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Exercise 1 Brownian motion as a Markov process

For reference in this exercise the cumulants for Brownian motion are given in the Appendix to this
exercise sheet. In another exercise we will show that Brownian motion is a Gaussian process, i.e.,
the probability distribution for Brownian motion is completely specified by the first two cumulants.

(a) Show that the probabiltiy distribution P (v, t|v0, 0) to find a velocity v at time t when it
was v0 at time 0 takes the form

P (v, t|v0, 0) = N(t) exp

[
−
(
v − v0 e−λt

)2
2 d
λ

(1− e−2λt)

]
,

where N(t) is an appropriate normalization of this conditional probability.
What is the appropriate normalization N(t)?
Hint: This expression assumes C0(v, v) = 0 and 〈v0〉 = v0. Why is this justified?

(b) Under which condition on λ will Brownian motion become a Markov process for the veloc-
ities? What is special about the resulting conditional probability?

(c) Adopt the limit λ→∞ at a fixed diffusion coefficient D = d/λ2. Show that in this limit
the probabiltiy distribution P (x, t|x0, 0) to find the Brownian particle at position x at time
t when it was at x0 at time 0 takes the form

P (x, t|x0, 0) = (4πDt)−1/2 exp

[
−(x− x0)2

4D t

]
. (1)

(d) Brownian motion is Markovian iff Eq. (1) satisfies the Chapman-Kolmogorov-criterion that
for any set of times t1 < t2 < t3 and positions x1, x2, x3 one must have

P (x3, t3|x1, t1) =

∫
dx2 P (x3, t3|x2, t2) P (x2, t2|x1, t1)

Verify that it holds!
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Exercise 2 Variance of positions

In this exercise we derive the expression for Ct(x, x) that is given in the appendix. We start from

x(t) = x0 +
v0
λ

(
1− e−λ t

)
+

∫ t

0

ds1 e−λ s1
∫ s1

0

ds2 A(s2) eλ s2

(a) Introduce the function W (s1) =
∫ s1
0

ds2 A(s2) eλ s2 and use integration by parts to show
that

x(t) = x0 +
v0
λ

(
1− e−λ t

)
+ λ−1

∫ t

0

ds
(
1− e (s−t)) A(s) . (2a)

(b) Use Eq. (2a) to evaluate

Ct(x, x) =
〈(
x(t)− 〈x(t)〉

)2〉
.

(c) Show that in the limit of long times the resulting expression reduces to

Ct(x, x) '
(
C0(x, x)− D

λ

)
+ λ−2

(
C0(v, v)− d

λ

)
+ 2D t (2b)

where we introduced the diffusion coefficient D = d/λ2.
Provide an interpretation for the three contributions to this expression.

(d) The result Eq. (2b) suggests that Ct(x, x) may take negetive values when C0(x, x) =
C0(v, v) = 0 and small t.
What is wrong about this argument?
Find the expression that should rather be considered to discuss this special case of Ct(x, x).

Exercise 3 Covariance of position and velocity

(a) Determine the covariance

Ct(x, v) =
〈(
x(t)− 〈x(t)〉

) (
v(t)− 〈v(t)〉

)〉
.

(b) Compare the result to the variance Ct(v, v). What do you observe?

(c) For an equilibrated velocity ensemble, where C0(v, v) = 0, the asymptotics for large and
small times becomes

Ct(x, v) '
{
dt/λ for λ t� 1 ,
d/λ2 for λ t� 1 .

What does this mean physically?
Which interpretation does this suggest for the diffusion coefficient D = d/λ2?
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Exercise 4 Estimating the diffusive displacement

In the lecture I indicated that Nageli1 dismissed the role of molecular collisions as origin of
Brownian motion. In this exercise we revisit his argument that is based on his estimate of the
speed, UB ' 1µm/s, of a Brownian particles with a diameter of about RB ' 2µm.

