Stochastic Processes 17 May 2018 Universität Leipzig Institut für Theoretische Physik

Tutorial 6 Noise and Fluctuations Jürgen Vollmer

Exercise 1 Noise spectrum for measured noise

The relation between the fluctuations $\alpha(t)$ of an observable $\Omega(t)$, and the flucutations $\alpha_{out}(t)$ in the measured signal $\Omega_{out}(t)$ can be expressed through a filter, K(t),

$$\alpha_{\mathsf{out}}(t) = \int_{-\infty}^{t} K(t-s) \,\alpha(s) \,\mathrm{d}s$$

(a) Causality implies that K(t) = 0 for t < 0. What does this imply for the integral

$$\int_{-\infty}^{\infty} K(t-s) \,\alpha(s) \,\mathrm{d}s \,?$$

(b) Let $\alpha(\omega)$ and $\alpha_{out}(\omega)$ be the Fourier transforms of $\alpha(t)$ and $\alpha_{out}(t)$. Show that

$$\alpha_{\text{out}}(\omega) = k(\omega) \ \alpha(\omega)$$
.

Determine $k(\omega)$.

(c) Let G(x), $x \in \{\alpha(t), \alpha_{out}(t) \text{ be the average noise intensity}$

$$G(x) = \lim_{T \to \infty} \frac{1}{2T} \int_{t_0 - T}^{t_0 + T} |x|^2 \, \mathrm{d}t \,.$$

Under which condition will G(x) not depend on t_0 ? Show that

$$G(\alpha_{\text{out}}) = |k(\omega)|^2 \ G(\alpha) \,.$$

(d) For an ideal measurement one would like to approach $G(\alpha_{out}) = G(\alpha)$ as closely as possible. What does this imply for the filter function K(t)?

Exercise 2 Relatizing a filter in an electrical circuit

Consider the voltage in an RLC circuit as signal, U(t), and the voltage over the resistor as the output of a measurement signal, $U_{out}(t)$. We consider now the relation between the fluctuations $\alpha(t)$ in U(t), and the fluctuations $\alpha_{out}(t)$ in the measured signal $U_{out}(t)$.

(a) Show that

$$k(\omega) = \frac{R}{R + i (\omega L - (\omega C)^{-1})}$$

- (b) Sketch the function $|k(\omega)|^2$.
- (c) Show that the measurement will approach the ideal limit when R approaches zero. What will be the bandwidth of the filter? Which frequency will it pick out?

Exercise 3 Fluctuation Relations

We consider the observable $\sigma_k^j = \ln(r_k^j/r_j^k)$ for a Markov process with dynamically reversible transition rates r_k^j between the states j and k. Let $\tau(t)$ we a trajectory of this process, and $\Sigma(\tau, t)$ the value observed when σ_k^j is integrated along the trajectory.

(a) Show that the cumulant generating function, $Z(\vec{q})$, for the cumulants of the distribution of $\Sigma(\tau, t)$ obeys the symmetry

$$Z(\vec{q}) = Z(1 - \vec{q})$$

where $\vec{1}$ is the vector whose entries are all one.

(b) The proof is easier when one rather considers the observable

$$\omega_k^j = \ln \frac{p_j r_k^j}{p_k r_j^k} \,,$$

where p_j is the steady-state probability density of state p_j . Where does this help? Why is it admissible?

(c) Verify that the process also fulfills the following fluctuation relation for the probability $P(\Sigma, t)$ to find the value Σ for $\Sigma(\tau, t)$:

$$\lim_{t \to \infty} \ln \frac{P(\Sigma, t)}{P(-\Sigma, t)} = \Sigma.$$

- (d) Check that this fluctuation relation holds trivially for
 - the displacement in a random walk on a line with probabilities r and l to take a step to the right and left, respectively. Steps are taken at integer times and r + l < 1.
 - the displacement in a random walk on a line with rates r and l to take a step to the right and left, respectively.
 - a Gaussian distribution.
- (e) Provide a sketch of the distribution and provide a geometric interpretation of the fluctuation relation.