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Homework Exercises 9

Your solution to the problems should be handed in/presented

either during a seminar on Monday, Dec 16, at 11:00,

or in my mail box in the Linnéstr, by Monday, Dec 16, 13:00.

Please submit only Problem 9.3 when you participate in the seminar.

Warm-up

Problem 9.1. Planetary Conjunctions.

Every now and then there are planetary

conjunctions, where two or even several

planets appear in a very close vicinity on

the sky. The conjunction of Mercury and

Venus appearing above the Moon is shown

to the right. Right at the moment you can

observe a conjunction of Venus and Saturn,

and upcoming events are listed on wikipe-

dia. A funny feature of conjunctions is that

the times between subsequent conjunctions

vary a lot. For instance there have been

recent Mercury-Venus conjunctions recent-

ly on September 13 and October 30, 2019,

while the forthcoming conjunctions will on-

ly arise on May 22, 2020. 6 March 2008 [ESO/Y. Beletsky [CC BY 4.0]

a) Determine the time evolution of the angle of sight of the planet, as they are

observed at midnight.

b) Discuss the monotinicity of the evolution of the planet position on the night

sky.

c) What does this dependences imply about the time intervals between subsequent

conjunctions of a pair of stars? Can you derive a recusion relation for the times?

d) Plot subsequent times as function of one another. What do you observe?
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Homework Problems

Problem 9.2. Falling through Earth.

Assume that a powerful wizard magics away the electromagnetic interaction of my

body with the Earth. Where and when will I reappear on the Earth surface?

To deal with this problem we adopt the approximation that the Earth is spherical

with radius R, and that it has a constant mass density ρ. Let my mass be m. I will

then only interact with the Earth by the graviational interaction, that gives rise to a

force
~F (~q) =

ρmG ~q

|~q|3
dx dy dz

for volume elements dx dy dz at a position ~q relative to my position.

a) In contrast to the convention adopted in our treatment of the Kepler problem

the equation for the force given above has a positive sign. Why is this meaningful

here?

b) Let ~r be my position as seen from the center of Earth. Verify that the net force

that is acting on me can then be written as

~F (~r) = ρmG r̂

∫ 2π

0

dφ

∫ π/2

0

dθ

∫ q+(θ)

−q−(θ)

dq sin θ sign(q)

where

q±(θ) = ±|~r| cos θ +
√
R2 − |~r|2 cos2 θ

and θ is the angle between ~r and ~q.

Hint: These are spherical coordinates where ~r is aligned with the θ = 0 axis.

c) Perform the integration. Observe subsequently that at the Earth surface there

is a gravitational acceleration ~g acting on my body. Use this special case to

eliminate G and ρ from your result. You should thus obtain

~F (~r) = −mg ~r
R

d) At the moment of my departure I am at rest with respect to the Earth surface.

What does that imply for the initial conditions of my equation of motion?

e) Demonstrate that my motion will be constrained to a plane. Based on my initial

condition I choose a coordinate system in this plane where z is vertically up in

the direction of gravity, and w denotes West. Thus, my initial position in this
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coordinate system is (z0, w0) = (R, 0). What will be my position at t after

departure? What will be my closest approach to the center of Earth? Where

and when will I reappear on the Earth surface?

Problem 9.3. Coulomb potential and external electric forces.

We consider the Hydrogen atom to be a classical system as suggested by the Sommer-

feld model. Let the proton be at the center of the coordinate system and the electron

at the position ~r. The interaction between the proton and the electron is described

by the Coulomb potential α/|~r|. In addition to this interaction there is a constant

electric force acting, that is described by the potential ~V · ~r. Altogether the motion

of the electron is therefore described by the potential

U = − α

|~r|
− ~F · ~r

a) Sketch the system and the relevant parameters.

b) Which force is acting on the particle? How do its equation of motion look like?

c) Verify that the energy is conserved.

d) Show that also the following quantity is a constant of motion,

I = ~F ·
(
~̇r × ~L

)
− α

~F · ~r
|~r|

+
1

2

(
~F × ~r

)2
Here ~L is the angular momentrum of the particle with respect to the origin of

the coordinate system.

3



Problem 9.4. Surface area of a hypersphere.

A hypersphere is a generalization of a sphere to d-dimensional space. The surface of

a d-dimensional hypersphere with radius R comprises all points ~q ∈ Rd with |~q| = R.

For d = 2 this is a circles and its surface “area” amounts to A2 = 2πR.

For d = 3 this is a normal sphere with area A3 = 4πR2.

In general the surface area can be written as Ad = SdR
d where Sd is the surface area

of the d-dimensional unit sphere.

We will adopt hyper-spherical coordinates to evaluate the d-dimensional Gaussian

integral

Gd =

∫
Rd

ddq exp(−~q2) =

∫ ∞
−∞

dq1· · ·
∫ ∞
−∞

dqd exp(−
d∑
i=1

q2i )

a) Proof that Gd = (G1)
d.

b) Consider the case d = 2, and introduce polar coordinates to show that[∫ ∞
−∞

dq exp(−q2)
]2

= 2π

∫ ∞
0

dq q exp(−q2)

Solve the integral on the right-hand-side by adopting the substitution w = q2.

What does this tell about G1?

c) Rewrite the intgral for d = 3 in the form

π3/2 = G3
1 = G3 = S3

∫ ∞
0

dq q2 exp(−q2)

and use partial integration to show that this entails S3 = 4π.

d) Generalize the previous argument to the d-dimensional case, and adopt induc-

tion to proof that

Sd−1 =
d πd/2

Γ
(
d
2

+ 1
)

with Γ(1/2) =
√
π, Γ(1) = 1, and Γ(x+ 1) = x Γ(x).

4


