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Referat:

Polymere und Polymerwerkstoffe gehören zu den interessantesten Substanzen und Stoffen in

der Wissenschaft und sind Gegenstand unzähliger experimenteller, theoretischer und rechn-

ergestützter Studien in der Physik sowie der Biologie, Chemie und weiteren Fächern. Wie

jeder andere Stoff auch, können Polymere in unterschiedlichen Zuständen abhängig von den

Umgebungsbedingungen auftreten. Dazu gehören zum Beispiel der ausgedehnte, gasartige

Zustand, der amorphe, geschmolzene Zustand und kristalline Zustände.

In dieser Arbeit werden neue Resultate zu verschiedenen Aspekten der Polymerforschung

bezüglich dieser Aggregatzustände und Übergängen zwischen diesen vorgestellt, welche mit

Hilfe von Monte Carlo Computersimulationen erhalten wurden. Im Detail werden der

zweistufige Kollaps von zufälligen ausgestreckten Gitterpolymeren in den Grundzustand und

strukturelle Übergänge von dicken Polymeren untersucht. Neue, hocheffiziente Algorithmen,

die diese Untersuchungen überhaupt erst ermöglich, werden angewandt.
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Abstract:

Polymers and polymeric materials are among the most interesting substances in science and

subject of numberless studies in experimental, theoretical and computational physics, to

say nothing of chemistry, biology and other relevant fields. As every substance, polymers

can exist in different states depending on the external conditions. Amongst these are, for

example, the swollen vaporlike state, the amorphous molten state and crystalline states.

In this work, new results on different aspects of polymer science regarding these aggregate

states and structural transitions between them, which have been obtained by means of

sophisticated Monte Carlo computer simulations, are presented. More precisely, the two-

stage collapse from the random coil conformation to the ground state of lattice polymers

and structural transition of tube polymers are studied. Recently developed, highly efficient

algorithms, whose development made it possible in the first place to perform the presented

studies are applied.
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Introduction

Polymers and polymeric materials are among the most interesting substances in science and

subject of numberless studies in experimental, theoretical and computational physics, to

say nothing of chemistry, biology and other relevant fields. As every substance, polymers

can exist in different states depending on the external conditions. Amongst these are, for

example, the swollen vaporlike state, the amorphous molten state and crystalline states [1–4].

In this work I present new results on different aspects of polymer science regarding these

aggregate states and structural transitions between them, which have been obtained by

means of sophisticated Monte Carlo computer simulations. More precisely, I study the two-

stage collapse from the random coil conformation to the ground state of lattice polymers and

structural transition of tube polymers. Recently developed, highly efficient algorithms, whose

development made it possible in the first place to perform the presented studies are applied.

Definition of the Subject

Polymers are chemical compounds consisting of equal or similar molecules, forming a molec-

ular chain. Polymers are therefore often called macromolecules as well. Two of the most

important examples of polymers in our life are synthetic carbon-based homopolymers, such

as polyethylene, and biopolymers, like proteins or DNA.

The first mentioned homopolymers consist of (a large number of) equal (simple) compo-

nents. In the case of polyethylene, these components are ethene molecules simply consisting

of two carbon and four hydrogen atoms. A short notation is hence:

−[ H2C− CH2 ]n− .

As synthetic homopolymers are the basis of macroscopic products (in daily life), it is in

this context doubtlessly interesting to model and study polymer meshes, networks or dense

polymer solutions.

Biopolymers consist, generally, of more complex and different molecules. In the case of

proteins, these are the amino acids, in the case of DNA for example the so-called nucleotides.

For proteins, it is widely assumed, that their primary structure, i.e., the sequence of amino

acids, determines uniquely their three-dimensional native conformation and hence their bio-

logical function [5]. Unfortunately, the major question, how a protein exactly finds or folds
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into its native state is still open, though extensively studied since decades. With the under-

standing of this process, one would be much closer to the solution of tasks like the cure of

diseases based on misfolded proteins, the design of proteins for special purposes or the effect

of mutations. DNA is of fundamental importance as it is the carrier of our genes. Beside

this fact, its mechanical properties got recently in the focus of interest. They are studied,

for example, by pulling the DNA off from a surface using optical or magnetic tweezers, zip-

ping/unzipping or twisting experiments were carried out, entropic forces have been measured

by pulling DNA through a grid of nanopores, etc [6–8]. Hence, in the case of biopolymers,

the theoretical and computational interest is focused on the study of the behavior of single

polymers (in solution), rather than polymer systems. Apart from these two “classical” or

“generic” examples of polymers, organic macromolecules play (recently) an important role

in electronics or optics. These fields make use of electric and optical properties or activity of

certain polymers. Just think of solar cells, displays, optical filters or organic chips. In this

regard, the behavior of polymers at surfaces is of particular importance.

Polymers can be experimentally studied using techniques like NMR, X-ray-, neutron- or

visible light scattering or microscopy and much theoretical work has been done to describe the

scaling of different properties of polymer chains in different (thermodynamical) phases [1, 2].

Anyhow, experimental techniques are, even though extremely sophisticated and leading to

impressive particular results and insight, in different aspects restricted. Beside the fact, that

they are, generally, very costly (in terms of time and money), they lead to results which

are specific for the system under investigation. The measured structure data of a specific

protein, for example, can be hardly generalized in order to draw conclusions for other systems.

Furthermore, it is not trivial, to prepare and measure polymers and polymeric systems under

arbitrary environmental conditions for verifying general theoretical predictions.

Here, computer simulations come into play as a third cornerstone of physics [9, 10]. Even

though restricted to the study of polymer models, they are not restricted in a way described

above. Results obtained by applying simplified, coarse-grained models [11] are valid for

classes of polymers rather than for specific single systems. The simplicity of these models

results from “integrating out” nonrelevant, microscopic degrees of freedom and replacing

them by a few effective parameters. Atomic details, for example, do only play a secondary

role for the collapse of large polymers or the formation of tertiary structures in proteins.

Furthermore, as physical conditions of the system and the environment can be varied freely

and rapidly, theories could be verified and statistical analyses could be carried out more

easily in general. Anyhow, as computational power is still limited significantly regarding the

complex problem, much effort has to be spent in developing highly sophisticated and efficient

algorithms.

Detailed introductions in the field of computational polymer science and the specific

models I used, as well as explanations of studies directly related to the present work are

given at suitable locations later.
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Structure of this Work

As mentioned at the beginning, in this work I study pseudo-phase transitions of finite size

polymer systems with the main focus on the low-temperature regimes. As these systems are

under high consideration in computational physics since decades, I give in Chap. 1 (“Rough

Survey of Polymer Models and Computational Studies”) a rough and not comprehensive

overview of the work which has been done since the appearance of electronic computers. I

will confine myself to the points which are directly related to the systems studied in this

work and which are necessary to put them in the overall context of computational polymer

physics.

As the sophisticated methods used in this work are essential for the studied problems, I

present, explain and comment them in detail in Chap. 2 (“Methods”). In the first part of

this chapter, I describe the development of efficient flat histogram chain growth methods,

which are used for simulating lattice polymers at very low temperatures on the one hand

and with a very high number of monomers on the other hand. In the second part I comment

mainly on “standard” generalized ensemble algorithms used for ground-state searches and

thermodynamical analyses in the whole temperature range of off-lattice models.

In Chapts. 3 (“Study of Lattice Models of Polymers”) and 4 (“Tubelike Flexible Poly-

mers”) I present the main results of my studies. In Chap. 3 I consider lattice polymers

and discuss the collapse from random coil conformations into frozen ground-state structures.

Special attention is paid to the scaling of the transition temperatures for finite systems and

the stability of the intermediate globular phase in the thermodynamic limit. Chapter 4 is

dedicated to the tube polymer model. This model introduces an additional length scale,

namely the three-dimensional extension of the monomer chain. I study there ground-state

structures depending on the thickness of the polymer and present the full thermodynamical

pseudo-phase diagrams for short polymers. Both chapters start with a separate introduction,

where the work is motivated and related studies are presented and discussed. Furthermore,

the respective models which I study are introduced in very detail. Short summaries are given

at the end of both parts.

A comprehensive Summary of the main findings of my work and an outlook to potential

further studies basing on the presented results is finally given at the end. In the appendices

(A, “The HP-Transcription Problem” and B, “Non-Stochastic Minimization – Examples”)

two special, but secondary problems, which are related to some of the presented results, are

discussed.
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Chapter 1

Rough Survey

of Polymer Models

and Computational Studies

This section should give an overview of the development of polymer models and simulational

techniques to treat them. Needless to say that the latter came up with the break through

of electronic computers. But of course there was some science before. Earliest experimental

investigations on polymers occurring in nature have already been made more than hundred

years ago. Anyhow, it took a while, until the 30s of the last century, before the concept

of polymers as giant molecules composed of covalent structures was widely accepted and

became treated by means of statistical methods.

The first theoretical model introduced at that time for polymers has been the random

walk (RW) in space [12].1 In the following, much effort was spent in the development of

theories, resulting in, amongst others, the path breaking and heavily cited works of Flory [1].

There, one can also find an elaborate historical introduction on the work done so far.

The Self-Avoiding (Random) Walk (SAW)

As said, the behavior of (long) polymer chains became a field of computational interest in the

50s of the last century. Probably the first investigations using “high-speed electronic digital

computer”s were made by the Rosenbluths and Wall et al., published in the mid-50s [13–15].

They were studying a restricted random walk problem (the self-avoiding random walk on the

1It is interesting to note, that even the problem at that time was almost the same as today: “Die Winkelung

und freie oder teilweise freie Drehbarkeit wird nämlich zur Folge haben, daß neben der annähernd vollständig

gestreckten Form des Moleküls noch zahllose andere Formen möglich sind, [. . . ] und deren Gestalt beliebig

von der gestreckten Form abweicht. Wir fragen nach der Gestalt, die unter solchen Bedingungen im Mittel zu

erwarten ist. Die Frage ist statistischer Art und soll nach einer statistischen Methode behandelt werden.” [12]
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6 CHAPTER 1. ROUGH SURVEY OF POLYMER MODELS . . .

Table 1.1: Some estimators of µ in the literature.

Year Author(s) Lattice Reference

2D square 3D cubic 3D fcc

1959 Fisher, Sykes 2.639(3) 4.69(2) 10.05(2) [17]

1961 Fisher, Hiley 2.6390(5) 4.683(7) [19]

1966 Fisher 10.036(6) [20]

1972 Sykes et al. 2.6385(1) 4.6835(5) 10.035(1) [23]

1983 Guttmann 2.6381a 4.684b 10.037b [24]

1987 Guttmann 2.63815(1)c 4.6839(2)c 10.0364(6)c [21]

1992 MacDonald et al. 2.63810(7) 4.68387(2) [25]

1995 Douglas, Ishinabe 2.6385 4.6835 10.035d [26]

2000 MacDonald et al. 4.68404(9) [27]
a citing Sykes, Guttmann, Watts and Roberts, 1972 [23]
b citing Guttmann, Ninham and Thompson, 1968
c given as xc = 1/µ
d citing Domb, 1969

simple cubic lattice), especially the scaling of mean dimensions like the average extension of

these chains by means of Monte Carlo (MC) studies.

At the same time (or maybe a little later), rigorous numerical studies (exact calculation)

were made, considering the problem of the total number of SAWs cn.2 It was found then the

relation between the total number and the effective coordination number µ of the underlying

lattice and the critical exponent 3 γ [2, 17–20];

cn ∼ µn nγ−1 .

The estimators for these numbers µ and γ have already been very precise and have almost

not changed since then. Nevertheless, the interest in evaluating these numbers has not went

out up to now. Table 1.1 gives an historical overview of estimates for the value of µ. Since the

80s, the value of γ for D = 2 is known exactly to be γ2D = 43/32 = 1.34375 (see, e.g. [21]).

For three dimensions it is about γ3D ≈ 7/6 and still subject of investigations. Actual studies

for example, deal also with the scaling behavior of SAW on special networks [22].

The Interacting Self-Avoiding Walk (ISAW)

The next step in the evolution of the simple polymer model was the introduction of attractive

interactions,4 allowing for the interplay of energetic and entropic effects. A straightforward

2The first attempts were already made in the 40s by Orr [16].
3γ was there sometimes called α.
4The first idea of the ISAW, to my best knowledge, was published already in the 40s [16], too.
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implementation was the interacting self-avoiding walk (ISAW) on a regular lattice with an

energy equals minus the number of contacts between monomers at neighboring lattice sites.

This model was, for example, extensively studied by Grassberger et al. in the 1990s [28, 29]

with the focus on the study of the so-called Θ-point. At this critical temperature, roughly

spoken, monomer–monomer attraction and broadening due to configurational entropy cancel

out each other, or, in other words, the excluded volume effect is exactly compensated by the

monomer–monomer attraction.

