Stochastic Processes

21 June 2018
Universität Leipzig

Tutorial 11
Ito formalism
Jürgen Vollmer

Institut für Theoretische Physik

Exercise 1 Expectation values of exponential functions

In the lecture we used that

$$
\begin{equation*}
\left\langle\mathrm{e}^{x(t)}\right\rangle=\exp \left[\frac{1}{2}\left\langle x^{2}(t)\right\rangle\right] \quad \text { for } \quad\langle x(t)\rangle=0 \tag{1a}
\end{equation*}
$$

(a) Proof that this is true.
(b) How does this relation look like when $\langle x(t)\rangle \neq 0$?

Exercise 2 Multiplicative linear white noise

A stochastic variable $x(t) \in \mathbb{R}$ subjected to multiplicative linear white noise evolves according to

$$
\begin{equation*}
\mathrm{d} x(t)=c x(t) \mathrm{d} W(t) \tag{2}
\end{equation*}
$$

Henceforth, we assume that $c \in \mathbb{R}$ is constant.
(a) Determine the mean displacement $\langle x(t)\rangle$ and the variance of $x(t)$ when Eq. (2) is interpreted as an Ito equation.
(b) How does the answer look like when the differentials are interpreted as an Stratonovich equation?
(c) Determine the correlation function $\langle[x(t)-\langle x(t)\rangle][x(s)-\langle x(s)\rangle]\rangle$ both in Ito and in Stratonovich calculus.
Verify that the correlation functions reduce to the respective variances when $|t-s|$ approaches zero.

Exercise 3 Change of variables in Ito calculus

In the lecture I provided Ito's formula for a change of variables from x to $F(x)$,

$$
\begin{equation*}
\mathrm{d} x=a \mathrm{~d} t+b \mathrm{~d} W(t) \quad \Rightarrow \quad \mathrm{d} F(x)=\left[a F^{\prime}(x)+\frac{b^{2}}{2} F^{\prime \prime}(x)\right] \mathrm{d} t+b F^{\prime}(x) \mathrm{d} W(t) \tag{3}
\end{equation*}
$$

How does it generalize to functions $F(x, t)$ that depend explicitly on t ?

Exercise 4 Conversion between Stratonovich and Ito stochastic differentials

In the lecture we derived the correspondence

$$
\begin{align*}
\text { Stratonovich } & \mathrm{d} x & =a \mathrm{~d} t+b \mathrm{~d} W(t) \tag{4a}\\
\text { Ito } & \mathrm{d} x & =\left[a+\frac{b}{2} \frac{\partial b}{\partial x}\right] \mathrm{d} t+b \mathrm{~d} W(t), \tag{4b}
\end{align*}
$$

where a and b are functions of $x(t)$ and t.
(a) Find the reverse transformation from Ito to Stratonovich stochastic differentials.
(b) Derive the generalization to the multidimensional case.

Exercise 5 Complex oscillator with noisy frequency

In the lecture we discussed the complex oscillator

$$
\begin{equation*}
\mathrm{d} z(t)=(\mathrm{i} \omega-\gamma) z(t) \mathrm{d} t+\mathrm{i} \sqrt{2 \gamma} z(t) \mathrm{d} W(t) \tag{5a}
\end{equation*}
$$

where ω and γ are real constants, the noise $W(t)$ takes real values, and $z(t)$ is a function with complex values.
(a) Show that the differential $\mathrm{d} R^{2}=z^{*} \mathrm{~d} z+z \mathrm{~d} z^{*}$ does not depend on the noise $W(t)$. What does this imply for the evolution of $z(t)$? Does $R(t)$ represent the evolution of the distance of the origin, $z(t) z^{*}(t)$, of individual trajectories?
If not: What does it describe? What is the appropriate expression for $\mathrm{d}\left(z(t) z^{*}(t)\right)$?
(b) Write $z(t)$ in terms of polar coordinates $z(t)=R(t) \mathrm{e}^{\mathrm{i} \phi(t)}$ and proof that

$$
\mathrm{d} \phi=(\omega-\mathrm{i} \gamma) \mathrm{d} t+\sqrt{2 \gamma} \mathrm{~d} W(t)
$$

(c) Determine the expectation value and the variance of $\phi(t)$. The expectation value will turn out to be complex! Why is this compatible with the representation $z(t)=R(t) \mathrm{e}^{\mathrm{i} \phi(t)}$?
(d) Calculate $\langle z(t)\rangle$ also for the representation $z(t)=R_{0} \mathrm{e}^{\mathrm{i} \varphi(t)}$ where $R_{0}=R\left(t_{0}\right)$.
(e) Compare the two approaches and determine also the variance and the two-time autocorrelation function of $z(t)$.
(Bonus) Compare the results to those of exercise 10.3.

