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Pattern Formation and Nonlinear Dynamics

8. Hamiltonian Dynamics

1. Reflecting balls.

We consider the reflection of a ball from the ground, the lower side of a table, and
back. The ball is considered to be a sphere with radius R, mass m, and moments
of inertia mαR2 (by symmetry they all agree). Its velocity at time t0 will be
denoted as ~̇z0. It has no spin initially. ~ω0 = ~0. The velocity and the spin after the
nth collision will be denoted as ~̇zn and ~ωn. We will disregard gravity such that the
ball travels on a straight path in between collisions.

(a) Sketch the setup, and the parameters adopted for the first collision: The
positive x axis will be parallel to the floor and the origin will be put into the
location of the collision. Its direction will be chosen such that the ball moves
in the x-z plane. Take note of all quantities needed to discuss the angular
momentum with respect to the origin.

(b) Upon collision there is a force normal to the floor, ~F⊥, and a force tangential

to the floor, ~F‖. The spin of the ball will only change due to the tangential

force. The normal force ~F⊥ acts in the same way as for point particles (i.e.,
as discussed in our derivation of the Sinai billiard): The velocity in vertical
direction reverses direction and preserved its modulus. Denote the veloc-
ity component in horizontal direction as vn = x̂ · ~̇z, and demonstrate that
conservation of energy and angular momentum imply that

v2n + αR2ω2
n = v2n+1 + αR2ω2

n+1

vn − αR ωn = vn+1 − αR ωn+1 .

Show that the tangential velocity component will therefore also reverse its
direction and preserves the modulus,

vn +R ωn = −(vn+1 +R ωn+1) .

(d) Determine v1(v0, ω0) and ω1(v0, ω0) for the initial conditions specified above.
Now, we determine v2(v1, ω1) and ω2(v1, ω1) by shifting the origin of the
coordinate systems to the point where the next collision will arise, and we
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rotate by π to account for the fact that we collide at the lower side of the
table. What does this imply for v1 and ω1? Continue the iteration, and plot
v1, v2 and v3 as function of α. Discuss the result for a sphere with uniform
mass distribution (what does this imply for ω?), and a sphere with ω = 1/3.
Hint: For the plot one conveniently implements the recursion, rather than
explicitly calculating v3.

(e) What changes in this discussion when the ball has a spin initially?

2. Driven Pendulum.

We consider a mathematical pendulum where the pivot is subjected to a time
dependent oscillation z(t). When θ being the angle formed by the orientation of
the pendulum arm and gravity, then the mass of the pendulum will be at the
(Cartesian) coordinates

~q = (L sin θ, z(t) − L cos θ)

(a) Determine the equations of motion of the pendulum, and show that the
impact of z(t) can be interpreted as a periodic modulation of the gravitational
acceleration g.

(b) We will consider the situation where g alternates between two values g + δ
and g − δ that each act over half a period T of the driving. There are three
interesting limiting cases.

(c) The period of the driving is slow as compared to the eigenfrequency of the
pendulum. Sketch a phase-space plot of the mathematical pendulum, and
discuss the impact of the change of gravity on the trajectories.

(d) The period of the driving is fast as compared to the eigenfrequency of the
pendulum. In that case the pendulum does not move very far in one period
of the oscillation. For a given position in phase space (θ, θ̇): How does the
pendulum move when stitching the two pieces of the motion in each of the
half period together? How can this be taken into account in terms of an
effective position dependent but constant force? Take a particularly careful
look at the point where the pendulum is standing upright.

*(d) The ratio of the driving frequency and of the eigenfrequency is a rational
number n/m with small integers n and m. This case is called the resonant
case. I will say more about it in my lecture next week.
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