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Exercise 1 Revisiting the complex oscillator with noisy frequency

In the lecture we discussed the complex oscillator

dz(t) = (iw —7) 2(t) dt +i /2y 2(t) AW (¢) (1a)

where w and 7y are real constants, the noise 1V (t) takes real values, and z(t) is a function with
complex values. It represents the motion of particles on a circle with fixed radius Ry, mean
angular drift w in angular direction ¢, and noise that gives rise to a diffusivity .

(a) Consider a sharp initial distribution where all ensemble members start at ¢y = 0. Show
that the probability distribution P(¢,t) for the angular coordinate takes then the form

N (o — wt)? :
P(p,t) = — —_Y thpeR.
) \/%exp[ oL, with ¢
How are the normalization constant N and the diffusivity D related to ~7
How does the distribution look like for ¢ € [0, 27]?

Sketch the probability distribution for the initial value,

and values where Dt < 2w, Dt ~ 27, and Dt > 27, respectively.

(b) The distribution is symmetric in the angle § = ¢ —wt. Use this symmetry to show that
trajectories that the average distance R(f) of trajectories arriving at ¢ and —6 will be

—

proportional to cosf. Proof that as a consequence the average of the positions R(t) =
Ry(cos¢(t),sin p(t)) takes the value

(R(t)) = Rye " (cos(wt), sin(wt))
where the exponential decay arises from

e " /d@ cos P(0,1).

Determine c.

(c) Compare the results to the expectation value (z(t)) based on the expression derived in the
lecture.



Exercise 2  Ornstein-Uhlenbeck processes

Processes described by stochastic differential equations of the form
dz = —kz dt + VD dW () (2)

are denoted as Ornstein-Uhlenbeck processes when k and D are real constants and W (t) is
delta-correlated white noise.

(a) Find the expectation value (z(t)).
(b) Find the variance Var(z,t).

(c) Determine the time autocorrelation function {(z(t) — (z(t))) (z(s) — (z(s)))).

Exercise 3 Rate functions in large deviation theory

The theory of large deviations deals with the asymptotic scaling of random variables sy that
comprise a sum of N variables,

SN:% ZSUk

k=0

where x; are indendent variables with a prescibed distribution P(z), = x). The theory states that
sy obeys a large deviation principle when the distribution can be described by a rate function
I(s),

P(sy = s) < e NI (3)
where < holds that In P(z) = —N I(xz) + O(In N).

(a) Assume that the values x; are Gaussian random variables,

1 (z —p)
exp

V2mo? 207

Determine the probability distribution P(sy = s).

Discuss the rate function I(s) and the corrections to the scaling.
What happens when x;, and j are vectors in R%?

Pz =2) =

2
} with z, u, 0 € R.

(b) Assume that the values x; are independently selected from the probability distribution,

1
Pz =z) = — e @/H with z, € Ry .
i
Determine the probability distribution P(sy = s).
Discuss the rate function I(s) and the corrections to the scaling.
Hint: Write P(sy = s) as the marginal with the constraint s = sy = N~! Y, ;. of the
probability distribution P(x1,...,2zy) to obtain the values (z1,...,zx).
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Exercise 4 Properties of rate functions

The scaling, Eq. (3), implies a number of properties of the rate function that are worth noting:

(a)

In the lecture we argued that I(s) is convex. Let sy be its (unique) minimum.
Observe now that

(s) = so+ /ds (s — s0) e N1,
and let I(s) = Io+ I (s—s9)?+ ... be the Taylor expansion of I(s) around its minimum.
Show that
(s —s9)) o« N"Le ™Mo and  ((s — 50)%) oc N™3/2e N0,
Show that this implies so = (s) and I(sy) = 0.

The Law of Large Numbers asserts that sy converges to (z) for N — oo.
How is this related to the minimum of the rate function?

The Central Limit Theorem asserts that for N — oo the distribution P(sy = s) converges
to a Gaussian function with maximum at = (x) and variance Var(s) = Var(s) = 0?/N.
How is this related to the shape of I(s) close to its minimum?

In which range of s-values does the central limit theorem apply?

Exercise 5 (optional) Rate Functions and Statistical Mechanics

Consider a system with N spins that can take the values o, € £1, k =1,..., N. The spins are
interacting with an external field B, but there are no interactions between the spins. Hence, the
Hamiltonian of the system takes the form

H({ox};_) = B-M with magnetization M = ng‘
k

To simiplify the notations we absorb B into the energy scale such that B = 1.

(a)

Show that the microcanonical partition sum, i.e. the number of states with H = M, can

be written in the large deviation from
1— 1— 1 1
Q(H) = e~ N1i(m=H/N) with I(m) = len 2m+ zmln —;m.

How is I1(m) related to the entropy of the spin system?

Show that the canonical partition sum Z(/3) obeys a large deviation principle
N
Z(8) = QH =2k — N) e PN = o= NE0)
k=0

How is I5(5) related to the free energy?

How is I5(/3) related to the cumulant-generating function of P(H)?

What is the relation between I; and I, according to large deviation theory?

How does this compare to the relation between free energy and entropy in statistical
physics?



