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Pattern Formation and Nonlinear Dynamics

12. Linear Stability and Amplitude Equations

1. Kuramoto-Sivashinsky Model.

The Kuramoto-Sivashinsky model

∂tu+ u ∂xu = −r ∂2xu− ∂4xu for a scalar real field u(x, t)

is one of the simplest models with a nonlinear term u ∂xu. It has widely been
studied as a model featuring spatio-temporal chaos. Here we discuss its linear
stability and finite-size effects.

(a) Show that u = 0 is a solution for all values of r. This will be our reference
solution for the linear stability analysis.

(b) Adopt an ansatz of the form u ∝ eγ t+ikx, and show that these perturbation
are stable for r < 0, while some wavelength are unstable for r > 0. Which
type of instability does the model show?

(c) Show that the modulus of r can be suppressed in the equation by a suitable
choice of dimensionless units. Determine the resulting equations of motion
for positive and negative values of r.

(d) Consider now finite domains with (i) periodic boundary conditions with pe-
riod L, and (ii) a finite domain of size L with absorbing boundary conditions
u = ∂xu = 0. Show that in this situation p =

√
r L will take the role of an

order parameter. How do the critical values p
(i)
c and p

(ii)
c where the system

passes for stable to unstable depend on the boundary condition?

2. Multiple Scale Analysis of a Generalized Swift-Hohenberg Equation.

Repeat the arguments of my lecture to derive the amplitude equation for the
generalized Swift-Hohenberg equation

∂tu = ru−
(
1 + ∂2x

)
u+ (∂xu)2 ∂2xu for a scalar real field u(x, t) .
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3. The Turing Instability.

In a visionary and extremely influential paper1 Turing (1952) laid down basics
principles of the theory of Morphogenesis. It arises due to the linear instability
of reaction and diffusion of chemical species in a fertilized cell. We focus here on
the case with only one spatial dimension and two chemical species characterized
by the concentrations ~u = (u1, u2),

∂t~u(x, t) = ~f(~u(x, t)) + D~u(x, t) with the diffusion matrix D =

(
D1 0
0 D2

)
and a nonlinear function ~f(~u) representing the chemical reactions. Turing assumes

that the chemical reactions admit a spatially uniform fixed point ~u0, where ~f(~u0) =
~0. To analyze its linear stability we write ~u = ~u0 + ε~u1.

(a) Show that to linear order in ε we then obtain the following equations of
motion for ~u1

∂t~u1(x, t) = A~u1(x, t)) + D~u1(x, t) .

How is A related to ~f?

(b) Argue that both components of ~u1 must have the same x dependence ∝ eikx

in order to obtain a consistent solution, and that the solution of the linear
stability problem thus takes the form Hence,

~u1 ∝ eikx
(
eγ+t ~e+ + eγ−t ~e−

)
where γ± and ~e± are the eigenvalues and eigenvectors of[

A− k2D
]
~e± = γ±~e± .

(c) Discuss the linear stability in terms of det
[
A−k2D

]
and Tr

[
A−k2D

]
. Which

types of instabilities do arise?

1 A.M. Turing: The Chemical Basis of Morphogenesis, Phil. Trans. R. Soc. Lond. B 237 (1952)
37–72. In Leipzig we have access to the reprint in the Bltn. Mathcal. Biology 52 (1990) 153. I
strongly recommend to read the original paper. It is an exceptionally beautiful layout of ideas, and
truly amazing because it was written well before microbiology was established.
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