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Exercise 1 The classical Flucutation-Dissipation Theorem

In the derivation of the Fluctuation Dissipation Relation we used
(B(1)A(0) = (A(0) Bt +ih8))

(a) Proof that the relation holds.

(b) What is the order of magnitude of 43?7 How does it compare to time scales that can be
realized in experiments in classical macroscopic systems? Can you find an experimental
setting where (5t /h will be of order one?

(c) Assume that B(t) is analytical in ¢ such that it can be expanded in a Taylor expansion,

B(t +inp) :i M

Jj=0

Use this expansion to evaluate the integral in

Tpa(w) — Tan(—w) = /R dt e ([B(1), A(0)]) .

Compare your result to the small Shw limit of the expression given in the lecture.

Exercise 2

— will be inserted —

Exercise 3 Generalized Fokker-Planck Equation for the Poisson process

The Poisson process models the statistics of counts where discrete signals arrive at random
times with a uniform rate v. An example is the number of registered events encountered in an
experiment at a synchroton beamline (e.g., the number of Higgs Bosons identified at CERN).
The stocastic variable is the number of counts N(t) after beam time ¢. Now we explore the
distribution P(N,t) of the variable N(t).

(a) Why is it justified to model this problem as a Markov process? What is the set S of states?
Which transmission are admissible and what are the rates ¢], j,k € S?



(b) Go back to the analysis of < (M (a,t)) in the lecture. Since S is discrete the integrals turn

in to sums. Verify that in this case the generalized diffusivities D,,(j,t) take the form

1 :
keS
Determine D,,(j,t) for the Poisson process! Write down the generalized Fokker-Planck
equation.
Hint: If everything went fine the generalized Fokker-Planck equation should be a Taylor
expansion of the Master equation

OP(N,t)=v [P(N —1,t) — P(N,t)].
Demonstrate that the Master equation is solved by the Poisson distribution

N(t)) RG!

P(N,t) = ( i ,

with an appropriately chosen function 1(t). Determine pu(t).

Determine the expectation (IN(¢)) based on the equation

d

dt <N>t = <D1>t )

and compare the result to the expectation of the Poisson distribution.

Determine the second moment (N?), based on the equation

d, o
a<N >t_2(D1N>t+2(D2>t,

and compare the resulting expression of the variance to the one of the Poisson distribution.

Exercise 4 Burst Theorem

The Burst theorem states that if any D,, for n > 2 exists then there is an infinite set of D,,. In
the lecture | indicated that this can be seen based on the inequality’

D2, < Doy Dy, , form,n>0. (4a)
Why do we need the condition m,n > 07
Show that when D,,,, = 0 then D), = 0 for all kK > m.
Show that when D,, # 0 then Dy, # 0 for all positive k in {2+ 27 (m — 2),7 € Ny}

Show that therefore either D,,, = 0 for all m > 2 or they all differ from zero.

LA proof of the inequality is provided in the appendix.
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Appendix.  Proof of the inequality Eq. (4a)

Let
1 o n
0 X lim (a(t + At) — a(t))
n! At—0 At
b= € tim (a(t + At) —a(t))
n! At—0 At

with some fixed number ¢ € R. Then we have
Dy = ¢ {ab), Dy, = (a?), Doy, = ¢ (b?)
such that Eq. (4a) is equivalent to
(ab)” < (a®) (b*)

for some value of ¢ that will be chosen appropriately.
To derive the latter equation we observe

0<{(a£b)? <& 2[{ab)

However, the second term on the right hand side vanishes when we choose ¢ =

O

(a2)/(0%).