Even though the (I)SAW as a polymer model is rather simple, restricted to a lattice and

(apparently) outdated and exhaustively studied, it keeps under investigation up to now and

is still used to study special polymer systems. See, e.g., [30–34]. Furthermore, depending

on the special problem of interest, the model was adapted or extended in different ways.

An interesting phenomenon that can be well investigated with variations of this model is,

for example, the formation of intermediate states during protein unfolding by introducing

stiffness to the model and applying a stretching force [35–37]. Further modifications were,

for example, the mutually attracting SAWs (MASAWs) to study the unzipping of DNA [38]

or the partially directed SAW (PDSAW) [39]. Some variants have been used (recently) to

model the melting or denaturation of DNA [40, 41].

In this work, the model is used to study the freezing (“liquid–solid transition”) and

collapse (“Θ-transition”) of polymers on the sc and fcc lattice. See Chap. 3, “Study of

Lattice Models of Polymers”, where a more detailed introduction to (I)SAWs is given, too.

Figure 1.1: A self-avoiding walk on the

fcc lattice. As an interacting self-avoiding

walk, it has the energy E = −285 and rep-

resents a typical conformation in a poor

solvent.

The HP Model

A main feature of biopolymers or proteins, a subclass of polymers in general, is the hy-

drophobicity of the side chains of the amino acids it is composed of. The first and simplest

attempt to account for that in polymer models was just to introduce two types of monomers

in the above mentioned ISAW, namely hydrophobic (H) and hydrophilic (polar, P) ones, by
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K.A. Dill in the 80s [42, 43]. The two types of monomers differ only in their interaction

among each other: Whilst hydrophobic monomers attract each other as in the case of the

ISAW, there is no such interaction with polar monomers, which corresponds to the SAW

model. 5

Beside general studies on the effect of the monomer sequence (see, e. g., [44–47]), it was

casually tried to mimic real proteins by translating the primary structure of the proteins into

a HP-sequence, see, e.g., [48, 49]. Apart from the general dubiety regarding the translation

of specific real proteins into HP proteins (see Appendix A (“The HP-Transcription Prob-

lem”)), a variety of techniques have been developed to master the really difficult problem

of understanding the low-temperature thermodynamics and finding ground- or native states

generally. See, for example, [50–58] and [11, 59] and references therein. 6

Figure 1.2: A HP protein consisting of twelve monomers

on the sc lattice with energy E = −7. Hydropho-

bic monomers are red, polar ones gray. The contacts

contributing to the energy, i.e., the H–H contacts, are

marked by the dotted lines.

The Bond Fluctuation Model

Two properties which all models mentioned so far have in common is the restriction to

an underlying lattice and the fixed bonds. In the Bond Fluctuation Model (BFM), the

monomers are also restricted to a lattice but the bonds are not, they even are allowed to have

different lengths. The model was introduced in the late 80s due to the fact, that “standard

Monte Carlo algorithms” are not very efficient or even unable to simulate (branched) SAW

problems [60, 61].

It was then occasionally used to study the Θ-transition of polymers [29, 62] and was

recently still used to investigate the complete “[Unexpectedly normal] phase behavior of

single homopolymer chains” [63].

5Hence, one may call this model the “Partially Interacting Self Avoiding Walk”.
6Some of the methods work extremely well for lattice polymers in general (cp. Sec. 2.1, “Simulational

Techniques on the Lattice”), i.e., they are not especially designed for HP proteins. Though, they have been

applied initially to these systems.



9

The AB Model

The other way around, one could take away the lattice, but leave the bonds fixed. Using the

idea of considering two types of monomers7 and introducing a continuous potential including

hard-core repulsion and van-der-Waals attraction (Lennard–Jones potential) depending on

the interacting monomer types leads to the so-called AB model, introduced in two different

forms by Stillinger et al. and Irbäck et al. in the 90s of the last century [64–66].

As for the preceding HP model, much effort was spent and sophisticated methods were

applied to find ground states and reveal the thermodynamic behavior of specific monomer

sequences [66–69]. A comparable bead-spring model was introduced by Iori, Marinari and

Parisi in 1991 [70]. It allows in a similar way for the introduction of different types of

monomers. The sequence dependence of this model was studied in later work by Irbäck and

Schwarze [71].

For a detailed description of the AB model see Sec. 4.7 (“The Hydrophobic-Polar Tube

Model”), where I extend the model to the AB tube model and present and discuss results of

a specific, artificial AB sequence.

Figure 1.3: A low energy, collapsed configuration of an

AB sequence consisting of 48 monomers. It was found in

a simple Metropolis simulation with spherical updates.

One observes the formation of a hydrophobic core (red

monomers).

The FENE Bond Model

A further well studied off-lattice model, in which the polymer is a linelike, one-dimensional

object made up of equal monomers connected by non-fixed bonds is the finite extendible

nonlinear elastic (FENE) bond model for polymers.

It was originally introduced by H.R. Warner Jr. in the early 70s of the last century [72]

as a useful model to study the “transition” between the rigid bond and the Hookean spring

bond theory of polymers, both well studied at that time. Apart from this, it was expected,

that a FENE bond is closer to real macromolecules as they have neither rigid bonds nor

are infinitely extendible. The model was in the following years subject of further theoretical

7hydrophobic and polar ones like in the HP model, here called A and B
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analysis and molecular dynamics (MD) computer simulations (see, e. g. [73, 74]), before it

was extensively studied by means of Monte Carlo (MC) computer simulations since the 90s

of the last century, see, e. g. [75] and references therein, or, for a recent work, [76, 77].

Figure 1.4: A homo100mer with finitely extendible

non-elastic (FENE) bonds near the transition be-

tween the globular (liquid) and the crystallized

(frozen) state.

Thick Polymer Models

All models so far considered the polymer as a one-dimensional (linelike) object. A possibility

to account for the three-dimensional extension of polymers, due to steric constraints induced

by amino acid side chains for example, without loosing the simplicity of a coarse-grained

model is to model the polymer as a tube rather than a line. This idea was introduced about

ten years ago by Banavar and Maritan et al. [78–80]. In a basic study they considered

tubes with certain radii R0 where the monomers interacts via a square well potential with

interaction radius R1. It was found, that different secondary structures may occur depending

on R0 and R1 [81, 82].

In Chap. 4 (“Tubelike Flexible Polymers”) I will present an elaborate and systematic

study of native state conformations of thick polymers and I will unravel the complete ther-

modynamic behavior of short homopolymer tubes. I will also introduce the AB tube model,

basing on a combination of the ideas of the AB- and the tube model. Comments on further

previous studies on tube models can be found there (Sec. 4.1, “Related Studies, Alternative

Approaches”), too.

Figure 1.5: The putative ground state of an AB tube poly-

mer with tube diameter equals 0.7 times the bond length.
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Table 1.2: Summary of main features of polymer models.

homo- Interactions restricted

Model line-like polymer stiff bonds repulsive attractive by lattice

RW X X X

SAW X X X (X) X

ISAW X X X (X) X X

BFM X X (X) X X

HP X X (X) X X

AB X X X X

Tube X X X X

AB tube X X X

FENE X X X X

RW: Random Walk; SAW: Self-Avoiding Walk; ISAW: Interacting SAW; BFM: Bond Fluc-

tuation Model; FENE: Model with Finite Extendible Nonlinear Elastic bonds; HP: Hy-

drophobic Polar model; AB: AB model; Tube: Tube model; AB tube: AB tube model;

Table 1.2 summarizes the main properties of the polymer models mentioned in this in-

troduction so far. Figure 1.6 gives a sketchy overview of the coarse grained models used in

this work.

Semiflexible Polymers – The Wormlike Chain

The majority of the coarse-grained models mentioned so far model flexible polymers. Any-

how, the stiffness of polymers is relevant when considering finite length systems. A model

taking the stiffness of a linelike chain explicitly into account is the work-like chain model [83].

The characteristic length scale of such a polymer is called the persistence length lp and

depends of course on the bending stiffness. One speaks of semi-flexible polymers, if the

persistence length is not much smaller than the system size L: lp . L. The case lp ≪ L

corresponds to flexible polymers, if lp ≫ L we have stiff polymers and lp →∞ leads to rigid

rods. Typical examples for the application of this model are studies of DNA [84], which

is among the stiffest known polymers, having a persistence length of ∼ 50 nm [85]. The

Hamiltonian of the model is, roughly spoken, the sum over the curvature of the chain, which

can be rewritten for the discretized model into a sum over cosines of bending angles [86]. 8

Hence, the internal energy of the model is just the bending energy.

8Note, that in the AB model, similar terms occur. See [64–66] or Sec. 4.7, “The Hydrophobic-Polar Tube

Model”
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Figure 1.6: Sketch of the polymer models used in this work.

All Atom Models

Up to here we considered coarse grained models for polymers and only such models are used

in this work. There exist of course atomic-level models with a variety of force fields, where

all the atoms the polymers (mainly proteins) consist of, are included in the simulation. I will

not go in detail as this field itself is very complex and, as said, not in the narrow focus of

this work. I will instead just refer exemplarily to two nice works, where in the first, the

native states of three small real proteins, including both, helical parts and sheets, could be

reproduced with an all atom model [87]. In the second one, the spontaneous formations

of so-called β-barrels, i.e., the aggregation of certain peptides to a fibril, consisting of six

strands could be observed using a model of this class [88]. For further examples, including

references to different force-fields, see, for example, [89–95].

Polymers at Surfaces

So far, just free polymers (in solutions) have been considered. A experimentally very relevant

field of studies deals with the behavior of polymers under external constraints, i.e., polymers

at surfaces or encased in geometrical objects like tubes.

Just to provide an introduction in the field, I would like to mention a few studies exem-

plarily. In these studies, variants of the above introduced models have been applied. In the
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first study, Hegger and Grassberger estimated critical exponents of self-avoiding walks near

an adsorbing surface [96]. Later, the thermodynamical behavior of lattice- and off-lattice

polymers at attractive substrates has been investigated in dependence of the strength of the

surface attraction [97, 98]. Finally, using the SAW model, Hsu et al. studied the behav-

ior of polymers at membranes and the escape transition of a polymer which is confined in

a nanotube [31, 33, 99].

It is worth to mention, that there is a certain connection between strongly attracted

polymers and polymers in two dimensions. For off-lattice models, on finds for example iden-

tical ground-states conformations when simulating under these two conditions. Generally,

one may say in a prosaic way, that polymers at surfaces are in a sense the link between 3D

(weak attractions) and 2D polymers (strong attraction).

Simulational Techniques

There are generally two types of computer simulations, molecular dynamic (MD) simula-

tions and Monte Carlo (MC) simulations. Whereas with MD simulations, the dynamics of

a systems is emulated, in MC simulations a statistical ensemble is sampled in an arbitrary,

randomized and method-dependent way, which does not reflect in general any “natural” dy-

namics. MD simulations proceed, very roughly, as follows: for a given system configuration,

all forces, i.e., the gradient of the given potential, is calculated. Then, the equations of mo-

tion are solved for a little time step ∆t. The conformation is then updated according to these

calculations, the system time is increased by ∆t and the procedure starts over. As I do not

use MD in this work, I will not go into more detail or comment on the technical difficulties

that may appear. With respect to the protein folding problem on may say though, that, at

the moment(!), computationally accessible time scales are often far too short compared to

the real time these processes need.

As for many problems, such as these in this work, the real dynamics is not important,

MC simulations are the more useful alternative as it allows in principle for wide “jumps”

in the configurational space. Hence, it is possible to explore a wide space of representative

structures of different canonical ensembles in one simulation and therefore studies of ther-

modynamical or structural (pseudo)transitions will be feasible, for example. I will describe

the MC methods I use in the separate Chap. 2 (“Methods”) in all detail.
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Chapter 2

Methods

In this chapter I will describe in more detail or comment all simulational methods, which have

been used during this work and which are just shortly mentioned elsewhere. The methods

used for the study of lattice polymers and of off-lattice systems follow different concepts. The

first ones are described in Sec. 2.1 (“Simulational Techniques on the Lattice”), the latter ones

subsequently in Sec. 2.2 (“Techniques for Off-Lattice Simulations”).

2.1 Simulational Techniques on the Lattice

The generic model of lattice polymers is the self-avoiding walk. To study this model by

means of computer simulations, there are mainly two different approaches. On the one

hand, one may implement standard Markov chain Monte Carlo methods as described in

Sec. 2.2 (“Techniques for Off-Lattice Simulations”). The conformational updates of existing

chains may include semilocal changes of bond orientations as corner and end flips, crankshaft

moves (see, for example, [100]) or more non-local updates such as the very popular pivot

rotations [101, 102]. Although the application of these updates may result in very efficient

simulations at high temperatures, i.e., for very dilute systems, they become inefficient in

dense systems as most of the proposed moves will be rejected simply due to violations of the

self-avoiding constraint.

