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( Abstract ) ( Freezing Transition on fcc )

( The Freezing Transition )

We will first concentrate on the Ilow
temperature region.

We present simulation results for the
thermodynamical behavior of flexible polymers
(interacting self-avoiding walks) on simple-cubic
(sc) and face-centered cubic (fcc) lattices.
Besides the well-known collapse transition, we
concentrate ourselves on the freezing transition
ocurring at lower temperatures.

Of course, we also find the freezing transition
on the fcc lattice.

To find some regularities anyhow in that
region, we plot just all peak positions (Figure
3) and rearrange them, e.g. we plot the peak
temperatures depending on polymer length
(Figure 4). i
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We will show here, analogously to Figure 4,
transition temperatures, but also the peak
heights depending on temperature.
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We show how this transition, also called
crystallization, liquid-solid [1] or globule-
groundstate transition [2], is influenced by the
lattice and how the transition depends on the
system size.
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We employ the pruned-enriched Rosenbluth
method (PERM) [3] and generalized extensions
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Figure 8 and 9
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We see in Figure 8 a similar behavior to that in
Figure 4. But the saw tooth behavior is not
that clear anymore and the interpretation of
the fluctuation is more complex. We found,
for example, no ground-state with an energy
gap, like the compact ones on the sc lattice.

Figure 3 and 4

( Method — flatPERM

The flat histogram version follows a strategy
from a microcanonical view of the problem.
The basic ideas are:

From Figure 9 we see furthermore, that the
height of the freezing peak is, besides some
fluctuations, stable and maybe even slightly
decreasing, while the height of the O-
transition peak is monotonously increasing.
The ©®-peak becomes dominating with larger
polymer length.

Use growth steps as in the normal PERM chain

growth algorithm. Figure 5: Typical conformations with selected energies for the

N=49-mer. Top: Groundstate (E=-57, T —> 0); (E=-55, T = 0.37);
(E=-50, T = T,7 = 0.6475); (E=-43, T = 1). Bottom: (E=-37,
T =T.9=1.2925); (E=-31, T =1.6); (E=-20, T = 2.4).

Consider then a microcanonical estimator for
the total number of configurations of size n
with energy m

co =W, = =3 W, (

( The ®-Transition Revisited )

=g Results — Interpretation )

where W@, is the Rosenbluth weight of the With presented method, it is possible to study

ith configuration. Now define r as the ratio of
actual Rosenbluth weight and Cg%:

Looking at the freezing transition, we see that:
- there are periodical fluctuations of the
transition temperature depending on polymer

reliably the freezing transition up to system
sizes of order 102. But there are no principal
difficulties to study the O-transition at higher

temperatures up to lengths of order 103, and
with the original PERM algorithm up to order
10° (at local temperatures). Results of the ©-
temperature scaling are shown in Figure 10.

W length ("saw tooth like", cp. Fig. 4)

Com - within these fluctuations the transition

Apply population control by pruning, when temperature remains constant

r<1 and enrichment, when r>1.

Analyzing the fluctuations, we find: 09
- the jumps in transition temperature occur in .
vincinity of polymers, whose ground-states fill 06
a cube or a rectangle (i.e. which have compact .
ground-states) 03
- these POlymerS have the "magic" lengths 02F e sc-lattice ~----

fce-lattice
0.1 '

Ncgs=27, 36, 48 , 64, 80 and so on v M waexy " Figure 10

Fitting the finite transition temperatures to
following formula (suggested by Flory-Huggins
theory, similar as in [1])

( Peak Chaos )

To investigate conformal transitions we
concentrate on peaks (maxima) in the heat
capacities. Figures 1 and 2 show heat
capacities of short polymers on the sc lattice. Figure 6 shows energy distribution around the
09 freezing transition for the polymer with
0.8 _ o ) o o
0s Ncgs—64, Figure 7 visualizes corresponding
conformations. 1 1 1 | 1
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A we get:
Lt . . 06 - for sc: Tp=3.72+0.02 (in perfect agreement
A to, e.g. Ref. [3])
02 s A - for fee: T=8.30+0.03
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What we see at low temperatures (T<1) are
one or two maxima per chain length. There
seems to be no consistent behavior depending
on chain length. At high temperatures (T>1)
we see the well known ®-Transition.
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Figure 1 and 2

- Freezing transition exists on sc and fcc lattice

- It is strongly influenced by lattice restrictions

- O-transition peak becomes dominant

- Infinite ®-temperature could be reproduced
(sc) and obtained (fcc)

- Both, ®- and freezing transition will not

Figure 7: Typical conformations around the freezing transition
for the homopolymer wit Ncgs=64° From left: Groundstate
(E=-81, T — 0); (E=-79, T = 0.36); (E=-78, T = 0.38), the
transition lies at T.q = 0.37; (E=-75, T = 0.47)
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See Figure 5 for some visualizations of typical
conformations.

coincide in thermodynamic limit
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