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Exercise 1 The classical Flucutation-Dissipation Theorem

In the derivation of the Fluctuation Dissipation Relation we used

〈B(t)A(0)〉 = 〈A(0)B(t+ i~β)〉 .

(a) Proof that the relation holds.

(b) What is the order of magnitude of ~β? How does it compare to time scales that can be
realized in experiments in classical macroscopic systems? Can you find an experimental
setting where βt/~ will be of order one?

(c) Assume that B(t) is analytical in t such that it can be expanded in a Taylor expansion,

B(t+ i~β) =
∞∑
j=0

(i~β)j

j!
B(j)(t) .

Use this expansion to evaluate the integral in

TBA(ω)− TAB(−ω) =

∫
R

dt e−iωt
〈[
B(t), A(0)

]〉
.

Compare your result to the small β~ω limit of the expression given in the lecture.

Exercise 2

— will be inserted —

Exercise 3 Generalized Fokker-Planck Equation for the Poisson process

The Poisson process models the statistics of counts where discrete signals arrive at random
times with a uniform rate ν. An example is the number of registered events encountered in an
experiment at a synchroton beamline (e.g., the number of Higgs Bosons identified at CERN).
The stocastic variable is the number of counts N(t) after beam time t. Now we explore the
distribution P (N, t) of the variable N(t).

(a) Why is it justified to model this problem as a Markov process? What is the set S of states?
Which transmission are admissible and what are the rates tjk, j, k ∈ S?
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(b) Go back to the analysis of d
dt
〈M(a, t)〉 in the lecture. Since S is discrete the integrals turn

in to sums. Verify that in this case the generalized diffusivities Dn(j, t) take the form

Dn(j, t) =
1

n!

∑
k∈S

(k − j)n tjk .

Determine Dn(j, t) for the Poisson process! Write down the generalized Fokker-Planck
equation.
Hint: If everything went fine the generalized Fokker-Planck equation should be a Taylor
expansion of the Master equation

∂tP (N, t) = ν
[
P (N − 1, t)− P (N, t)

]
.

(c) Demonstrate that the Master equation is solved by the Poisson distribution

P (N, t) =

(
µ(t)

)N
N !

e−µ(t) ,

with an appropriately chosen function µ(t). Determine µ(t).

(d) Determine the expectation 〈N(t)〉 based on the equation

d

dt
〈N〉t = 〈D1〉t ,

and compare the result to the expectation of the Poisson distribution.

(e) Determine the second moment 〈N2〉t based on the equation

d

dt

〈
N2
〉
t

= 2 〈D1N〉t + 2 〈D2〉t ,

and compare the resulting expression of the variance to the one of the Poisson distribution.

Exercise 4 Burst Theorem

The Burst theorem states that if any Dn for n > 2 exists then there is an infinite set of Dn. In
the lecture I indicated that this can be seen based on the inequality1

D2
m+n ≤ D2m D2n , for m,n > 0 . (4a)

(a) Why do we need the condition m,n > 0?

(b) Show that when D2m = 0 then Dk = 0 for all k > m.

(c) Show that when Dm 6= 0 then Dk 6= 0 for all positive k in {2 + 2j (m− 2), j ∈ N0}.

(d) Show that therefore either Dm = 0 for all m > 2 or they all differ from zero.

1A proof of the inequality is provided in the appendix.
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Appendix. Proof of the inequality Eq. (4a)

Let

a =
1

n!
lim

∆t→0

(a(t+ ∆t)− a(t))n

∆t

b =
c

n!
lim

∆t→0

(a(t+ ∆t)− a(t))m

∆t

with some fixed number c ∈ R. Then we have

Dm+n = c 〈a b〉 , D2n = 〈a2〉 , D2m = c2 〈b2〉

such that Eq. (4a) is equivalent to

〈a b〉2 ≤ 〈a2〉 〈b2〉

for some value of c that will be chosen appropriately.
To derive the latter equation we observe

0 ≤ 〈(a± b)2〉 ⇔ 2|〈a b〉| ≤ 〈a2〉+ 〈b2〉

⇔ 4 〈a b〉2 ≤ 4 〈a2〉 〈b2〉+
(
〈a2〉 − 〈b2〉

)2
.

However, the second term on the right hand side vanishes when we choose c =
√
〈a2〉/〈b2〉.
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