This problem can be “solved”, i.e, the efficiency of simulations in the dense phase can

be improved drastically, by using chain-growth algorithms, where the chains are constructed

during the simulation. The basic strategy is trivial: A new monomer is tried to be attached

to the end of an already existing chain, taking into account the lattice constraints of course,

until the total length is reached. 1 I will in the following describe step by step the set-up and

optimization of such a method, which has been very successful already.

1Indeed, it may also happen, that all neighbors of the end of the chain are already occupied and, thus,

the chain get trapped before the total length is reached.

15
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2.1.1 The Rosenbluth Method

One can relatively easy assure oneself of the fact, that the probability of generating self-

avoiding chains generally depends on the growth direction, as the number of free neighbors of

a given lattice site, where a monomers can be placed, varies during the growth process. This is

illustrated in Fig. 2.1, where a conformation with the respective (inverse) probabilities at each

step is shown. To counterbalance this bias, so-called Rosenbluth weights are introduced [14].

These local weights at site n are nothing but the inverse probabilities of choosing a free

neighbor, i.e., the number of free neighbors mn of n. The total Rosenbluth weight of a chain

of length N is just:

WN ∼
N
∏

n=1

mn , (2.1)

a) b)

m1 = 4 m2 = 3

m
3

=
3

m4=3

W4 = 108

m1 = 4

m
2

=
3

m3=3m4=2

W4 = 72

Figure 2.1: Example of a conformation on the two-dimensional square lattice grown from

different directions. The conformation in a has the probability of 1/108 to be created, for

the same conformation in b this probability is 1/72.

In order to simulate polymers at finite temperatures rather than simulating athermal

self-avoiding walks, it is convenient to introduce thermal Rosenbluth weights including the

Boltzmann factor. Hence, Eq. (2.1) is replaced by:

WN ∼
N
∏

n=1

mn e−Ek/kBT , (2.2)

where k = 1, . . . , mn is the number of the chosen free neighbor, Ek is the energy contribution

from the new monomer placed there and kB is the Boltzmann constant. 2

2.1.2 Pruned Enriched Rosenbluth Method (PERM)

Using the above described Rosenbluth method, one creates a very broad distribution of the

weights WN . This is by far not optimal, as the error of sample means increase with the width

of the WN distribution. In the extreme case, a sample average is dominated by a single event

2Alternatively one might make the local weights independent of k by including the Boltzmann factor in

the probability of choosing the direction for the next step [29].
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with an extremely large weight. Furthermore, as a more technical aspect, much computer

time is “wasted” simulating chains with very low weights. An essential improvement of the

efficiency of the Rosenbluth method was hence achieved by the application of a population

control, following the general idea of enriched samples of random walks [103]. On the one

hand, the sample is enriched if the weights become large, reducing the weights of every single

system appropriately, on the other hand it should be pruned, if weights become small.

In practice, this is done as follows [29]. One introduces for every chain length n a lower

and an upper threshold value W<,>
n for the weights. If the actual weight Wn of a chain

becomes larger than W>
n , a copy of the chain is created and the weight is divided. Both, the

original chain and the copy 3, get the weight Wn/2. If the weight Wn becomes lower than

W<
n , the chain is proposed to be terminated with a probability of 1/2. If the chain survives,

its weight will be doubled to maintain the overall weight of the sample 4.

In principle, the boundaries W<,>
n can be set arbitrarily and even changed during the

simulation without making the algorithm incorrect. But of course depends the efficiency

crucially on a good choice of them. In the optimal case, they are fixed such, that the sample

size does not vary much for different n. A good strategy satisfying this request, is to initialize

the boundaries with W<
n = 0 and W>

n =∞, which corresponds indeed to a Rosenbluth run,

and adapted them continuously whenever reaching the length n using the current estimate

of the partition sum Zn: W>
n = c>Zn and W<

n = c<Zn, where c<,> are numbers of the

order of unity and c>/c< ≈ 10. Note that, since this method is a clever kind of simple

sampling, the partition sum can be estimated as Zn ≈
∑

i W (Xi)/S, where the sum runs

over all successfully generated polymer chains of length n in S growth starts.

Further refinements can be made by changing some details of the given procedure leading

to the so-called nPERM (“new PERM”) method [59]. Formerly, one copy of a chain was

created, when its weight became large. Now, the number of copies k (including the “original”

chain) should depend on the ratio of the actual weight and the upper threshold value:

k = min

{

mn,
Wn+1

W>
n+1

}

, (2.3)

where Wn+1 = Wn + mn is a predicted weight for the next step. As it is ensured, that there

will not be more copies than free neighbor sites, all copies will furthermore be forced to grow

in different directions, which avoids a possible loss of diversity. The weights are adapted

accordingly be dividing by k. Although one can even care about the local growth directions

of the copies (when there are less copies than free neighbors) leading to a kind of importance

sampling, I choose them randomly and uniformly (simple sampling). The update of W<,>
n

3In the simulation, there is of course no difference between the original chain and the copy.
4At the moment of pruning, the distribution is changed generally as some weight is (arbitrarily) removed

or added. For a big number of terminated and surviving chains however, i.e., statistically, these effects cancel

each other and the surviving chains collect the correct weights of the terminated chains.
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in nPERM is made as follows:

W>
n = C

Zn

Z0

(

cn

c0

)2

, (2.4)

W<
n = 0.2 W>

n . (2.5)

cn counts the number of configurations of length n created so far and C is some number ≤ 1,

which I set to C = 1. 5

In this work, I use the nPERM method for the simulation of very large chains in the

vicinity of the Θ point. For the more demanding study of the freezing regime I use generalized

ensemble variants of PERM. Before describing them in detail, a general remark is in order.

During the chain growth process, chains will all possible lengths n ≤ N are created by

definition. Hence, on could in principle measure observables at every chain length within a

single simulation of a system with length N . But, as these results are in general strongly

correlated in an uncontrollable way, I always perform really independent simulations for

different system sizes.

2.1.3 Multicanonical Version of PERM (mucaPERM)

A generalized ensemble variant of PERM, called mucaPERM, follows the idea of multicanon-

ical sampling (see Sec. 2.2.3, “Multicanonical Generalized Ensemble Method”) [55, 104]. The

starting point is the same as for the “standard” multicanonical method. The statistical en-

semble is changed by introducing an additional weight W flat
n (En) in order to achieve a flat

distribution in energy and hence enable the simulation to perform an (almost) random walk

through the energy space:

Zn ∼
∑

i

WPERM
n (Xn,i)W flat

n (En(Xn,i))[W
flat
n (En(Xn,i))]

−1 , (2.6)

where the superscript in WPERM
n (Xn,i) indicates, that this weight is the one used in the

original PERM (see Eq. (2.2)). As the method is in fact independent of the actual chain

length, Eq. (2.6) can be written in the product form, inserting also Eq. (2.2), as

Zn ∼
∑

i

[W flat
n (En(Xn,i))]

−1
∏

l=2

ml e
−(El−El−1)/kBT W flat

l (El)

W flat
l−1(El−1)

. (2.7)

Choosing, for convenience, β = 1/kBT = 0, one can read off the combined weight given now

to a chain:

Wn(Xn) =
∏

l=2

ml
W flat

l (El)

W flat
l−1(El−1)

. (2.8)

5By setting C much smaller, one could probably make the algorithm a little faster. The effect would be

that, roughly spoken, the algorithm would correspond to an exact enumeration for short chains (leading to

maximal diversity) and becomes stochastic only for longer chains [59].
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This weight is used for pruning and enrichment of the sample in a completely analogous way

to the one described for nPERM.

As in every variant of multicanonical simulations, the multicanonical weights W flat
n are

not known in advance, otherwise the problem would be solved trivially, as these weights

are directly connected to the density of states. The proposed procedure of determining

them is an iterative one, starting with W flat
n (E) = 1 for all n. Then, in every iteration

step, a certain number of chains are produced whose actual combined weights are added

to a histogram Hn(E). The new weights for the next iteration step are then obtained by

W flat
n (E) ← W flat

n (E)/Hn(E) and Hn(E) and W<,>
n are reset to their starting values. The

weights W flat
n (E) are obtained satisfactorily, when the histogram Hn(E) becomes “flat”.

2.1.4 Flat Histogram Version of PERM (flatPERM)

Alternatively, there is another strategy to optimize PERM than the ones described above.

Prellberg and Krawczyk [105] propose a constant pruning and enrichment rather than just

occasional changes depending on some threshold values, which are crucial for the efficiency

furthermore. They consider the athermal estimator 6 Cest
n = 〈W 〉n = S−1

∑

i W
(i)
n (the

“infinite temperature” partition function) with Wn =
∏n

k=1 mk (cp. Eq. 2.1). The actual

sample should be enriched when Wn > Cest
n , whereas the number of copies and the corre-

sponding correction of weights is calculated as in nPERM, otherwise it should be pruned

with probability 1−Wn/Cest
n . Hence, the chain continues to grow with probability Wn/Cest

n

and weight Cest
n . Particularly, pruning and enriching that way, the weights are set as closely

as possible to Cest
n , what minimized fluctuations of them.

Keeping in mind, that PERM so far creates a roughly flat histogram in size n, it is

now straightforward to design an algorithm performing a random walk in both, size and

energy. In this sense, the algorithm can then be seen as a self-tuned flat (energy) histogram

version of PERM. Therefore, in total analogy to the considerations above, one takes the

microcanonical estimator Cest
n,m = 〈W 〉n,m = S−1

∑

i W
(i)
n,m (the “density of states”), where

m corresponds to an energy, i.e., to the number of non-bonded nearest-neighbor contacts in

the case of interacting self-avoiding walks. The pruning and enrichment rules are applied

accordingly in the fashion described above. Figure 2.2 shows exemplarily the logarithm of

Cest
n,m depending on the system size n and the internal energy m for a simulation of lattice

polymers up to length N = 250. One sees, that the numbers of configurations vary over

hundreds of magnitudes. Averages of observables can be computed via

Qest
n,m =

〈QW 〉n,m

〈W 〉n,m
=

∑

i Q
(i)
n,mW

(i)
n,m

∑

i W
(i)
n,m

, (2.9)

6The change to thermal ensembles is straightforward by multiplying the weights with the Boltzmann

factor.
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Figure 2.2: Logarithm of Cest
n,m obtained by a simulation of lattice polymers with lengths up

to N = 250 using flatPERM.

expectation values in the canonical ensemble are then obtained by

Qest
n (β) =

∑

m Qest
n,mCest

n,m e−βEm

∑

m Cest
n,m e−βEm

. (2.10)

Both “flat histogram” variants of PERM described here, achieve in a sense the same

aim and hence should work comparably well, especially considering the sampling of the low-

temperature region. In both versions, the simulation performs a random walk in chain length

and energy. In particular, one can use them for ground-state searches therefore. Interestingly,

both approaches seem to base on different mechanisms. Whilst flatPERM uses “self-tuning”

capabilities, in mucaPERM the simulated ensemble is changed “from the outside”.

2.2 Techniques for Off-Lattice Simulations

For the off-lattice simulations of tubelike polymers, I used standard Markov chain Monte

Carlo methods on the basis of acceptance or rejection of proposed local or global conforma-

tional updates of the systems, in difference to the methods I used for the lattice simulations.

For updating conformations, I use the spherical update mechanism described in [68]: The

new position of a monomer i + 1 should be located on a sphere with the radius of the (fix)

bond length around monomer i. The following bonds are then just translated in order to

preserve the chain structure.

In the following I will just give some remarks and comment on the methods which have

been used in this work with the focus on the actual problems related to the studied problems,
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rather than explaining them from scratch in all detail. I will not explain or repeat the basic

concepts of Markov chain Monte Carlo simulations either. For both purposes, common

textbooks [9, 10] are much more suitable.

2.2.1 Canonical Metropolis Simulations

The most fundamental Monte Carlo method to sample a canonical distribution is the by now

so-called Metropolis simulation [106].

The method works as follows. For the system which is studied, a local update, i.e., a

small change of local observables such as spatial positions of a particle in a many-particle

system or the value of a single spin in a spin system, is proposed which leads to a change

of the energy △E = Enew − Eold of the system defined by some Hamiltonian. If the energy

Enew after the update is lower than before, the update will be automatically accepted, if

not, the move is accepted just with certain probability. If the update is rejected, the former

state is simply restored and counts as the new state. By using

p(Eold → Enew) = min
{

1, e−β △E
}

as the probability of accepting a local update, detailed balance is fulfilled and it is guaran-

teed, that the system converges, in principle and providing ergodic updates, to the correct

canonical distribution at a fixed temperature. β = 1/kBT is here the inverse temperature.

