
Universität Leipzig Sommersemester 2019
Fakultät für Physik und Geowissenschaften Fr, 15. 6. 2019
Jürgen Vollmer

Pattern Formation and Nonlinear Dynamics

11. Patterns

1. The Onset of Thermal Convection.

Thermal convection arises when the Rayleigh number Ra surpasses a critical value
Rac,

Ra > Rac =
α g d3 ∆T

νκ
.

The instability is promoted by the isobaric coefficient of thermal expansion α,
the gravitational acceleration g , the depth of the layer d, and the temperature
difference across the layer ∆T . It is suppresses by the kinematic viscosity ν, and
the thermal diffusivity κ. In the table I give some values for room temperature
and atmospheric pressure.

Fluid α [K−1] ν [m2/s] κ [m2/s]
Air 3× 10−3 2× 10−5 2× 10−5

Mercury 2× 10−4 1× 10−7 3× 10−6

Water 2× 10−4 1× 10−6 2× 10−7

(a) Why and how would the different physical properties promote or suppress
the onset of thermal convection?

(b) Two identical systems of depth h are filled with air and mercury, respectively.
We slowly increase the temperature difference ∆T for temperatures close to
room temperature and at normal atmospheric pressure. Using the values
provided in the table, determine in which fluid convection will be observed
first.

(c) We consider a convection cell with lateral dimensions very large as compared
to its depth d. In the middle of the system we add a bump to the bottom plate
that has a height of a few percent of the layer depth, and lateral dimensions
comparable to the depth d. How will it impact the onset of convection? What
do you expect will happen to the first unstable patterns?

(d) How will the findings change for a ditch rather than a bump?



2. Linear Stability for Other Cubic Nonlinearities.

In the lecture we discussed the linear (in-)stability of the Swift-Hohenberg-equation.
Go through the same discussion in order to explore what changes when its cubic
nonlinearity u3 is replaced with u (∂xu)2,

∂tu(x, t) = r u(x, t)− u(x, t)
(
∂xu(x, t)

)2 − (
1 + ∂2x

)2
u(x, t) .

3. Linear Stability of a One-Variable Reaction-Diffusion System.

Perform a linear-stability analysis for the one-variable on-dimensional reaction-
diffusion system

∂tu(x, t) = f(u(x, t)) +D∂2xu(x, t) ,

where f : R→ R is some nonlinear function of u.

(a) Argue that f(u0) = 0 for u0 = 0. Why is this necessary for a reaction diffusion
system?

(b) Which type of linear instability does the model show?

(c) What changes in more than one dimension, i.e. for

∂tu(~x, t) = f(u(~x, t)) +D∇2u(~x, t) ,

4. Linear Stability Analysis of a Coupled Map Lattice.

A coupled map lattice (CML) is a discrete-time, discrete-space dynamical system
with a dynamical system running in each lattice point, which is perturbed by the
systems in its surroundings. Here we consider the system

ut+1
i = f(uti) +D

(
f(uti−1 − 2 f(uti) + f(uti+1

)
, where i ∈ Z and f(u) = µu (1− u)

is a logistic map with parameter µ. The state of the system at a given time
t comprises the infinite set of numbers (uti, i ∈ Z). The coupling parameter D
governs the interaction of neighboring states.

(a) Show that the uniform solution (uti = u∗, i ∈ Z) is a fixed point of the
dynamics iff it is a fixed point of the logistic map, f(u∗) = u∗.

(b) Discuss the stability of such a fixed point as function of µ ∈ [0, 4] and D ∈ R.

(c) How does the most unstable mode look like for negative D?

(d) Determine the values D(µ) where the values uti remain confined in the unit
interval, when the initial condition is chosen to obey this condition.

(e) Adapt the classification scheme for the type of linear instabilities to address
the linear stability of CMLs.


