
Theoretical Physics I. Theoretical Mechanics I
IPSP Leipzig

29. Oct. 2019
Prof. Dr. Jürgen Vollmer

Homework Exercises 3

Your solution to the problems 3.3–3.5 should be handed in/presented

either during a seminar on Monday, Nov 4, at 11:00,

or in my mail box at ITP, room 105b, by Monday, Nov 4, 13:00.

Please submit only Problem 3.5 (a)–(e) when you participate in the seminar.

Warm-up

Problem 3.1. Angles between three balanced forces

Consider three forces ~F1, ~F2 and ~Fp like in the rubber band example of the lecture,

where I pull the band with force ~Fp and this force is balanced by the forces due to

the tension of the rubber band.

a) Make a sketch of the setup where you indicate the angels ∠(~Fp, ~F1) as θ1p and

∠(~Fp, ~F2) as θ2p, respectively.

b) Determine the condition for a balance of forces in the directions parallel to ~Fp

and parallel to ~F1.

c) The result of (b) can be expressed as a conditions on Fp = |~Fp| as function

of F1, F2, θ1p and θ2p, and on F1 as function of Fp, F2, θ1p and θ2p. Insert the

former condition into the latter one in order to eliminate Fp.

Hence, you find that F1 will be proportional to F2, when the angles θ1p and θ2p

are fixed. What does this reflect from a physical point of view?

Hint: What happens to the force balance when you fix the angle and increase
~Fp by a factor ϕ.

d) Employ trigonometric relations to show that the proportionality constant can

be written as a ratio of two sines, i.e. one has

F1 =
sinα

sinα
F2

How are the angles α and β related to θ1p and θ2p?

e) Can you find a simpler way to derive the expression found in (d)?
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Problem 3.2. Geometric and algebraic form of the scalar product

The sketch to the right shows a vector ~a in

the plane, and its representation as a linear

combination of two orthonormal vectors

(ê1, ê2),

~a = a cos θa ê1 + a sin θa ê2

Here, a is the length of the vector ~a,

and θ1 = ∠(ê1,~a).

a) Analogously to ~a we will consider another vector ~b with a representation

~b = b cos θb ê1 + b sin θb ê2

Employ the rules of scalar products, vector addition and multiplication with

scalars to show that

~a ·~b = a b cos(θa − θb)

Hint: Work backwards, expressing cos(θa− θb) in terms of cos θa, cos θb, sin θa,

and sin θb.

b) As a shortcut to the explicit calculation of a) one can introduce the coordina-

tes a1 = a cos θa and a2 = a sin θa, and write ~a as a tuple of two numbers.

Proceeding analogously for ~b one obtains

~a =

(
a1

a2

)
~b =

(
b1

b2

)

How will the product ~a ·~b look like in terms of these coordinates?

c) How do the arguments in a) and b) change for D dimensional vectors that

are represented as linear combinations of a set of orthonormal basis vectors

ê1, . . . , êD?

� What changes when the basis is not orthonormal?

What if it is not even orthogonal?
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Homework Problems

Problem 3.3. Linear Dependence of three vectors in 2D

In the lecture I pointed out that every vector ~v = (v1, v2) of a two-dimensional vector

space can be represented as a unique linear combination of two linearly independent

vectors ~a and ~b,

~v = α~a+ β ~b

In this exercise we revisit this statement for R2 with the standard forms of vector

addition and multiplication by scalars.

a) Provide a triple of vectors ~a, ~b and ~v such that ~v can not be represented as a

scalar combination of ~a and ~b.

b) To be specific we will henceforth fix

~a =

(
−1

1

)
, ~b =

(
1

1

)
, ~v =

(
2

−2

)

Determine the numbers α and β such that

~v = α~a+ β ~b

c) Consider now also a third vector

~c =

(
0

1

)

and find two different choices for (α, β, γ) such that

~v = α~a+ β ~b+ γ~c

What is the general constraints on (α, β, γ) such that ~v = α~a+ β ~b+ γ~c.

What does this imply on the number of solutions?

d) Discuss now the linear dependence of the vectors ~a, ~b and ~c by exploring the

solutions of

~0 = α~a+ β ~b+ γ~c

How are the constraints for the null vector related to those obtained in part c)?
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Problem 3.4. Forces acting on a ladder

Original: Bill Bradley – Vector: Sarang
[Public domain from wikimedia]

The sketch to the left shows the setup of a lad-

der leaning to the roof of a hut. The indicated

angle from the downwards vertical to the lad-

der will be denoted as θ. There is a gravitatio-

nal force of magnitude Mg acting of a ladder

of mass M . At the point where it leans to the

roof there is a normal force of magnitude Fr

acting from the roof to the ladder. At the lad-

der feet there is a normal force to the ground

of magnitude Fg, and a tangential friction force

of magnitude γFf .

a) In principle there also is a friction force γr Fr acting at the contact from the

ladder to the roof. Why is it admissble to neglect this force?

