vertical

position z, the distance from the rotation

axis r, and the angle φ, of the position of

the ball in the horizontal plain (cylindrical

coordinates). The length of the arms is denoted

as L, the mass of the balls as M , and the angle

between the arm and the vertical rotation axis

as θ. The governor is rotating with frequency Ω.

a) Sketch the setup, indicating the relevant parameters and coordinates. Indicate

in particular also the unit vectors of the orthonormal basis for the coordinates

(z, r, φ). In this basis the position of the ball should take the form:

~q(t) = −L cos θ(t) ẑ + L sin θ(t) r̂(φ(t)) mit φ(t) = Ωt .

b) Determine the kinetic energy Ekin of the ball, and its potential energy Epot in

the gravitational field.

c) Discuss whether the sum of kinetic and potential energy is conserved for the

motion. Determine to this end the time derivative Ekin + Epot, and show that

the time derivative vanishes if and only θ̇ = 0 or

θ̈(t) = −ω2 sin θ(t)

[
1 +

Ω2

ω2
cos θ(t)

]
mit ω2 =

g

L
.

d) The rotational governor will always have some small friction −γθ̇. Analyze the-

refore the equation of motion

θ̈(t) = −ω2 sin θ(t)

[
1 +

Ω2

ω2
cos θ(t)

]
− γθ̇

What happens for slow rotation Ω2 � ω2? What changes when Ω2 & ω2? Does

this result comply with your physical intuition? If not: Why not? What could

have gone wrong?
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Problem 11.3. Fermat’s principle

Fermat’s principle states that a light beam propagates along a path minimizing the

flight time. When passing from air into glass it changes direction according to Sellius’

refraction law.

c© Zátonyi Sándor (ifj.) Fizped (talk)

CC BY-SA 3.0, wikimedia commons

Here, we consider a setting where the beam

starts in air at the position, (x, y) = (0, 0),

to the top left in the figure, with coordi-

nates where x̂ points downwards and ŷ to

the right. The path of the light is descri-

bed by a function y(x). We require that

beam passes from air into the glass at the

position (a, u) such that it will eventually

proceed through the prescribed position (b, w)

in the glas. The speed of light in air and in

glass will be denoted as cL and cG, respectively.

a) Show that the time of flight T for a (hypothetic) trajectory y(x) with derivative

y′(x) can be determined as follows

T = c−1L

∫ a

0

dx
√

1 + (y′(x))2 + c−1G

∫ b

a

dx
√

1 + (y′(x))2 .

b) Determine δT for a variation y(x) + ε δy(x) of the trajectory. We describe the

glass surface by a function s(x), but we do not know at which position along

the surface the beam passes from air into the glas. What does this imply for

δy(x)|x=0, δy(x)|x=a and δy(x)|x=b? What does it imply for the boundary terms

that arise from the integration by parts, when determining δT?

c) Show that the beam must go in a straight line in air and in glas. Show that this

implies that

T (u) =
1

cL

√
u2 + a2 +

1

cG

√
(w − u)2 + (b− a)2 .

Derive Snellius’ law from the conditin that 0 = dT (u)/du.

Bonus. Snellius’ Law can also be directly obtained from Fermat’s principle. How?
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Problem 11.4. Shortest path on a sphere

We describe the position on the surface of a three-dimensional sphere by the angle θ

with its “North pole”, and the azimuthal angle φ in the horizontal plane. A trajectory

on the sphere can then be specified as ~q(t) =
(
θ(t), φ(t)

)
, or alternatively by θ(φ) or

φ(θ). We will now derive conditions for a path of extremal length on the sphere.

a) Without restriction of generality we restrict our discussion to spheres with unit

ratius. Why is this admissible?

b) Show that the length of the path from (θa, φa) to (θe, φe) amounts to

L =

∫
d` =

∫ φe

φa

dφ

√
sin2 θ(φ) +

(
dθ(φ)

dφ

)2

=

∫ θe

θa

dθ

√
1 + sin2 θ

(
dφ(θ)

dθ

)2

Under which conditions do the expressions apply? Why and when do they pro-

vide the same length?

c) A necessary condition for the extremality of L is that the variation δL vanishes

for the integrals that have been defined in (b). Introduce the variation θ(φ) +

ε δθ(φ) into the second representation of thelength, calculate δL, and determine

the resulting differential equation for paths θ(φ) of extremal length.

d) Repeat the same steps for the variation φ(θ)+δφ(θ) and the other representation

of the length. Determine the resulting differential equation for paths φ(θ) of

extremal length. Which derivation is simpler? How could you have seen this

before performing the calculations?

e) The result of (d) can be integrated once. Show that this results in the following

first order differential equation

dφ

dθ
=

cosα

sin θ

[
sin2 α− cos2 θ

]−1/2
.

where sinα is an integration constant.

f) Verify that the following function is a solution of the differential equation

sinφ = −cosα cos θ

sinα sin θ
.
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There is no further integration constant in this solution! What does that imply?

g) Show that all the coordinates

~q(θ) = (sin θ cosφ(θ), sin θ sinφ(θ), cos θ)

of the trajectory obtained in (f) are orthogonal to the vector (0, sinα, cosα).

What does this imply for the path?

Bonus Problem

Problem 11.5. Stability of soap films

c© Mathematikum Gießen

http://mathematikum.df-kunde.de/Wanderausstellung/index.php?m=2&la=de&id=314

When a soap film is suspended between two

rings, it takes a cylinder-symmetric shape

of minimal surface area. We discuss here

the form of the film for rings of radius R0

and R1 positioned at the height x0 and x1,

respectively. At the Mathematikum in Gießen

there is a nice demonstration experiment: x0

is the surface height of soap solution in a

vessel around the platform where the children

are standing, and x1 is the height of the ring

pulled upwards by the children.

a) Let w(x) be the radius of the cylinder-symmetric soap films at the vertical

position x. Sketch the setup and mark the relevant notations for the problem.

b) Show that the surface area A of the soap film takes the form to

A =

∫ x1

x0

dx w(x) f(w′(x)) ,

Here, the factor f(w′(x)) takes into account that the area is larger when the

derivative w′(x) = dx/dx increases. Determine the function f(w′(x)) in this

expression.
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c) Show that A is extremal for shapes w(x) that obey the differential equation

w′′(x) =
1 + (w′(x))2

w(x)
.

d) Determine the solutions of the differential equation.

Hint: Rewrite the equation into the form

w′(x) w′′(x)

1 + (w′(x))2
=
w′(x)

w(x)
.

e) Look now for solutions with −x0 = x1 = a and R0 = R1 = R, where w0 is the

radius at the thinnest point of the soap film. Show that the solution will then

take the form

R

a
=
w0

a
cosh

a

w0

.

f) Sketch R/a as function of a/w0. For given R and a you can then find w0. For

small separation of the rings you should find two solutions. What happens when

one slowly rises the ring? Will an adult ever manage to pull up the ring to head

height before the film ruptures?
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