Stochastic Processes

24 May 2018
Universität Leipzig
Institut für Theoretische Physik

Tutorial 7

Einstein Relation and Fokker-Planck Equation

Exercise 1 The classical Flucutation-Dissipation Theorem

In the derivation of the Fluctuation Dissipation Relation we used

$$
\langle B(t) A(0)\rangle=\langle A(0) B(t+\mathrm{i} \hbar \beta)\rangle .
$$

(a) Proof that the relation holds.
(b) What is the order of magnitude of $\hbar \beta$? How does it compare to time scales that can be realized in experiments in classical macroscopic systems? Can you find an experimental setting where $\beta t / \hbar$ will be of order one?
(c) Assume that $B(t)$ is analytical in t such that it can be expanded in a Taylor expansion,

$$
B(t+\mathrm{i} \hbar \beta)=\sum_{j=0}^{\infty} \frac{(\mathrm{i} \hbar \beta)^{j}}{j!} B^{(j)}(t)
$$

Use this expansion to evaluate the integral in

$$
T_{B A}(\omega)-T_{A B}(-\omega)=\int_{\mathbb{R}} \mathrm{d} t \mathrm{e}^{-\mathrm{i} \omega t}\langle[B(t), A(0)]\rangle
$$

Compare your result to the small $\beta \hbar \omega$ limit of the expression given in the lecture.

Exercise 2

— will be inserted -

Exercise 3 Generalized Fokker-Planck Equation for the Poisson process

The Poisson process models the statistics of counts where discrete signals arrive at random times with a uniform rate ν. An example is the number of registered events encountered in an experiment at a synchroton beamline (e.g., the number of Higgs Bosons identified at CERN). The stocastic variable is the number of counts $N(t)$ after beam time t. Now we explore the distribution $P(N, t)$ of the variable $N(t)$.
(a) Why is it justified to model this problem as a Markov process? What is the set \mathcal{S} of states? Which transmission are admissible and what are the rates $t_{k}^{j}, j, k \in \mathcal{S}$?
(b) Go back to the analysis of $\frac{\mathrm{d}}{\mathrm{d} t}\langle M(a, t)\rangle$ in the lecture. Since \mathcal{S} is discrete the integrals turn in to sums. Verify that in this case the generalized diffusivities $D_{n}(j, t)$ take the form

$$
D_{n}(j, t)=\frac{1}{n!} \sum_{k \in \mathcal{S}}(k-j)^{n} t_{k}^{j}
$$

Determine $D_{n}(j, t)$ for the Poisson process! Write down the generalized Fokker-Planck equation.
Hint: If everything went fine the generalized Fokker-Planck equation should be a Taylor expansion of the Master equation

$$
\partial_{t} P(N, t)=\nu[P(N-1, t)-P(N, t)] .
$$

(c) Demonstrate that the Master equation is solved by the Poisson distribution

$$
P(N, t)=\frac{(\mu(t))^{N}}{N!} \mathrm{e}^{-\mu(t)}
$$

with an appropriately chosen function $\mu(t)$. Determine $\mu(t)$.
(d) Determine the expectation $\langle N(t)\rangle$ based on the equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\langle N\rangle_{t}=\left\langle D_{1}\right\rangle_{t}
$$

and compare the result to the expectation of the Poisson distribution.
(e) Determine the second moment $\left\langle N^{2}\right\rangle_{t}$ based on the equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle N^{2}\right\rangle_{t}=2\left\langle D_{1} N\right\rangle_{t}+2\left\langle D_{2}\right\rangle_{t}
$$

and compare the resulting expression of the variance to the one of the Poisson distribution.

Exercise 4 Burst Theorem

The Burst theorem states that if any D_{n} for $n>2$ exists then there is an infinite set of D_{n}. In the lecture I indicated that this can be seen based on the inequality ${ }^{1}$

$$
\begin{equation*}
D_{m+n}^{2} \leq D_{2 m} D_{2 n}, \quad \text { for } m, n>0 \tag{4a}
\end{equation*}
$$

(a) Why do we need the condition $m, n>0$?
(b) Show that when $D_{2 m}=0$ then $D_{k}=0$ for all $k>m$.
(c) Show that when $D_{m} \neq 0$ then $D_{k} \neq 0$ for all positive k in $\left\{2+2^{j}(m-2), j \in \mathbb{N}_{0}\right\}$.
(d) Show that therefore either $D_{m}=0$ for all $m>2$ or they all differ from zero.

[^0]
Appendix. Proof of the inequality Eq. (4a)

Let

$$
\begin{aligned}
& a=\frac{1}{n!} \lim _{\Delta t \rightarrow 0} \frac{(a(t+\Delta t)-a(t))^{n}}{\Delta t} \\
& b=\frac{c}{n!} \lim _{\Delta t \rightarrow 0} \frac{(a(t+\Delta t)-a(t))^{m}}{\Delta t}
\end{aligned}
$$

with some fixed number $c \in \mathbb{R}$. Then we have

$$
D_{m+n}=c\langle a b\rangle, \quad D_{2 n}=\left\langle a^{2}\right\rangle, \quad D_{2 m}=c^{2}\left\langle b^{2}\right\rangle
$$

such that Eq. (4a) is equivalent to

$$
\langle a b\rangle^{2} \leq\left\langle a^{2}\right\rangle\left\langle b^{2}\right\rangle
$$

for some value of c that will be chosen appropriately.
To derive the latter equation we observe

$$
\begin{aligned}
0 \leq\left\langle(a \pm b)^{2}\right\rangle & \Leftrightarrow 2|\langle a b\rangle| \leq\left\langle a^{2}\right\rangle+\left\langle b^{2}\right\rangle \\
& \Leftrightarrow 4\langle a b\rangle^{2} \leq 4\left\langle a^{2}\right\rangle\left\langle b^{2}\right\rangle+\left(\left\langle a^{2}\right\rangle-\left\langle b^{2}\right\rangle\right)^{2}
\end{aligned}
$$

However, the second term on the right hand side vanishes when we choose $c=\sqrt{\left\langle a^{2}\right\rangle /\left\langle b^{2}\right\rangle}$.

[^0]: ${ }^{1} \mathrm{~A}$ proof of the inequality is provided in the appendix.