(a) According to Stoke’s law the friction force on a solid spherical particle is

FS = 6π RB ρs νs UB

where ρs and νs are the density and the kinematic viscosity of the surrounding fluid,
respectively. For water they take the values ρs ' 103kg/m3 and νs ' 10−6m2/s. Show
that for these parameters the damping takes the value λ ' 106/s.
Bonus: Note that smaller particles have a larger damping. Which radius will result in the
damping λ ' 107/s that was quoted in the lecture?

(b) When the particle is at thermal equilibrium it should have a velocity UE

1

2

4πρBR
3
B

3
U2
E =

3

2
kB T

Estimate UE for a particle that has roughly the same density as water.

(c) Assume that water molecules have an effective radius of about Rw ' 4× 10−10m. What
would the momentum balance

MBUB 'MwUw

imply about typical verlocity UB for our Brownian particle when it collides with water
molecules in thermal equilibrium?

(d) Show that the diffusion coefficient takes a value of the order to D ' 10−13m2/s, and
calculate the diffusive displacement ∆X(t) = 2D t for time intervals t = 0.1, 1.0, 10, 100s.

(e) Compare now Nageli’s estimate of U = 10−6m/s to the velocity Ut = ∆X(t)/t.
What does this imply about the time and space resolution of Nageli’s observation?
Observe also that UE > Ut > UP . Why would one expect this relation?

1K. von Nageli, Sitzungsberichte der Königlich Bayrischen Akademie der Wissenschaften München,
Mathematisch-physikalische Klasse 9 (1879) 389–453.
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Appendix: Derivation of the Cumulants

Velocity

v(t) = v0 e−λ t +

∫ t

0

ds A(s) eλ (s−t)

with velocity v(t) at time t

v0 at initial time 0

relaxation rate λ

random forces A(t)

where 〈A(t)〉 = 0

where 〈A(t1)A(t2)〉 = 2 d δ(t1 − t2)

Expectation

Ct(v) = 〈v(t)〉 = 〈v0〉 e−λ t +

∫ t

0

ds 〈A(s)〉 eλ (s−t) = 〈v0〉 e−λ t

Starting from its initial value 〈v0〉 the expectation decays exponentially to zero.

Variance

Ct(v, v) =
〈
(v(t)− 〈v(t)〉)2

〉
=

〈(
(v0 − 〈v0〉) e−λt +

∫ t

0

ds A(s) eλ (s−t)
)2
〉

=
〈
(v0 − 〈v0〉)2

〉
e−2λt + 2 e−λt

∫ t

0

ds
〈
(v0 − 〈v0〉)A(s)

〉
eλ (s−t) +

〈(∫ t

0

ds A(s) eλ (s−t)
)2
〉

= C0(v, v) e−2λt +

∫ t

0

ds1 eλ (s1−t)
∫ t

0

ds2 eλ (s2−t) 〈A(s1) A(s2)〉

= C0(v, v) e−2λt + 2 d

∫ t

0

ds2 e2λ (s2−t)

=

(
C0(v, v)− d

λ

)
e−2λt +

d

λ

Starting from ints initial value C0(v, v) the variance decays exponentially to the value d/λ.

Position

x(t) = x0 +

∫ t

0

ds v(s) = x0 +
v0
λ

(
1− e−λ t

)
+

∫ t

0

ds1

∫ s1

0

ds2 A(s2) eλ (s2−s1)
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Expectation

Ct(x) = 〈x(t)〉 = 〈x0〉+
〈v0〉
λ

(
1− e−λ t

)
When the expectation of the velocity in the initial ensemble vanishes, 〈v0〉 = 0, the expectation
of the position remains constant at 〈x0〉. Otherwise, it decays exponentially to its asymptotic
value 〈x0〉+ 〈v0〉/λ.

Variance

Ct(x, x) =
〈(
x(t)− 〈x(t)〉

)2〉
= C0(x, x) +

(
1− e−λ t

)2
λ2

(
C0(v, v)− d

λ

)
+

2 d

λ3
(
λ t−

(
1− e−λ t

))
The derivation and interpretation is given as an exercise.
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