The method fails in general at low temperatures and in the vicinity of phase transitions

where transition states are highly suppressed. See, for example, [10].

On the other hand, the method can always be used, even if not very efficient in many

cases, for cross checks of generalized ensemble simulations and for an easy generation of local

observable distributions at high temperatures far from phase transitions. It is used in this

work for just these purposes.

2.2.2 Parallel Tempering

On possibility to overcome the limitations of single Metropolis simulations and to study

systems with complex energy landscapes is to simulate many systems in parallel at differ-

ent temperatures β1 < β2 < . . . < βm and interchange current configurations between the

systems once in a while. By doing so, a system has the chance to travel through the temper-

ature space and overcome, for example, high energetic barriers at low temperatures. This

is exactly the idea of Parallel Tempering simulations [107, 108]. Each single system may

be simulated using adequate update algorithms at fixed temperature. In the simplest case,

the above described Metropolis algorithm can be applied. Then, after a determined number

of updates within the single systems, conformation interchanges between the systems are

attempted with the Metropolis like acceptance probability

p(β1, E1 ↔ β2, E2) = min
{

1, e(β2−β1)(E2−E1)
}

.
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The crucial point of these simulations is a good choice of the simulation temperatures βi,

or the distances between them respectively. Choosing to few temperatures, which are to

far away from each other, leads to very small acceptance probabilities and thus to very

large travelling or round-trip times, the time a system need to travel through the whole

temperature space (and back). On the other hand, besides the fact that for each system a

single processor is required, it is far from optimal to simulate at too much temperatures as

well. Furthermore, it is not optimal, to distribute the simulation temperatures equally, think

of systems with first-order transitions for example, and so on. Without going into detail, it

should be noted that the mentioned problem is by far not trivial and still “open” and a big

amount of strategies has been presented in the past years [109–112].

In this work, the parallel tempering method was applied just for cross-check simula-

tion. The temperatures have been distributed without exhaustive optimization such that

the exchange probability was roughly 50%. The obtained canonical histograms have been

combined using the (multi)histogram reweighting technique [113, 114] in order to calculate

the density of states. For a quick overview of applications of the Parallel Tempering methods

in different disciplines, see [112].

2.2.3 Multicanonical Generalized Ensemble Method

The multicanonical method [115–117] is a way to obtain the statistics at all temperatures

(or within a certain temperature interval) in a single simulation. Therefore the canonical

ensemble is extended to a generalized, multicanonical ensemble by multiplying appropriate

weight factors W (E) to the Boltzmann weights such that the respective distribution Pmuca

becomes (in the optimal case) flat. This leads (in principle) to a random walk through the

energy space during the simulation: Pmuca = e−βE W (E)
!≈ const. The update probability

during the simulation reads then:

p(Eold → Enew) = min

{

1, e−β(Enew−Eold) W (Eold)

W (Enew)

}

.

The weight factors W (E) are of course not known in advance and must be generated some-

how. By the way, whatever the W (E) are, canonical expectation values can be computed

exactly by

〈O〉can =
〈OW−1〉muca

〈W−1〉muca
,

hence, multicanonical simulations are always “safe”. Indeed, the performance of the simula-

tion depends crucially on a good determination of W (E) in order to make the multicanonical

distribution “flat”. This determination can be done for example iteratively [118], starting

with W (E) = const and updating then, in most naive manner, via W (E)new = W (E)/H(E),

where H(E) is a histogram obtained during the actual iteration. A further possibility is to

work directly with estimators for the density of states, obtained by Wang–Landau iterations

(see the following subsection), instead of iterating the multicanonical weights. This may



2.2. TECHNIQUES FOR OFF-LATTICE SIMULATIONS 23

be more efficient and easier to implement, but makes no difference in principle. See for a

detailed discussion also [114] and references therein.

It should be mentioned, that the method is not especially designed for flat histograms

in energy space. In principle, it works with weights depending on arbitrary observables

W ({Qi}). Hence, there exist various variants of the idea which have been applied to an

huge number of different systems. See again [114] for a first impression. In particular, the

multicanonical idea was successfully used for the study different polymer models, which lead

for example to the development of a multicanonical chain-growth algorithm [55, 58, 68, 97,

104]. See also Sec. 2.1.3 (“Multicanonical Version of PERM (mucaPERM)”).

2.2.4 Random Walk Algorithm by Wang and Landau

The main idea of the method proposed by Wang and Landau [119] is similar to the one of

the multicanonical sampling – to perform a random work in a certain energy range during

the simulation and hence sample the density of states g(E) within this range directly. The

estimate for g(E) is initialized arbitrarily and then, whenever visiting a state with energy E,

continuously modified by multiplying its value corresponding to this energy level by some

number fi > 1: g(E)→ g(E) fi. This number fi itself should be modified (using a function

monotonically decreasing to 1) once in a while until satisfying some stop criterion. The

acceptance probability for a proposed update is:

p(Eold → Enew) = min

{

1,
g(Eold)

g(Enew)

}

.

As suggested by the word choice, there are a lot of technical parameters, which has to be

fixed in practice and at least the efficiency of the implementation may depend on the setting

of these parameters. The maybe most controversial issue is the choice of the criterion, when

to update fi → fi+1. Wang and Landau propose to carry a histogram H(E) of the visited

states and to update f whenever this histogram becomes “flat”. Furthermore, they use

the square-root function to update then fi: fi+1 =
√

fi, whereas this choice seems to be

arbitrary to some extent. Anyway, both, decreasing fi to fast or to slow, may lead to more

or less strong slowing down of the convergence of the simulation, not to mention the choice

of the initial value f0.

Shortly later, another strategy based on a mathematical analysis was presented by Zhou

and Bhatt [120] in order to obtain a fast convergence. They suggest an update of fi, when

an energy level E has been reached at least n(fi) times, whereas n(fi) = 1/
√

ln fi. Fur-

thermore, f0 should be chosen “large” (f0 = e4) and reduced in “large” steps, for example

by dividing ln f by 10. Anyhow, the algorithm violates, strictly speaking, detailed balance

as the ensemble is constantly changed during the simulation, even though the condition is

in practice “asymptotically” fulfilled by converging f → 1. A statistically correct method

can be obtained by setting f = 1 at the end for a final simulation run, which is essentially
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the same as carrying out a multicanonical simulation with weight factors obtained by the

Wang–Landau iteration [114, 120, 121].

However, the Wang–Landau method has been successfully applied, even in its originally

proposed version and with a direct use of the obtained estimate of the density of states for

extracting canonical observables, for a huge number of different problems in the most varied

fields, as for (simple) lattice models [122, 123], in quantum Monte Carlo simulations [124],

for peptide and protein folding [125, 126], and in particular also for simulations of polymeric

systems [127, 128].7

But, at this point, a further crucial point of the method concerning the simulation range

should be addressed. Besides the fact, that special care has to be taken anyhow, when

sampling within a bounded energy range [129], the energy range must not be changed during a

simulation either. This means in particular, that one has to search (or reasonably estimate)

in advance native- or ground states of the simulated system, which are in principle not

known, to determine a reasonable energy range for reliable studies of the thermodynamics

at low temperatures. By studying FENE polymers for example, I found that the carelessly

chosen lower simulational bound of E<(N) = −4N (N is the system size) in [130, 131] 8,

“motivated” by an appropriate bound for a completely different system [128], led to wrong

interpretations of the low temperature behavior of these systems (see also [76]). This finding,

in particular, has been independently reconfirmed in the meantime [133, 134]. Hence, Wang–

Landau simulations in this work are always preceded by adequate ground-state searches.

2.2.5 Energy Landscape Paving

Such a ground-state search can be done for example using the energy landscape paving

(ELP) method [135]. The main idea is to travel at low temperatures through the energy

landscape and overcome energy barriers to not to get stuck in local energy minima by filling

up the energies of the visited states constantly. The idea behind is in a sense the same as

in the methods described before: To change the sampled distribution in some favorable way.

Anyhow, the philosophy is slightly different. Whilst with the former methods, the thermo-

dynamical behavior can be studied by sampling “at all temperatures at once”, ELP runs at

low temperatures. Whenever visiting a state with energy E, the Boltzmann factor is changed

by increasing, in the simplest case, a number that is added to E: e−βE → e−β(E+H(E)). 9

Obviously, this procedure violates detailed balance, hence it is not appropriate for the sam-

pling of thermodynamic distributions. For a ground-state search, this fact causes no problem

7I will not give here a in some way comprehensive list of publications. The given references are more or

less arbitrarily chosen examples.
8With a naive and by no means optimized ground state search, I could find quickly conformations with

E < −480 for N = 100. The current bound for the ground-state conformation found so far by extensive

simulations is E = −515.638 [132].
9Generally, the histogram may depend on any “order parameter” and an arbitrary function of it is added

to the energy: e−βE
→ e−β(E+f(H(q))).
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of course. The method was hence successfully applied for finding global energy minima of

different proteins elsewhere [68, 135–138].

2.2.6 Conjugate Gradient Optimization

The conjugate gradient (CG) optimization [139] is, in contrast to all other methods describes

so far, a deterministic procedure which can not overcome energetic barriers by definition. It

rather finds the minimum of the valley of a energy landscape a conformation already resides

in by following a deterministic trajectory. The naive idea, also called “steepest descent”

method, is, starting from a point ~xi in the phase space, to move to the point ~xi+1 by

minimizing along the direction of the gradient ~gi = −∇f(~xi), and so on until the gradient

vanishes after a certain number of iteration steps and the minimum is hence found. This

idea is improved by calculating the minimization direction ~hi with some “memory” of the

last one:
~hi+1 = ~gi+1 + γi

~hi ,

where

γi =
~gi+1 · ~gi+1

~gi · ~gi
.

Note that finding the minimum along ~hi+1 is a search in one direction, a problem for which

a variety of efficient algorithms exist [139].

The method is hence a candidate for refining optimization results obtained by stochastic

methods. As it will not worsen the results by definition it can always be applied risklessly

on top of stochastic global energy minimization. Examples of successful applications low-

ering energies of different systems significantly are given in Appendix B (“Non-Stochastic

Minimization – Examples”).
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Chapter 3

Study of Lattice Models

of Polymers

It is well known, that polymers or polymer solutions appear in different states depending on

external parameters like temperature or solvent quality [2, 30, 63]. Thus, a single polymer

in solvent can experience conformational transitions between different structural phases.

Anyhow, the analysis of these transitions is not trivial, as I will show in this chapter.

At hight temperatures (or in good solvents) dissolved or random coil structures domi-

nate. Approaching the critical point at the Θ temperature or the solvent medium becomes

sufficiently poor, respectively, the polymer collapses and globular conformations are formed.

At the Θ point, the influence of volume exclusion causing an effective repulsion is exactly

compensated by the attractive monomer-monomer interaction. The polymer conformation

then takes the so-called random flight conformation, i.e., behaves like a Gaussian random

chain [1]. Below the Θ point, i.e., at low temperatures or in poor solvent, the polymer enters

the globular phase. Globules are very compact conformations with little internal structure,

i.e., the globular phase is still entropy-dominated. Therefore, a further transition towards

low-degenerate energetic states is expected to happen: the freezing or crystallization of the

polymer. 1 Since this transition can be considered as a liquid–solid phase separation process,

it is expected to be of first order, in contrast to the Θ transition, which exhibits character-

istics of a second-order phase transition [140–142].

In principle, there is no longer any difficulty to investigate the collapse transition for

finite systems up to very long chains by means of computer simulations. Well working

techniques to deal with the problem are chain growth algorithms considered below and in

detail described in Sec. 2.1 (“Simulational Techniques on the Lattice”). Anyhow, the problem

of the infinite-length Θ transition is still unsolved. The complexity of this problem appears

1This transition is elsewhere called ground-state–globule [55], liquid–solid [127] or melting transition [130].

These term are used as synonyms in this work.

27
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in the quantitative description of these processes. From the analysis of the corresponding

field theory [2] it is known that for the Θ transition the upper critical dimension is dc = 3,

i.e., multiplicative and additive logarithmic corrections to the Gaussian scaling are expected

and, indeed, predicted by field theory [143–146]. However, until now neither experiments nor

computer simulations could convincingly provide evidence for these logarithmic corrections.

This not only regards analyses of different single-polymer models [28, 29, 100, 127, 128,

130, 131, 147], but also the related problem of critical mixing and unmixing in polymer

solutions [62, 148–151].

