Theoretische Mechanik und mathematische Methoden

Blatt 7. Bewegungsgleichungen und Extremwertprobleme

1. Getränkedosen

Red Bull hat 1984 schlanke 250 mL Getränkedosen mit einem Durchmesser von $D_{RB} = 53 \,\mathrm{mm}$ und eine Höhe von $H_{RB} = 135 \,\mathrm{mm}$ eingeführt. Bis dahin wurden in der Regel 300 mL Getränkedosen mit einem Durchmesser von $D_C = 67 \,\mathrm{mm}$ und eine Höhe von $H_C = 115 \,\mathrm{mm}$ verwendet (dies sind die Abmessungen der klassischen Bier und Cola-Dosen).

- (a) Rechnen Sie nach: Red Bull Dosen haben vom optischen Eindruck her fast dieselbe sichtbare Fläche $D \times H$ wie klassische Dosen dann aber mit deutlich weniger Inhalt.
- (b) Aus Umweltgesichtspunkten würde man probieren möglichst wenig Aluminium für die Dosen zu verwenden. Dem ist man dahingehend nachgekommen, dass die Wände der Dosen immer dünner wurden (siehe https://www.youtube.com/watch?v=hUhisi2FBuw). Was wäre dann aber in dieser Hinsicht die optimale Form? Zeigen Sie dazu, dass die Oberfläche einer Dose bei festem Volumen proportional ist zu

$$A = K \alpha^{-2/3} (1 + \alpha)$$
 wobei $\alpha = \frac{H}{R}$

das Aspektverhältnis und K eine Konstante ist. Bestimmen Sie K und das Aspektverhältnis $\alpha_{\rm opt}$ mit dem optimalen Materialverbrauch.

2. Lagrange Formalismus für das angetriebene Pendel

Wir betrachten ein mathematisches Pendel, dessen Aufhängepunkt (0,0,z(t)) periodisch auf- und abbewegt wird, $z(t) = A\cos(\Omega t)$. Das Pendel soll in der (x,z)- Ebene schwingen; y ist Null für alle Zeiten. Der Pendelarm hat die Länge L und er schließt einen Winkel θ mit der z-Achse ein. Das Gewicht am Pendel hat die Masse M.

- (a) Skizzieren Sie das Experiment. Wie hängt die Position des Gewichtes ab von $\theta(t)$ und z(t)?
- (b) Bestimmen Sie die potentielle und die kinetische Energie des Pendels. Schreiben Sie die Lagrange-Funktion auf als Funktion von $\theta(t)$ und z(t).
- (c) Bestimmen Sie die Bewegungsgleichung für $\theta(t)$.

3. Ein beschleunigter Wagen

Wir betrachten einen Wagen der Masse $m=20\,\mathrm{g}$ auf einer Luftkissenbahn. Er ist mit einem Faden verbunden, der über eine Rolle am Ende der Bahn nach unten umgelenkt wird. Zur Zeit $t=0\,\mathrm{s}$ befinde sich der Wagen in Ruhe.

- (a) Skizzieren Sie das Experiment.
- (b) Welche Beschleunigung erfährt ein Wagen, wenn die Schnur mit einer konstanten Kraft von 2 N nach unten gezogen wird? Bestimmen Sie seine Geschwindigkeit v(t) und Position x(t).
- (c) Bestimmen Sie die Gravitationskraft auf eine 200 g Tafel Schokolade, um ein Gefühl für die in (a) auftretenden Kraft zu bekommen.
- (d) Nun binden wir die Tafel Schokolade an das Ende der Schnur, anstatt mit einer konstanten Kraft zu ziehen. Die Bewegung läßt sich dann auch aus der Energieerhaltung ermitteln:

$$E = E_{\text{kin}} + E_{\text{pot}} = \frac{m+M}{2} v^2 + Mgh = \text{konst},$$

wobei M die Masse der Tafel Schokolade sei. Sollte die Beschleunigung ungefähr gleich oder verschieden sein? Warum?

Hinweis: Verwenden Sie, dass dE/dt = 0. Wie stehen \dot{h} und v dann in Beziehung, und was besagt das Resultat über die Beschleunigung?

4. Coulomb Potential und externe elektrische Kräfte.

Wir fassen das Wasserstoffatom als ein klassisches System auf, in dem ein Elektron ein Proton umkreist. Die elektrische Wechselwirkung wird beschrieben durch das Coulomb-Potential $-\alpha/|\vec{r}|$, und zusätzlich wirkt eine äußere elektrische Kraft, welche beschrieben wird durch das Potential $\vec{F} \cdot \vec{r}$. Das Proton befindet sich also im Ursprung des Koordinatensystems, das Elektron an der Position \vec{r} , und es bewegt sich in einem Potential, welches den Einfluss der Coulomb-Kraft und der äußeren Kraft beschreibt,

 $U = -\frac{\alpha}{|\vec{r}|} - \vec{F} \cdot \vec{r}.$

- (a) Skizzieren Sie das System und die relevanten Parameter.
- (b) Welche Kraft $\vec{F}_{\rm ges}$ wirkt auf das Teilchen? Wie schauen die Bewegungsgleichungen aus?
- (c) Zeigen Sie, dass die Energie erhalten ist.
- (d) Zeigen Sie, dass die Bewegung weiterhin auch folgende Erhaltungsgröße hat

$$I = \vec{F} \cdot (\dot{\vec{r}} \times \vec{L}) - \alpha \frac{\vec{F} \cdot \vec{r}}{|\vec{r}|} + \frac{1}{2} (\vec{F} \times \vec{r})^{2}.$$

Dabei ist \vec{L} der Drehimpuls des Elektrons bezüglich des Koordinatenursprungs.