Stochastic Processes

17 May 2018
Universität Leipzig
Institut für Theoretische Physik

Tutorial 6

Noise and Fluctuations
Jürgen Vollmer

Exercise 1 Noise spectrum for measured noise

The relation between the fluctuations $\alpha(t)$ of an observable $\Omega(t)$, and the flucutations $\alpha_{\text {out }}(t)$ in the measured signal $\Omega_{\text {out }}(t)$ can be expressed through a filter, $K(t)$,

$$
\alpha_{\text {out }}(t)=\int_{-\infty}^{t} K(t-s) \alpha(s) \mathrm{d} s
$$

(a) Causality implies that $K(t)=0$ for $t<0$. What does this imply for the integral

$$
\int_{-\infty}^{\infty} K(t-s) \alpha(s) \mathrm{d} s ?
$$

(b) Let $\alpha(\omega)$ and $\alpha_{\text {out }}(\omega)$ be the Fourier transforms of $\alpha(t)$ and $\alpha_{\text {out }}(t)$. Show that

$$
\alpha_{\text {out }}(\omega)=k(\omega) \alpha(\omega) .
$$

Determine $k(\omega)$.
(c) Let $G(x), x \in\left\{\alpha(t), \alpha_{\text {out }}(t)\right.$ be the average noise intensity

$$
G(x)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{t_{0}-T}^{t_{0}+T}|x|^{2} \mathrm{~d} t
$$

Under which condition will $G(x)$ not depend on t_{0} ? Show that

$$
G\left(\alpha_{\text {out }}\right)=|k(\omega)|^{2} G(\alpha)
$$

(d) For an ideal measurement one would like to approach $G\left(\alpha_{\text {out }}\right)=G(\alpha)$ as closely as possible. What does this imply for the filter function $K(t)$?

Exercise 2 Relatizing a filter in an electrical circuit

Consider the voltage in an $R L C$ circuit as signal, $U(t)$, and the voltage over the resistor as the output of a measurement signal, $U_{\text {out }}(t)$. We consider now the relation between the fluctuations $\alpha(t)$ in $U(t)$, and the flucutations $\alpha_{\text {out }}(t)$ in the measured signal $U_{\text {out }}(t)$.
(a) Show that

$$
k(\omega)=\frac{R}{R+\mathrm{i}\left(\omega L-(\omega C)^{-1}\right)} .
$$

(b) Sketch the function $|k(\omega)|^{2}$.
(c) Show that the measurement will approach the ideal limit when R approaches zero. What will be the bandwidth of the filter? Which frequency will it pick out?

Exercise 3 Fluctuation Relations

We consider the observable $\sigma_{k}^{j}=\ln \left(r_{k}^{j} / r_{j}^{k}\right)$ for a Markov process with dynamically reversible transition rates r_{k}^{j} between the states j and k. Let $\tau(t)$ we a trajectory of this process, and $\Sigma(\tau, t)$ the value observed when σ_{k}^{j} is integrated along the trajectory.
(a) Show that the cumulant generating function, $Z(\vec{q})$, for the cumulants of the distribution of $\Sigma(\tau, t)$ obeys the symmetry

$$
Z(\vec{q})=Z(\overrightarrow{1}-\vec{q})
$$

where $\overrightarrow{1}$ is the vector whose entries are all one.
(b) The proof is easier when one rather considers the observable

$$
\omega_{k}^{j}=\ln \frac{p_{j} r_{k}^{j}}{p_{k} r_{j}^{k}}
$$

where p_{j} is the steady-state probability density of state p_{j}.
Where does this help? Why is it admissible?
(c) Verify that the process also fulfills the following fluctuation relation for the probability $P(\Sigma, t)$ to find the value Σ for $\Sigma(\tau, t)$:

$$
\lim _{t \rightarrow \infty} \ln \frac{P(\Sigma, t)}{P(-\Sigma, t)}=\Sigma
$$

(d) Check that this fluctuation relation holds trivially for

- the displacement in a random walk on a line with probabilities r and l to take a step to the right and left, respectively. Steps are taken at integer times and $r+l<1$.
- the displacement in a random walk on a line with rates r and l to take a step to the right and left, respectively.
- a Gaussian distribution.
(e) Provide a sketch of the distribution and provide a geometric interpretation of the fluctuation relation.