In a remarkable recent study of a bond-fluctuation polymer model (Sec. 3.2, “Preliminary

Remarks, Related Studies”), it was shown that collapse and freezing transition can fall

together in the thermodynamic limit [127]. That this surprising phenomenon is, however,

not general, but depends on the intramolecular interaction range, was found a little later

by the same group [63, 128]. For an off-lattice bead-spring polymer with finitely extensible

nonlinear elastic (FENE) bond potential and intra-monomer Lennard-Jones interaction, for

example, it could be shown that both transitions remain well separated in the limit of

infinitely long chains [76, 77]. 2

In this chapter, motivated by above mentioned recent publications, I investigate the

structural transitions of interacting self-avoiding walks (Sec. 3.1, “Model and Methods”),

the simplest model for polymers, restricted to simple cubic (sc) and face-centered cubic (fcc)

lattices. The focus lies primarily on the freezing transition (Sec. 3.3, “The Freezing-Transi-

tion Regime”), where comparatively little is known as most of the analytical and computa-

tional studies in the past were devoted to the controversially discussed collapse transition;

see, e.g., [28, 29, 62, 149, 150, 152–158]. A precise statistical analysis of the conformational

space relevant in this low-temperature transition regime is difficult 3 as it is widely domi-

nated by highly compact low-energy conformations which are entropically suppressed. Most

promising for these studies appear sophisticated chain-growth methods based on Rosenbluth

sampling [14] combined with improved pruning-enrichment strategies [29, 59, 159] which,

in their original formulation, are particularly useful for the sampling in the Θ regime. To

top the work off, I will revisit the Θ regime in Sec. 3.4 (“The Θ-Transition Revisited”) and

present results for the scaling of the collapse transition temperature in comparison with var-

ious approaches known from literature. Eventually, the chapter is concluded by a summary

of the findings in Sec. 3.5 (“Summary”).

2The same conclusion was drawn in [130, 131], but the interpretation of the data there was not reliable.

See Sec. 2.2.4 (“Random Walk Algorithm by Wang and Landau”) for more details.
3See for example [100, 147], where the low-temperature region could not be sampled using local update

moves in standard Monte Carlo schemes.
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3.1 Model and Methods

The model I use here is the interacting self-avoiding walk (ISAW), the simplest model of

lattice polymers. In this model, the polymer chain is a walk on a lattice, which is not

allowed to cross itself, i.e., a lattice site can only be occupied by a single monomer. In

order to mimic the poor solvent behavior in the energetic regime nearest-neighbor contacts

of nonadjacent monomers reduce the energy. Thus, the most compact conformations, i.e.,

the conformations with the maximal number of nearest-neighbor contacts, possess the lowest

energy. Formally, the total energy of a conformation X = (x1,x2, . . . ,xn) of a chain with n

beads is simply given as

E(X) = −ε0m(X), (3.1)

where ε0 is an unimportant energy scale (which is set ε0 ≡ 1 in the following) and m(X) is

the number of nearest-neighbor contacts between nonbonded monomers.

The total number of self-avoiding walks of length n− 1 scales (for large m) as [2]

Cn ∼ µn−1(n− 1)γ−1, (3.2)

where µ is the effective coordination number 4 of the respective lattice and γ a universal,

i.e., lattice independent, exponent. For the sc lattice, the effective coordination number

is µsc ≈ 4.684 and in the fcc case µfcc ≈ 10.036 and γ has in three dimensions the value

γ ≃ 7/6 ≈ 1.16 [2, 25, 27, 56, 160–163]. See also Chap. 1 (“The Self-Avoiding (Random)

Walk”, pp. 5), for further introductory remarks.

A further important quantity is the maximal number of contacts in a self-avoiding walk

mmax(n) for a given length n − 1 of the walk. Particularly, in the case of interacting self-

avoiding walks, this number is directly connected with the ground-state energy, see Eq. (3.1).

In the limit n→∞ and for a lattice coordination number z,

mmax(n)
n→∞∼ zn− 2n

2
= an , (3.3)

with a = (z−2)/2. For the hypercubic lattice holds a = d−1, where d is the spatial dimension.

In the asymptotic estimate above, surface sites have been neglected, whose number scales as

n(d−1)/d. Taking them into account, one can approximate (an upper bound) for the maximal

number of contacts in a self-avoiding walk on a hypercubic lattice as [26]:

mmax(n) ≈ int(an− b(d−1)/d + c) , (3.4)

where a = d − 1, b = d(n + 1), c = d and int(x) just gives the integer value of x. 5 In

4For the random walk, the effective coordination number would be simply equal to the real coordination

number of the underlying lattice. The effective coordination number for self-avoiding random walks is always

lower due to occupied and hence forbidden lattice sites.
5c = d corresponds to the value given in [26]. Taking in mind, that c accounts for the additional contacts

due to the missing bonds at the ends of the chain, I would suggest c to be c = 2. This, by the way, fits also

better to my Monte Carlo data, see Fig. 3.2.
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particular, for the three-dimensional cubic lattice Eq. (3.4) would read:

mmax(n) ≈ int
(

2n− 3(n + 1)2/3 + c
)

. (3.5)

Due to the exponential growth of the number of conformations given in Eq. (3.2), the in-

vestigation of all conformational transitions a homopolymer of a given length can experience

requires numerical methods being capable of estimating the density of states for all possible

energies with high accuracy. For that purpose, rather than applying standard Markov chain

Monte Carlo methods with conformational updates, I used the alternative concept of chain

growth. Depending on the lattice constraints, a new monomer is tried to be attached to an

end of the already existing chain until the total length or a “dead end” is reached, i.e., the

chain end is trapped.

As a first attempt, already in the 50s of the last century, the so-called Rosenbluth Method

was introduced [14], a chain growth algorithm balancing the conformational bias induced

by the growing process. For the investigation of the Θ-point, an enhanced version, the

Pruned Enriched Rosenbluth Method (PERM) [29] is used. This method turned out to

be very powerful for simulating very long chains in the Θ region. It combines the original

Rosenbluth method with the “Go with the winners” strategy, i.e., it introduces some kind

of population control. Unfortunately, it fails when simulating at low temperatures, i.e., it is

unsuitable for the analysis of the freezing transition. Therefore, I apply in the simulations

in that region generalized contact-density variants [104, 105] of PERM, which have proven

to be very successful in the low-energy sampling of protein-like heteropolymers [55, 104] and

the adsorption of polymers and peptides to solid substrates [164, 165]. The precision of

these algorithms when applied to lattice polymers as in the present study, is manifested by

unraveling even finite-length effects induced by symmetries of the underlying lattice.

To get an idea of manageable system sizes, Fig. 3.1 visualizes conformations of different

orders of magnitude in size. Whilst the low-temperature region can be sampled reliably with

the flat histogram methods up to lengths of n ≈ 100 (left picture in Fig. 3.1), polymers at

the Θ point can be simulated with flat histogram simulations up to lengths of n ∼ O(103)

(middle) and using canonical nPERM runs chains with lengths up to n ≈ 30 000 (right

picture) have been treated. For a detailed description of all mentioned methods, see Sec. 2.1

(“Simulational Techniques on the Lattice”).

3.2 Preliminary Remarks, Related Studies

As mentioned above, there are some works dealing with the phase behavior of single polymer

chains, in particular with the freezing and collapse transition. Some years ago, it was found

by F. Rampf et al. studying the bond fluctuation model [166], that both transitions coincide

for a special choice of the interaction range λ1 in the thermodynamical limit n→∞, where

n is the number of monomers the polymer chain consists of [127]. In other words, for very
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Figure 3.1: Polymer conformations with different sizes n on the sc lattice. Left: n = 125,

E = −22. Middle: n = 4000, E = −1551. Right: n = 32 000, E = −13 671.

large chain lengths, there is a direct transition from the coil phase to the frozen phase when

decreasing the temperature of the system, the globular or liquid phase is entered only by finite

chains. Interestingly, it was later found [63], that both transitions remain well separated,

just by increasing the interaction range to λ2.

The effect of the stability of liquid phases was extensively discussed in the context of

particle systems with repulsive and attractive pairwise interactions. See, for example, [167]

and references therein. The crucial point is, roughly spoken, the range of the attractive

interaction. A dimensionless measure for this range was introduced as R = λ/σ − 1, where

σ and λ are the parameters in a square-well potential for hard spheres, for example: 6

V (r) =











∞ r ≤ σ ,

−ǫ 1 < r ≤ λ ,

0 λ < r .

In experimental approaches, the critical value Rc, separating stable from metastable liquid

phases, was found to be Rc ≈ 0.25, see [30, 63] and references therein. Below this value, i.e.,

for attractive interaction with short ranges, the liquid or globule phase is metastable.

The bond-fluctuation model is a lattice model of polymers, where the monomers occupy

a unit cell of the lattice and the bonds are allowed to vary in length between λmin and

λmax. The interaction between the monomers is described by a square well potential with an

attraction interval [0, λ]. It is argued, that this model is the lattice equivalent to a tethered-

hard-spheres chain [63] and R can be calculated. By setting σ = λmin = 2 and λ = λ1 =
√

6,

R1 = 0.225. For λ = λ2 =
√

10, R becomes larger than Rc: R2 = 0.58. The result concerning

the disappearance or continuance of the globular phase in the thermodynamic limit are in

fact in qualitative agreement with the described theory.

6I follow here the notation from [63], where λ← λσ compared to [167].
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A further recent study dealing with that problem studied flexible off-lattice polymers with

finitely extendible bonds (FENE polymer) [76, 77]. The monomers interact via (a truncated)

12-6 Lennard-Jones potential. It was shown, that Θ-transition and freezing remain well sep-

arated in the thermodynamic limit as well. Anyhow, the application of the above described

concept, i.e., the calculation of effective interaction ranges, is not that trivial [167], but it

was shown, that the 2n-n Lennard-Jones potential can be considered to cause long-range

interaction for the case of n = 6 [168].

In the case of the lattice model, I study here, the potential could be written as:

V (r) =











∞ r < 1 ,

−1 1 = r ,

∞ 1 < r .

Hence, R = λ/σ− 1 = 0, which is trivially below any positive threshold value. In particular,

it is also lower than another threshold value Rc′ ≈ 0.015 known from colloidal systems, for

which different solid phases can coexist [169] and which I have neglectd in the discussion so

far. Even though the liquid phase would not be stable in the thermodynamic limit, following

the colloid interpretation, a further stable solid phase would thus emerge.

In general, since the range of interactions seems to play a crucial, quantitative role,

it is an interesting, still widely open question to what extent the colloidal picture in the

compact crystalline and globular phases is systematically modified for polymers with different

nonbonded interaction ranges, where steric constraints (through covalent bonds) are a priori

not negligible.

3.3 The Freezing-Transition Regime

3.3.1 Results for the sc lattice

In order to study the freezing transition, i.e., the low-temperature regime of the system, the

used algorithm must necessarily be able to find the ground states of the system. Fortunately,

there are quite good estimates for the maximum number of contacts in self-avoiding walks,

remember Eq. (3.4). Thus, a first test is to check the ground states obtained during the

simulation against the predicted bound. As described in Sec. 2.1.4 (“Flat Histogram Version

of PERM (flatPERM)”), I calculate during the simulation Cest
n,m, the estimator for the density

of states. I hence plot for every length n the maximal number m for which Cest
n,m > 0 and

compare with Eq. (3.5) with c = 2. The result is shown in Fig. 3.2. It can be seen, that

the energies of the ground states (found during a single simulation) for all chain lengths

agree very well, besides periodic local fluctuation which will be explained later, with the

prediction. Note in particular, that Eq. (3.5) holds exactly for compact cubic ground-state

conformations (see below) at, for example, n = 36, 64 or n = 125. The other way around,
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Figure 3.2: The maximal number of contacts in a self-avoiding walk of length n calculated

using Eq. (3.5) with c = 2 (solid steps) and the number of contacts in ground states obtained

in a single flatPERM run (dots).

the shown Monte Carlo results confirms the scaling approximation for large n, 7 an open task

explicitly mentioned by the authors of [26].

For investigating structural transitions of the polymer models, I calculate the specific

heat and analyze its peak structure. It is expected that even for polymers of finite length,

peaks of fluctuating quantities signalize conformational activity. For more detailed analyses

energy histograms will be considered as well in the subsequent discussion.

Figure 3.3 shows typical examples of specific heats for very short chains on the sc lattice

and documents the difficulty of identifying the phase structure of flexible homopolymers. The

27-mer exhibits only a single dominating peak – which is actually only an sc lattice effect.

The reason is that the ground states are cubic (3×3×3) and the energy gap towards the first

excited states is ∆E = 2. 8 Actually, also the most pronounced peaks for N = 48 (4× 4× 3)

and N = 64 (4×4×4) are due to the excitation of perfectly cuboid and cubic ground states,

respectively. The first significant onset of the collapse transition is seen for the 48-mer close

to T ≈ 1.4. A clear discrimination between the excitation and the melting transition is

7The simulation was done for N = 256 and ground-state contacts are in agreement with the approximation

for n . 250. As I do not consider in the following lengths n & 125 either and for reasons of visibility, the

respective data are not shown in Fig. 3.2.
8This gap is an artifact of the simple-cubic lattice. See below for a intuitive explanation.
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Figure 3.3: Examples of specific-heat curves (per monomer) for a few exemplified short

homopolymers on the sc lattice. Absolute errors (not shown) are smaller than 0.03 in the

vicinity of the low-temperature peaks and smaller than 10−5 in the onset of the Θ-transition

region near T ≈ 1.5.

