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Pattern Formation and Nonlinear Dynamics

13. Hydrodynamic Instabilities

1. Competition of Stripes.

We consider an isotropic 2D system whose stationary stripe patterns are described
by an amplitude equation with cubic nonlinear terms of the form |A|A. In the
simplest setting a patterns that involves a superposition of two plane waves with
relative orientation θ is then described by

τ0∂tA1 = εA1 − g0
(
|A1|2 +G(θ)|A2|2

)
A1

τ0∂tA2 = εA2 − g0
(
|A2|2 +G(θ)|A1|2

)
A2

The equations are related by permutation of the indices.

(a) The stripe-coupling coefficient G(θ) has the symmetry G(θ) = G(π − θ).
Do you see why this is necessary?

(b) Determine the amplitude AS of a stationary stripe pattern where
AS = |A1| and |A2| = 0.
Discuss the linear stability of this state towards perturbations where a second
stripe appears at an angle θ. How does the result depend on G(θ)?

(c) Determine the amplitude AL of a stationary lattice pattern where
AL = |A1| = |A2|.
Discuss the linear stability of this state towards perturbations where one of
the stripe decays. How does the result depend on G(θ)?

(d) For the 2D Swift-Hohenberg equation the stripe-coupling coefficient takes
the constant values G(θ) = 2. What does this imply for the observed pat-
terns. Assume that your system admits a small perturbation that will lead
to an non-trivial θ-dependence of G(θ). How does this impact the observed
patterns?
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2. Stripe coupling in the Swift-Hohenberg model.

In this exercise we determine the stripe-coupling coefficient G(θ) of the isotropic
Swift-Hohenberg model

∂tu(~x, t) = r u(~x, t)−
(
1 +∇2

)2
u(~x, t)− u2(~x, t)

with ~x = (x1, x2) and ∇ =

(
∂

∂x1
,
∂

∂x2

)
.

(a) Consider an ansatz of the form

uL(~x, t) = aL(θ) [cos(~q1 · ~x) + cos(~q1 · ~x)] with |~q1| = |~q2| = 1 and ~q1 · ~q2 = cos θ

uS(~x, t) = aS cos(~qs · ~x) with |~qS| = 1

for a lattice and stripe state, respectively. For which amplitudes aL(θ) and
aS are these stationary solutions of the Swift-Hohenberg equation?

(b) Determine the stripe-coupling coefficient G(θ) by compare aL(θ) and aS to
AL and AS of exercise 1.

3. The Dripping Faucet.

Have you ever wondered why faucets are dripping? There is a thin jet of water
coming out of the faucet, and 20 cm further down there are droplets! The reason
can be found by the following linear stability analysis.

(a) Consider a cylindrical water jet of diameter R0. What is its surface area and
volume per unit length?

(b) Let us do a linear stability analysis. To this end we consider a jet with cross
section R1 + Aeikx+σt that experiences an undulation of wave length k ∈ R.
The imaginary part of σ ∈ C will account for traveling waves. Determine the
surface area and volume per unit length for this jet.

(c) We will require that the volume per unit length is constant, when averaged
over one period of the perturbation. What does that imply for the relation
between R1 and A?

(d) Due to surface tension the free energy per unit length F of the jet is pro-
portional to its surface area per unit length. What does this imply for the
stability of the jet? How is the stability effected by the the wave number k?

(e) The free energy is a function of the amplitude and the wavelength, F =
F(k,A). Consider now a steepest descent dynamics,(

k̇

Ȧ

)
= −γ ∇F(k,A) .

Write a program that follows a set of trajectories with initial conditions
(k,A) = (k0, 0) in the (k,A) plane. Where do they go? Which physical
constraints do you have to imply on A? What does this tell about droplet
breakup?
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4. Water Waves.

Let us consider a fluid with flow velocity ~u =
(
u(x, y, t), v(x, y, t)

)
. Gravity is

acting in y-direction. Under suitable conditions, that will be discussed in the
lectures next week, the flow can be derived from a potential ~u = ∇φ(x, y, t). The
incompressibility condition ∇ · ~u = 0 implies that φ obeys the Laplace equation
∇2φ = 0.

For gravity acting in y direction the evolution of an interface of the fluid at height
y = η(x, t) is described by the equations

∂yφ|y=0 − ∂tη = 0

∂tφ|y=0 + g η − T

ρ
∂2xη = 0

where g is the gravitational acceleration and T the surface tension force.

(a) Consider a sinusoidal traveling wave

η = A cos(kx− ωt)φ = f(y) sin(kx− ωt)

and determine f(y) by solving the Laplace equation. How does the solution
look like for infinitely deep water? How for shallow water with a depth smaller
than the wave length?

(b) Determine the dispersion relation ω = ω(k) for the surface waves. The wave
velocity c = ω/k has a minimum as function k. What does this imply of the
standing waves generated by an obstacle in a flow?
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