Remark: There are at least two good arguments.

b) Determine the vertical and horizontal force balance for the ladder. Is there a

unique solution?

c) The feet of the ladder start sliding when Ff exceeds the maximum static friction

force γFg. What does this condition entail for the angle θ?

Assume that γ ' 0.3 What does this imply for the critical angle θc.

d) Where does the mass of the ladder enter the discussion? Do you see why?
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Problem 3.5. Different basis for polynomials

We consider the set of polynomials PN of degree N with real coefficients pn, n ∈
{0, . . . , N},

PN :=

{
~p =

(
N∑
k=0

pn x
k

)
mit pn ∈ R, n ∈ {0, . . . , N}

}

a) Demonstrate that (PN ,R,+, ·) is a vector space when one adopts the operations

∀ ~p =

(
N∑
k=0

pn x
k

)
∈ PN , ~q =

(
N∑
k=0

qn x
k

)
∈ PN , and c ∈ R :

~p+ ~q =

(
N∑
k=0

(pk + qk)xk

)
and c · ~p =

(
N∑
k=0

(c pk)xk

)
.

(b) Demonstrate that

~p · ~q =

(∫ 1

0

dx

(
N∑
k=0

pk x
k

) (
N∑
j=0

qj x
j

))
,

establishes a scalar product on this vector space.

(c) Demonstrate that the three polynomials ~b0 = (1), ~b1 = (x) und ~b2 = (x2) form a

basis of the vector space P2: For each polynomial ~p aus P2 there are real numbers

xk, k ∈ {0, 1, 2}, such that ~p = x0~b0 +x1~b1 +x2~b2. However, in general we have

xi 6= ~p ·~bi. Why is that?

Hint: Is this an orthonormal basis?

(d) Demonstrate that the three vectors ê0 = (1), ê1 =
√

3 (2x − 1) and ê2 =√
5 (6x2 − 6x+ 1) are orthonormal.

(e) Demonstrate that every vector ~p ∈ P2 can be written as a scalar combination

of (ê0, ê1, ê2),

~p = (~p · ê0) ê0 + (~p · ê1) ê1 + (~p · ê2) ê2 .

Hence, (ê0, ê1, ê2) form an orthonormal basis of P2.

*(f) Find a constant c and a vector n̂1, such that n̂0 = (c x) and n̂1 form an ortho-

normal basis of P1.
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Bonus Problem

Problem 3.6. Systems of linear equations

A system of N linear equations of M variables x1, . . .xM comprises N equations of

the form

b1 = a11 x1 + a12 x2 + · · ·+ a1M xM

b2 = a21 x1 + a22 x2 + · · ·+ a2M xM
...

...

bN = aN1 x1 + aN2 x2 + · · ·+ aNM xM

where bi, aij ∈ R for i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}.

a) Demonstrate that the linear equations (LM ,R,+, ·) form a vector space when

one adopts the operations

∀ ~p =
[
p0 = p1 x1 + p2 x2 + · · ·+ pM xM

]
∈ LN ,

~q =
[
q0 = q1 x1 + q2 x2 + · · ·+ qM xM

]
∈ LN ,

c ∈ R :

~p+ ~q =
[
p0 + q0 = (p1 + q1)x1 + (p2 + q2)x2 + · · ·+ (pM + qM)xM

]
c · ~p =

[
c p0 = c p1 x1 + c p2 x2 + · · ·+ c pM xM

]
.

How do these operations relate to the operations performed in Gauss elimination

to solve the system of linear equations?

b) The system of linear equations can also be stated in the following form
b1

b2
...

bN

 =


a11

a21
...

aN1

 x1 +


a12

a22
...

aN2

 x2 + · · ·+


a1M

a2M
...

aNM

 xM

~b = x1 ~a1 + x2 ~a2 + · · ·+ xM ~aM

where ~b is expressed as a linear combination of ~a1, . . .~aM by means of the num-

bers x1, . . . , xM . What do the conditions on linear independence and represen-

tation of vectors by means of a basis tell about the existence and uniqueness of

the solutions of a system of linear equations.
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