(a) (b)

(c)

E = −79 E = −60

E = 0

Figure 3.4: Representative confor-

mations of a 64-mer in the different

pseudophases: (a) Excitation from

the perfect 4 × 4 × 4 cubic ground

state (not shown, E = −81) to the

first excited crystal state, (b) transi-

tion towards globular states, and (c)

dissolution into random-coil confor-

mations.
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N = 8 . . . 125

Freezing Collapse

Figure 3.5: Map of specific-heat maxima for several chain lengths taken from the interval

N ∈ [8, 125]. Circles (⊙) symbolize the peaks (if any) identified as signals of the collapse

(TCmax

V
> 1). The low-temperature peaks (+) belong to the excitation/freezing transitions

(TCmax

V
< 0.8). The group of points in the lower left corner corresponds to polymers with

Nc+1 monomers, where Nc denotes the “magic” lengths allowing for cubic or cuboid ground-

state conformations (see Fig. 3.6 and text).

virtually impossible. In these examples, solely for N = 64 three separate peaks are present.

The pictures in Fig. 3.4 show representative conformations in the different pseudophases of

the 64-mer. Due to the energy gap, the excitations of the cubic ground state with energy

E = −81 (not shown) to conformations with E = −79 (Fig. 3.4 a) result in a pseudotransition

which is represented by the first specific-heat peak in Fig. 3.3. The second less-pronounced

peak around T ≈ 0.6–0.7 signalizes the melting into globular structures, whereas at still

higher temperatures T ≈ 1.5 the well-known collapse peak indicates the dissolution into the

random-coil phase.

Anyhow, this first view did not show any regularity regarding the low-temperature

peak(s). In particular, one could not observe any uniform scaling behavior of the specific

heat peaks depending on the chain length as it was found in other studies, for example,

in [127]. Hence, a more systematic approach simulating all system sizes is required. There-

fore, I plot in Fig. 3.5 the peak values of all polymers with lengths N = 8, . . . , 125. What one

sees are three regions. A sparsely populated one at very low temperatures with little peak

heights, a further with peak temperature 0.3 < T < 1 and the Θ-peak region at T > 1. Not

surprisingly, the peaks belonging to the excitation and freezing transitions (+) appear to

be irregularly “scattered” in the low-temperature interval 0 < TCmax

V
< 0.8. The first trend

one notices in that region is that with increasing peak temperature, the relative height of

the peak decreases. And, assuming (for the same region) that even if the lower peaks would

correspond to larger chain lengths, what is not generally true as has been showen exemplarily
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Figure 3.6: (a) Collapse (⊙) and crystallization/excitation (+) peak temperatures of the

specific heat for all chain lengths in the interval N ∈ [8, 125], (b) values of the specific-heat

maxima in the same interval. Error bars for the collapse transition data (not shown) are

much smaller than the symbol size. Θ peaks appear starting from N = 41. For the sake of

clarity, not all intermediate Θ data points are shown (only for N = 41, 45, 50, . . .). The left

plot is that one shown in Fig. 3.5.

in Fig. 3.3, the peak temperature would increase slower than the peak temperature for the

Θ-peak. As expected, the Θ-peak itself behaves very smooth, i.e. it grows homogeneously

in both directions, temperature und peak height.

Looking at the specific-heat peaks depending on chain length, as shown in Fig. 3.6, more

systematics are revealed. There, the peak temperatures and the peak heights, respectively,

as functions of the number of monomers are plotted. The Θ-peak line emerges around

N = 40 as an almost straight, slowly increasing line. At mentioned chain lengths, the Θ-

peak becomes the first time a real maximum of the function. At shorter chains, it exists

only as a shoulder (cp. Fig. 3.3).

The freezing-transition temperatures show a sawtooth-like behavior which is clearly a lat-

tice effect. At the lowest peak temperatures (and highest peak amplitudes), one finds chains

with very compact ground state conformations which are arranged as cubes or compact

cuboids, respectively, e.g. N = 27 (3 × 3 × 3-cube), N = 36 (3 × 3 × 4-cuboid), N = 48
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(3×4×4-cuboid) and so on, until N = 100 (4×5×5-cuboid) and N = 125 (5×5×5-cube).

I will denote these special lengths in the following by Nc. Chains with these lengths have

a very pronounced freezing-transition peak (see Fig. 3.6 b). Furthermore, they have an en-

ergy gap of ∆E = 2 between the ground state and the first excited state. For the sc-lattice,

this can easily be explained. Consider a cuboid conformation with a chain end located in one

of the corners. It forms two energetic contacts with the nearest neighbors. Performing a local

rotation of the bond the chain end is connected with, these two contacts are lost and none

new is formed. In the specific heat curves, this effect causes the emergence of a second peak

for Nc ≥ 64. Here, the crystallization and the transition into the (very compact) ground

state, are two distinguishable processes. At N = 48 this behavior is already conjecturable

because of a shoulder in the specific heat curve. Figure 3.7 a shows again the specific heats

for the chains N = 48, 64, and for N = 80 for illustration.

On the other hand, at the other side of the “teeth”, the respective chains with one

more monomer (Nc + 1) reside. Here, the formerly pronounced low-temperature peak at

T

C
V
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)
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N = 48

21.81.61.41.210.80.60.40.2
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0.6
0.5
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0.3
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C
V
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)

N = 65
N = 49
N = 37
N = 28

21.510.50

0.5
0.4
0.3
0.2
0.1

Figure 3.7: Examples of specific heats of polymers with compact ground states (Nc = 48,

64, and 80) (a) and of polymers with Nc + 1 (b). Error bars are again not shown but are

sufficiently small.
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Nc becomes very weak or just a shoulder at the “foot” of the second peak, respectively,

while the second peak itself now dominates the situation. The energy gap between the

ground state and the first exited one for these chains is (as usual) ∆E = 1 (take a monomer

from a corner, place it next to the single remaining monomer at the surface). Figure 3.7 b

shows the respective heat capacities. It is worth noting that the mentioned behavior can

already/still be seen arising or disappearing, respectively, at lengths Nc−n and Nc +n with

n = 1, 2, 3 (no data plotted).

What we have seen until here is, that there exists a clear low-temperature freezing collapse

below the Θ-point, which is strongly influenced by lattice restrictions. It “moves” with

increasing chain length to lower temperatures (TCmax

V
(N) ≈ 0.4) and higher amplitudes

and jumps for chains with very compact ground states back to a value of TCmax

V
(N) ≈

0.6 and a smaller amplitude. Around these jumps the peak splits into two more or less

pronounced ones. The temperature interval, in which the first peak “moves”, does not change

depending on chain length, while the Θ-peak, as commonly known and explicitly visible,

does. Additionally, the amplitude of the first peak tends to decrease with increasing chain

length. For large chain lengths, it even becomes smaller than the Θ-transition amplitude.

The Θ-transition then dominates the thermodynamic behavior. This is different from what

has been observed recently in similar studies of the bond-fluctuation model with short-range

interaction [127], where the crystallization and collapse transition points converge towards

the Θ-transition temperature and coincide in the thermodynamic limit.

As a technical remark: I am presenting results here for chains with lengths N ≤ 125.

For chains longer than N ≈ 125 it is extremely difficult or almost impossible to sample the

low-temperature region with satisfying accuracy, even with the very sophisticated methods

used. This is due to three effects, accompanying and amplifying each other. On the one

hand, the freezing-transition peak decreases and becomes dominated by collapse-transition

signal, on the other hand the computation time grows anyway with increasing system size.

Generally, the low-energy states are increasingly suppressed in the density of states. By

contrast, the Θ-region, as I will show later, can be sampled very well and accurate up to

chain lengths of order N ∼ 104 with flat histogram simulations gaining the complete density

of state of that region and up to order of N ∼ 105 with canonical simulations at discrete

temperatures.

Let us now look at the transitions in a little more detail. Exemplified for chains of lengths

N = Nc−1, Nc, and Nc+1 with Nc = 36, 64, specific heats and densities of states are shown

in Fig. 3.8, which exhibit the length-dependent characteristic properties discussed above.

While in Fig. 3.8 a for chain lengths around N = 36 only some low-temperature activity is

visible and the collapse transition is vaguely indicated by a broad shoulder, the transition

characteristics are better resolved for N = 64 shown once more in Fig. 3.8 c. As mentioned,

the most pronounced low-temperature peak of the specific heat of the 64-mer is the excitation

peak, the second peak belongs to the freezing transition, and the third, still very shallow peak
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Figure 3.8: Examples of specific heats for polymers with (a) Nc = 4× 3× 3 = 36 and Nc± 1

and (c) Nc = 4× 4× 4 = 64 and Nc ± 1 monomers. In (b) and (d), the respective densities

of states are shown (lines are only guides to the eye). Symbols ∗, + and × emphasize the

lowest-energy states. Note the energy gaps between the ground and the first excited states

in the compact cases Nc = 36, 64 and the dip for N = 35, 63.

signals the collapse transition. The low-temperature behaviors of the 63-mer and the 65-mer

are quite different: While the low-temperature peak of the 63-mer close to T ≈ 0.4 is due to

excitation as is indicated by the E = −79 “dip” in the density of states in Fig. 3.8 d (similar

to the 35-mer in Fig. 3.8 b at E = −38), the relevant peak for the 65-mer is the freezing peak

close to T ≈ 0.6. In this case, the excitation is of much less relevance (although it is still

reflected by a small peak near T ≈ 0.3). This is a consequence of the missing convex lowest-

energy dip in the density of states (or microcanonical entropy). The convex monotony is

a signal of a strong first-order phase separation [170, 171]. This is confirmed by analyzing the

canonical energy distributions for the examples N = Nc−1, Nc, and Nc+1 with Nc = 36, 64

shown in Fig. 3.9 for temperatures close to the respective excitation and freezing transitions.

For Nc−1 = 35, 63 (Fig. 3.9 a), the pronounced excitation transition is expressed by the

respective double peaks with the strong gap in between, which are for the polymers with

chain lengths Nc = 36, 64 (Fig. 3.9 b) due to the energy gap between ground state and first

excited state. This induces the first-order-like character of this pseudotransition. The energy

distributions for various temperatures shown in Fig. 3.9 c for the case N = Nc+1 = 65 do not

exhibit, on the other hand, pronounced double-peaked shapes. The excitation transition at
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Figure 3.9: Energy distributions P (E)

at low temperatures for sc lattice poly-

mers with (a) N = Nc−1 = 35 and 63,

(b) N = Nc = 36 and 64 monomers.

In (c), P (E) is shown for the chain with

length N = Nc+1 = 65 for several tem-

peratures T = 0.2, 0.3, . . . , 0.9. The

distributions for N = 37 (not shown)

are similar. Note that lines are only

guides to the eyes.

extremely low energies is still weakly present as a small shoulder in the distribution at the

corresponding temperature. The freezing transition is associated with slightly larger energies

(and temperature) and visible in the distribution with a weak tendency to a double-peaked

shape.

Finally, for an idea, how typical conformations at different temperatures or energies look

like, see Fig. 3.10. There, conformations of the N = 49-mer are shown, beginning with the

ground state, followed by conformations near the transition temperatures and ending with

a stretched conformation far beyond the Θ-point. Compare with Fig. 3.7 b to evaluate, in

which regions that conformations typically dominates. Figure 3.11 illustrates analogously

the visually not that interesting and surprising freezing transition. I show the ground state,

two states near the transition peak (first and second excited state; the corresponding mean
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Figure 3.10: Typical conformations for the N = 49-mer. Top: Ground State (E = −57,

T → 0); (E = −55, T ≈ 0.37); (E = −50, T ≈ Tc1 = 0.6475); (E = −43, T ≈ 1) (in the

valley between the peaks). Bottom: (E = −37, T ≈ Tc2 = 1.2925); (E = −31, T ≈ 1.6);

(E = −20, T ≈ 2.4).

Figure 3.11: Typical conformations around the freezing transition for the homopolymer with

Nc = 64. From left: Ground State (E = −81, T → 0); (E = −79, T ≈ 0.36); (E = −78,

T ≈ 0.38), the transition lies at Tc1 = 0.37; (E = −75, T ≈ 0.47) (in the valley to the next

peak).

energy value at the transition temperature lies almost exactly between these energies) and

a typical conformation shortly after the transition. Compare with Figs. 3.8 b and d and

3.9 b.
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3.3.2 Polymers on the fcc Lattice

The general behavior of polymers on the fcc lattice is comparable to what was found for the

sc polymers. The main difference is that excitations play only a minor role, and the freezing

transition dominates the conformational behavior of the fcc polymers at low temperatures.

