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Exercise 1 Revisiting the complex oscillator with noisy frequency

In the lecture we discussed the complex oscillator

dz(t) = (iω − γ) z(t) dt+ i
√

2γ z(t) dW (t) (1a)

where ω and γ are real constants, the noise W (t) takes real values, and z(t) is a function with
complex values. It represents the motion of particles on a circle with fixed radius R0, mean
angular drift ω in angular direction ϕ, and noise that gives rise to a diffusivity γ.

(a) Consider a sharp initial distribution where all ensemble members start at ϕ0 = 0. Show
that the probability distribution P (ϕ, t) for the angular coordinate takes then the form

P (ϕ, t) =
N√
t

exp

[
−(ϕ− ωt)2

2D t

]
with ϕ ∈ R .

How are the normalization constant N and the diffusivity D related to γ?
How does the distribution look like for ϕ ∈ [0, 2π]?
Sketch the probability distribution for the initial value,
and values where Dt� 2π, Dt ' 2π, and Dt� 2π, respectively.

(b) The distribution is symmetric in the angle θ = ϕ − ω t. Use this symmetry to show that
trajectories that the average distance R(θ) of trajectories arriving at θ and −θ will be

proportional to cos θ. Proof that as a consequence the average of the positions ~R(t) =
R0(cosϕ(t), sinϕ(t)) takes the value

〈~R(t)〉 = R0 e−cγt (cos(ωt), sin(ωt))

where the exponential decay arises from

e−cγt ∝
∫

dθ cos θ P (θ, t) .

Determine c.

(c) Compare the results to the expectation value 〈z(t)〉 based on the expression derived in the
lecture.
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Exercise 2 Ornstein-Uhlenbeck processes

Processes described by stochastic differential equations of the form

dx = −kx dt+
√
D dW (t) (2)

are denoted as Ornstein-Uhlenbeck processes when k and D are real constants and W (t) is
delta-correlated white noise.

(a) Find the expectation value 〈x(t)〉.

(b) Find the variance Var(x, t).

(c) Determine the time autocorrelation function
〈(
x(t)− 〈x(t)〉

) (
x(s)− 〈x(s)〉

)〉
.

Exercise 3 Rate functions in large deviation theory

The theory of large deviations deals with the asymptotic scaling of random variables sN that
comprise a sum of N variables,

sN =
1

N

N∑
k=0

xk

where xk are indendent variables with a prescibed distribution P (xk = x). The theory states that
sN obeys a large deviation principle when the distribution can be described by a rate function
I(s),

P (sN = s) � e−N I(s) , (3)

where � holds that lnP (x) = −N I(x) +O(lnN).

(a) Assume that the values xk are Gaussian random variables,

P (xk = x) =
1√

2πσ2
exp

[
(x− µ)2

2σ2

]
with x, µ, σ ∈ R .

Determine the probability distribution P (sN = s).
Discuss the rate function I(s) and the corrections to the scaling.
What happens when xk and µ are vectors in Rd?

(b) Assume that the values xk are independently selected from the probability distribution,

P (xk = x) =
1

µ
e−x/µ with x, µ ∈ R+ .

Determine the probability distribution P (sN = s).
Discuss the rate function I(s) and the corrections to the scaling.
Hint: Write P (sN = s) as the marginal with the constraint s = sN = N−1

∑
k xk of the

probability distribution P (x1, . . . , xN) to obtain the values (x1, . . . , xN).
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Exercise 4 Properties of rate functions

The scaling, Eq. (3), implies a number of properties of the rate function that are worth noting:

(a) In the lecture we argued that I(s) is convex. Let s0 be its (unique) minimum.
Observe now that

〈s〉 = s0 +

∫
ds (s− s0) e−N I(s) .

and let I(s) = I0 + I2 (s− s0)2 + . . . be the Taylor expansion of I(s) around its minimum.
Show that

〈(s− s0)〉 ∝ N−1 e−N I0 and 〈(s− s0)2〉 ∝ N−3/2 e−N I0 .

Show that this implies s0 = 〈s〉 and I(s0) = 0.

(b) The Law of Large Numbers asserts that sN converges to 〈x〉 for N →∞.
How is this related to the minimum of the rate function?

(c) The Central Limit Theorem asserts that for N →∞ the distribution P (sN = s) converges
to a Gaussian function with maximum at µ = 〈x〉 and variance Var(s) = Var(s) = σ2/N .
How is this related to the shape of I(s) close to its minimum?
In which range of s-values does the central limit theorem apply?

Exercise 5 (optional) Rate Functions and Statistical Mechanics

Consider a system with N spins that can take the values σk ∈ ±1, k = 1, . . . , N . The spins are
interacting with an external field B, but there are no interactions between the spins. Hence, the
Hamiltonian of the system takes the form

H({σk}Nk=1) = B ·M with magnetization M =
∑
k

σk .

To simiplify the notations we absorb B into the energy scale such that B = 1.

(a) Show that the microcanonical partition sum, i.e. the number of states with H = M , can
be written in the large deviation from

Ω(H) � e−N I1(m=H/N) with I(m) =
1−m

2
ln

1−m
2

+
1 +m

2
ln

1 +m

2
.

How is I1(m) related to the entropy of the spin system?

(b) Show that the canonical partition sum Z(β) obeys a large deviation principle

Z(β) :=
N∑
k=0

Ω(H = 2k −N) e−β (2k−N) � e−N I2(β)

How is I2(β) related to the free energy?
How is I2(β) related to the cumulant-generating function of P (H)?
What is the relation between I1 and I2 according to large deviation theory?
How does this compare to the relation between free energy and entropy in statistical
physics?
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