Nonetheless, finite-length effects are still apparent as can be seen in the chain-length depen-

dence of the peak temperatures and peak values of the specific heats plotted in Fig. 3.12 a

and b, respectively. Figure 3.12 a shows that the locations of the freezing and collapse tran-

sitions clearly deviate with increasing chain lengths and one hence can conclude that also

for fcc polymers there is no obvious indication that freezing and collapse could fall together

in the thermodynamic limit.
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)
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3.22.92.62.321.71.41.10.80.50.2
(b)
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55504540353025201510

0.70.60.50.40.30.2
Figure 3.12: Peak temperatures (a) and peak values (b) of the specific heat for all chain

lengths N = 8, . . . , 56 of polymers on the fcc lattice. Circles (⊙) symbolize the collapse

peaks and low-temperature peaks (+) signalize the excitation/freezing transitions. The

error bars for the collapse transition are typically much smaller than the symbol size. Only

for the freezing transition of longer chains, the statistical uncertainties are a little bit larger

and visible in the plots. Θ peaks appear starting from N = 19. For clarity, Θ data points

are only shown for N = 19, 25, 30, . . ..
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Figure 3.13: Ground-state conformations and energies of the 13- (a), 18- (b), 19- (c), 27- (d),

and 30-mer (e) on the fcc lattice (bonds not shown).

Similar to the sc polymers, the finite-length effects at very low temperatures are ap-

parently caused by the usual compromise between maximum compactness, i.e., maximum

number of energetic (nearest-neighbor) contacts, and steric constraints of the underlying

rigid lattice. The effects are smaller than in the case of the sc lattice, as there are no obvious

“magic” topologies in the fcc case. Ground-state conformations for a few small polymers

on the fcc lattice are shown in Fig. 3.13. The general tendency is that the lowest-energy

conformations consist of layers possessing triangular pattern. This is not surprising, as these

conformations are tightly packed which ensures a maximum number of nearest-neighbor

contacts and, therefore, lowest conformational energy. An obvious example is the ground-

state conformation of the 13-mer as shown in Fig. 3.13(a) which corresponds to the intuitive

guess for the most closely packed structure on an fcc lattice: a monomer with its 12 nearest

neighbors (“3–7–3” layer structure). A simple contact counting yields 36 nearest-neighbor

contacts which, by subtracting the N − 1 = 12 covalent (nonenergetic) bonds, is equivalent

to an energy E = −24. However, this lowest-energy conformation is degenerate. There

is another conformation (not shown) consisting of only two “layers”, one containing 6 (a

triangle) and the other 7 (a hexagon) monomers (“6–7” structure), with the same number

of contacts.

A special case is the 18-mer, which exhibits an additional peak in the specific heat at

very low temperatures (see Fig. 3.12 a). As Fig. 3.13 b shows, its ground state is formed by

a complete triangle with 6 monomers, a hexagon in the intermediate layer with 7 monomers,

and an incomplete triangle (possessing a “hole” at a corner) with 5 monomers (“6–7–5”
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structure). Although this imperfection seems to destroy all rotational symmetries, it is com-

pensated by an additional symmetry: Exchanging any of the triangle corners with the hole

does not change the conformation at all. In other words, neglecting this defect, the confor-

mation would look equal independent from the position of the observer. Similar observations

can presumably also be made for the 32-, 46-, and 55-mers, also showing the split from one

peak in the specific heat into two, but for these larger ground-state conformations it does

not make much sense to go into such intricate details, as the anomalies are much less pro-

nounced anyway, compared to the case of the sc lattice. However, the naive expectation

resulting from the observations made for the 18-mer ground state, that the 19-mer, which

can form a perfect shape without any “holes” (“6–7–6” structure), is a prototype of peculiar

behavior is wrong. This is due to the existence of degenerate less symmetric ground-state

conformations, as the exemplified conformation shown in Fig. 3.13 c. The described geo-

metric peculiarities are, however, only properties of very short chains. One of the largest of

the “small” chains that still possesses a non-spherical ground state, is the 27-mer with the

ground-state conformation shown in Fig. 3.13 d. For larger systems, the relative importance

of the interior monomers will increase, because of the larger number of possible contacts.

This requires the number of surface monomers to be as small as possible which results in

compact, sphere-like shapes. A representative example is the 30-mer shown in Fig. 3.13 e.

To get another view on the peak behavior of the “larger” systems, Fig. 3.14 finally presents

the specific heat curves for the 27- and 30-mer. One sees furthermore, that the errors are

under good control, but they grow rapidly with increasing system size (not shown). For

chain lengths N & 50, the errors become almost as large, i.e. greater than 0.1 in absolute

numbers, as the specific heat value itself for low temperatures.
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Figure 3.14: Examples of heat capacities for the polymers with N = 27 and 30 on the fcc

lattice. Error bars lies between 0.01 for low temperatures and 10−4 at the Θ-peak.
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3.4 The Θ-Transition Revisited

The scaling behavior of several quantities at and close to the Θ point in three dimensions

has been the subject of a large number of field-theoretic and computational studies [28, 29,

62, 149, 150, 152–158]. Nonetheless, the somewhat annoying result is that the nature of this

phase transition is not yet completely understood. The associated field theory has an upper

critical dimension dc = 3, but the predicted logarithmic corrections [143–145] could not yet

be clearly confirmed from the numerical data produced so far. In this work, I mainly focus

on the critical temperature TΘ for polymers on the sc and on the fcc lattice. The sc value of

TΘ has already been precisely estimated in several studies, but only a few values are known

for the fcc case. Some previous estimates in the literature are given in Table 3.1.

As the main interest here is devoted to the expected difference of the collapse and freezing

temperatures, I will focus here on the scaling behavior of the finite-size deviation of the

maximum specific-heat temperature of a finite-length polymer from the Θ temperature,

Tc(N) − TΘ, as it has also been studied for the bond-fluctuation model [127, 128] or for

polymer solution models [62, 148, 150]. As a first impression, Fig. 3.15 shows data obtained

by my simulations for the finite size collapse temperature Tc(N) versus the chain length N

for large polymers. The uncorrected leading-order expression of the scaling reads:

Tc(N)− TΘ ∼
1√
N

. (3.6)

lattice type TΘ model Ref. (year)

sc 3.64 . . . 4.13 a single chain [152] (1973)

3.713± 0.007 single chain [153] (1984)

3.650± 0.08 b single chain [155] (1990)

3.716± 0.007 single chain [28] (1995)

3.60± 0.05 c,e single chain [147] (1996)

3.62± 0.08 d,e single chain [100] (1996)

3.717± 0.003 single chain [29] (1997)

3.71± 0.01 polymer solution [150] (1998)

fcc 8.06 . . . 9.43 single chain [152] (1973)

8.20± 0.02 single chain [154, 156] (1988/96)

8.264 lattice theory [157] (1998)
a Given in terms of reduced interactions strength ΦΘ ∼ 1/TΘ

b Given as Kt ∼ 1/Tt = 0.274± 0.006
c Given as βΘ ∼ 1/TΘ = 0.2779± 0.0041
d Given as βΘ ∼ 1/TΘ = 0.276± 0.006
e Fit to Eq. (3.6) ignoring corrections

Table 3.1: TΘ values on the sc and fcc lattice from literature.
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Figure 3.15: collapse temperature Tc(N) versus chain length N . Left: For the sc-lattice,

right: for the fcc-lattice. Dotted lines are cubic splines and plotted just to guide the eye. The

upper bounds of the plots correspond to the respective infinite Θ-temperature (as estimated

below). One notes, that even these large chains are still “far away” from the infinite length

limit. Error bars are plotted but may not be visible.

It is valid for d < 3 [141], but approximately correct for N → ∞ in d = 3. In the case of

polymer solutions, Flory–Huggins mean-field theory [1] suggests the corrected scaling to be

1

Tcrit(N)
− 1

TΘ
∼ 1√

N
+

1

2N
, (3.7)

where Tcrit(N) is the critical temperature of a solution of chains of finite length N and

TΘ = limN→∞ Tcrit(N) is the collapse transition temperature. In this case, field the-

ory [28, 145] predicts a multiplicative logarithmic correction of the form Tcrit(N) − TΘ ∼
N−1/2[ln N ]−3/11.

Logarithmic corrections to the mean-field theory of single chains are known, for example,

for the finite-chain Boyle temperature TB(N), where the second virial coefficient vanishes.

The scaling of the deviation of TB(N) from TΘ reads [28]:

TB(N)− TΘ ∼
1√

N(ln N)7/11
. (3.8)

The authors of [130] claim that, for their data obtained from simulations with the FENE

bond potential, this expression can also be used as a fit ansatz for Tc(N) − TΘ. However,

also the mean-field-motivated fit without explicit logarithmic corrections,

Tc(N)− TΘ =
a1√
N

+
a2

N
, (3.9)

has been found to be consistent with the off-lattice data [130], and also with the results ob-

tained applying the bond-fluctuation model of single chains with up to 512 mono-
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mers [127, 128]. Up to corrections of order N−3/2, Eq. (3.9) is equivalent to

1

Tc(N)
− 1

TΘ
=

ã1√
N

+
ã2

N
, (3.10)

which was found to be consistent with numerical data obtained in grand-canonical analyses

of lattice homopolymers and the bond-fluctuation model [62, 148, 150].

As said, the situation remains diffuse as there is still no striking evidence for the pre-

dicted logarithmic corrections (i.e., for the field-theoretical tricritical interpretation of the

Θ point) from experimental or numerical data. Using the data from independent long-chain

nPERMss [59, 159] chain-growth simulations (sc: Nmax = 32 000, fcc: Nmax = 4 000) in the

vicinity of the collapse transition, I have performed a scaling analysis of the N -dependent

collapse transition temperatures Tc(N), identified as the collapse peak temperatures of the

individual specific-heat curves, and estimated from it the N → ∞ limit TΘ. For the single-

chain system, field theory [28, 145] predicts the specific heat to scale at the Θ point like

CV (T = TΘ)/N ∼ (ln N)3/11. Short-chain simulations [155] did not reveal a logarithmic be-

havior at all, whereas for long chains a scaling closer to ln N was read off [29]. The situation

is similar for structural quantities such as the end-to-end distance and the gyration radius.

Figure 3.16 shows the data points of the inverse collapse temperature T−1
c from the

simulations on the sc (left scale) and on the fcc lattice (right scale), plotted against N−1/2

(same data as in Fig. 3.15). Error bars for the individual data points in Fig. 3.16 were

obtained by jackknife error estimation [172, 173] from several independent simulation runs.

Also shown are respective fits according to the ansatz (3.10). Optimal fit parameters using
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Figure 3.16: Inverse collapse temperatures for several chain lengths on sc (N ≤ 32 000) and

fcc lattices (N ≤ 4 000) (same data as in Fig. 3.15). Dashed lines are fits according to

Eq. (3.10).
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the data in the intervals 200 ≤ N ≤ 32 000 (sc) and 100 ≤ N ≤ 4 000 (fcc) were found to be

T sc
Θ = 3.717± 0.007 ,

ã1 ≈ 2.5, and ã2 ≈ 8.0 (sc) and

T fcc
Θ = 8.18± 0.02 , (3.11)

ã1 ≈ 1.0, and ã2 ≈ 5.5 (fcc). In addition, I investigated also other fit functions motivated by

field theory and mean-field-like approaches, corresponding to Eqs. (3.7)–(3.10), each of which

also with different fit ranges. These results are listed in Tables 3.2 and 3.3, respectively. In

order to decide which of the fits is consistent with my data, the χ2 test is used. Depending

sc-lattice TΘ a, resp. a1, a2 N χ2/d.o.f. d.o.f

Tc(N)− TΘ = a√
N

3.6671± 0.0051 −26.0 500 – 32 000 12.7 4

3.6741± 0.0053 −26.5 1000 – 32 000 6.61 3

3.6898± 0.0065 −28.3 2000 – 32 000 1.39 2

Tc(N)− TΘ = a√
N

(lnN)7/11

3.7353± 0.0056 −8.24 500 – 32 000 0.57 4

3.7370± 0.0057 −8.27 1000 – 32 000 0.21 3

3.7398± 0.0072 −8.36 2000 – 32 000 0.10 2

Tc(N)− TΘ = a√
N (ln N)7/11

3.6164± 0.0048 −83.0 500 – 32 000 39.5 4

3.6287± 0.0049 −86.0 1000 – 32 000 20.7 3

3.6531± 0.0059 −97.6 2000 – 32 000 4.14 2
1

Tc(N) − 1
TΘ

= a
(

1√
N

+ 1
2N

)

3.7255± 0.0060 2.6 500 – 32 000 0.28 4

3.7245± 0.0061 2.6 1000 – 32 000 0.11 3

3.7221± 0.0076 2.6 2000 – 32 000 0.03 2
1

Tc(N) − 1
TΘ

= a1√
N

+ a2

2N

3.7173± 0.0071 2.5, 8.0 200 – 32 000 0.05 4

3.7173± 0.0104 2.5, 8.0 500 – 32 000 0.07 3

3.7194± 0.0131 2.5, 6.3 1000 – 32 000 0.07 2

Tc(N)− TΘ = a1√
N

+ a2

N

3.7030± 0.0059 −32, 135 200 – 32 000 0.53 4

3.7090± 0.0078 −32, 161 500 – 32 000 0.25 3

3.7140± 0.0104 −33, 186 1000 – 32 000 0.12 2

Table 3.2: Values of TΘ on the sc lattice from different fits and their χ2 tests with several

degrees of freedom df .
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fcc-lattice TΘ a, resp. a1, a2 N χ2/d.o.f. d.o.f

Tc(N)− TΘ = a√
N

7.2673± 0.0052 −34.1 100 – 4000 1000 6

7.5760± 0.0070 −39.4 150 – 4000 418 5

7.7101± 0.0080 −42.0 210 – 4000 213 4

7.8445± 0.0096 −45.5 300 – 4000 67.8 3

7.9561± 0.0013 −50.0 500 – 4000 13.6 2

Tc(N)− TΘ = a√
N

(ln N)7/11

7.9218± 0.0064 −15.2 100 – 4000 200 6

8.0757± 0.0083 −16.1 150 – 4000 69.2 5

8.1356± 0.0093 −16.5 210 – 4000 32.7 4

8.1953± 0.0110 −17.0 300 – 4000 9.45 3

8.2468± 0.0149 −17.6 500 – 4000 1.00 2

Tc(N)− TΘ = a√
N (ln N)7/11

6.8260± 0.0045 −79.5 100 – 4000 2000 6

7.2258± 0.0062 −99.3 150 – 4000 1000 5

7.4166± 0.0072 −110.2 210 – 4000 500 4

7.6051± 0.0087 −125.7 300 – 4000 164 3

7.7544± 0.0011 −146.3 500 – 4000 38.1 2
1

Tc(N) − 1
TΘ

= a
(

1√
N

+ 1
2N

)

8.5434± 0.0110 1.27 100 – 4000 111 6

8.4208± 0.0120 1.23 150 – 4000 29.6 5

8.3821± 0.0125 1.22 210 – 4000 13.5 4

8.3369± 0.0141 1.20 300 – 4000 3.00 3

8.3048± 0.0187 1.18 500 – 4000 1.15 2
1

Tc(N) − 1
TΘ

= a1√
N

+ a2

2N

8.1778± 0.0169 1.04, 5.49 100 – 4000 0.81 5

8.1987± 0.0211 1.06, 5.04 150 – 4000 0.32 4

8.2107± 0.0259 1.07, 4.75 210 – 4000 0.21 3

8.2288± 0.0386 1.09, 4.18 300 – 4000 0.11 2

Tc(N)− TΘ = a1√
N

+ a2

N

8.0374± 0.0110 −58.9, 360 100 – 4000 13.1 5

8.0876± 0.0133 −61.5, 414 150 – 4000 4.71 4

8.1219± 0.0163 −63.5, 461 210 – 4000 1.81 3

8.1640± 0.0244 −66.5, 541 300 – 4000 0.04 2

Table 3.3: Values of TΘ on the fcc lattice using the same methodology as in Table 3.2 for

the sc lattice.
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on the sizes of the data sets entering into the analyses and the number of fit parameters,

there are 2 to 6 degrees of freedom df . I make the typical assumption that deviations of the

fit from the used data set are significant, if χ2 > χ2
df ;0.05, i.e., if χ2 lies in the 5% tail of the

pdf
(χ2) distribution of χ2 values. In this case, with 95% probability the correlation between

data and fit function are not random. The thresholds for the different degrees of freedom lie

between χ2
2;0.05/df = 3.0 and χ2

6;0.05/df = 2.1. The calculated χ2 values associated with the

data sets and the fit functions used are also listed in Tables 3.2 and 3.3.

From the results in Table 3.2 for the polymers on the sc lattice, one finds that the two-

parameter mean-field-like fits (3.9) and (3.10) as well as the single-parameter fit according

to (3.7) are consistent with my data. The estimated sc Θ temperatures from these good fits

are in perfect agreement with the most reliable estimates from literature. Surprisingly poor,

on the other hand, is the goodness of the fit against the logarithmic scaling (3.8). Even

more astonishing is, however, the good coincidence with a logarithmic fit of the “wrong”

form N−1/2(ln N)7/11 with the data. Summarizing these results, if logarithmic corrections

as predicted by tricritical field theory are present at all, even chain lengths N = 32 000 on

an sc lattice are too small to observe deviations from the mean-field picture. At least, the

goodness of the logarithmic fit with the “wrong” exponent +7/11 could lead to the specu-

lative conclusion that for N ≤ 32 000 multiplicative and additive logarithmic corrections to

scaling are hidden in the fit parameters of the “mean-field-like fits”. The subleading additive

corrections are expected to be of the form ln(ln N)/ ln2 N . 9 They thus not only disappear

very slowly – they are also found to be even of the same size as the leading scaling behavior,

which makes it extremely unlikely to observe the logarithmic corrections in computational

studies at all [146].

The corresponding fcc results are listed in Table 3.3. In this case, only the fit func-

tion (3.10) (and its goodness) is independent of the data sets used and, therefore, consistent

with the data obtained for all chain lengths. However, considering the noticeable improve-

ment of the goodness for the fits to Eqs. (3.9) and (3.7) and the “wrong” N−1/2(ln N)7/11

form by excluding the very short chains from the data sets leads to the conclusion, that even

chains with N = 4 000 monomers on the fcc lattice are also too short to find evidence for the

logarithmic corrections to mean-field scaling. The best estimates for the fcc Θ temperature

agree nicely with other results presented earlier [154, 156].

3.5 Summary

In this part of the work, I studied homopolymers on the simple cubic (sc) and the face

centered cubic (fcc) lattice. In particular, I studied conformational transitions of these

systems, namely the collapse (or coil–globule transition) at the so-called Θ-temperature

9Similar additive logarithmic scaling is also known, for example, from studies of the two-dimensional XY

spin model [174].
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and the freezing transition at very low temperatures, i.e., well below the Θ-temperature.

A question of particular interest deals with the coincidence of these transitions or, in other

words, with the instability of intermediate phases, in the thermodynamic limit, as found for

colloidal and polymeric systems with short range interaction [63, 127, 167].

Before studying the thermodynamic behavior of the polymer systems, I showed in a pre-

ceding test that the used chain-growth algorithms are in practice able to find ground states

of the system up to relatively large system sizes (N . 250), which is essential for the aimed

studies but by itself a quite hard task that should not be underestimated [26]. Looking

then at the low temperature peaks in the specific heat, considering them as indicators of

structural activity, the first thing one notes on the sc lattice is, that there seems to be no

regularity at all. It becomes then clear, that the general behavior of the finite size freezing

temperature is strongly superposed by a systematic pattern due to lattice effects. Due to

the high precision of my simulations, it was possible to unravel and to explain this pattern.

It turned out, that the freezing temperature fluctuates between almost fix boundaries in

a periodic manner. In particular, I found “magic” lengths 10 where the ground states fit into

compact cuboid shapes. For these lengths, there exists an energy gap between the ground

state and the first exited one, causing a first-order like pseudotransition. For polymers on

the fcc lattice, the situation becomes more complex. Nevertheless, polymers behave similar

on both lattices with respect to the general behavior of the freezing transition.

To determine the deviations of the finite size collapse transition temperature from the

infinite length Θ temperature, I simulated polymers with lengths up to N = 4000 monomers

for the fcc lattice and N = 32 000 monomers for the sc lattice, respectively. This deviation

scales in the leading order as Tc(N) − TΘ ∼ 1/
√

N with the system size N . As I simulate

in the upper critical dimension dc = 3, there should be corrections to this scaling. Hence,

I fitted my data against various fit functions motivated by field theory and mean-field-like

approaches. It turned out that even these apparently large systems are still to short to

uniquely identify some type of correction. Anyhow, my estimates for the infinite length Θ

temperature agree very well with the most precise estimates from the literature and confirm,

to my best knowledge, the only experimental value existing so far for the fcc lattice.

Concerning the question of the stability of intermediate phases, it can be concluded from

my results, that both transitions, the collapse and the freezing remain well separated also

in the extrapolation towards the thermodynamic limit. This can be explained by a further

stable “solid” pseudophase due to the very short attractive interaction in the model. For

publications of parts of this chapter, see [30, 175].

10This notation is indeed borrowed from field of particle clusters, where it indicates particle numbers, for

which compact (icosahedral) conformations can be formed [76].
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Chapter 4

Tubelike Flexible Polymers

In the previous part of my work I concentrated on the global structure formation, i.e., on

the collapse and crystallization for comparatively large polymers using a very simple lattice

model. A further fundamental issue in polymer research is resolving the underlying secondary

structure segments as the functionality of these macromolecules, e.g., biopolymers, strongly

depends on the formation of stable ground-state conformations with specific substructures.

Experimentally, the identification of these substructures is performed, for example, using

single-molecule microscopy techniques, X-ray analyses of polymer crystals, or NMR for poly-

mers in solution, methods which identify structural details of specific molecules. As these

techniques are, unfortunately, relatively costly and can hardly be generalized in a systematic

manner, the structural behavior of polymers and its modeling got into the focus of computer

simulations, too.

One central question is of course, what degree of abstraction (coarse-graining) is reason-

able, preserving the highest possible generality, to treat certain features of real (bio)polymers

or, the other way around, what features one can reliably study with a certain degree of ab-

straction. As shown before, one may, for example, understand the well-known coil-globule

transition by studying simplest one-dimensional models, but neither are these models, nor

simple off-lattice generalizations of them, appropriate to develop a classification scheme of

distinct secondary structures. In other words, questions about the formation of secondary

structures of proteins will generally not be answered satisfactorily. Of course, there are

studies on the formation of secondary structures using linelike models. I will refer to and

comment them shortly in the first section of this chapter (4.1, “Related Studies, Alternative

Approaches”) and give also short comments on other recent, related studies. Certainly, the

other extreme would be to tackle the problem using all-atom simulations, which indeed led

to a huge amount of amazing results so far [87, 93, 94], but, anyhow, suffers from the same

lack of generalizability as mentioned experimental techniques as these simulations deal with

specific molecules.

53
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a) b) c)

Figure 4.1: Visulaization of the macromolecule with Protein Data Bank (PDB) code

1RIJ [176] in three different models. a All-atom representation with usual secondary struc-

ture marking. b Representation of the backbone (i.e., the Cα atoms) in a linelike AB model.

c Same as before, but in the tube model.

I will therefore try to approach this problem in this part of my work using some kind

of, in a sense, “intermediate” model, which I introduce in Sec. 4.2.1 (“Model and Simu-

lational Methods”). It is derived from a line-like model but steric influences, for example

of monomeric side-chains in real biopolymers, will be effectively introduced by a geomet-

ric thickness constraint, which enlarge the “line” to a “tube” without taking into account

further microscopical details [78, 80, 177]. (See Fig. 4.1 for visualisation of the mentioned

models exemplified by an experimentally obtained conformation of a real macromolecule.)

I implement that thickness constraint using the concept of the global radius of curvature of

a curve (4.2.2, “The Global Radius of Curvature”), an elegant mathematical ansatz arisen

in the context of knot theory, which is proven to provide a concise characterization of the

thickness of a curve [178]. Section 4.2.3 (“The Tube Thickness”) dedicates to that relation

to the thickness of the polymer tube.

In Sec. 4.3 (“Motivation and Overview”) the usage of the tube model will be motivated

in more detail and an abstract of the study presented in this chapter is given. I will then

in Sec. 4.4 (“Ground State Analysis, σ = 1”) concentrate in very detail on the ground

states of the model depending on the thickness constraint at fixed interaction parameters.

Based on that, I will emphasize in Sec. 4.5 (“Deeper Analysis and Remarks”) special topics

of ground-state formation, like the crystallization on regular lattices or the appearance of

biological relevant structures varying the interaction parameter. After considering the be-

havior of the model at temperature T → 0, i.e., the behavior of ground states, in Sec. 4.6

(“Thermodynamic Behavior of Tubelike Homopolymers”) the complete phase diagram for

short polymers at finite temperatures depending on their thickness will be revealed. The

classification of polymer conformations, including biologically relevant structures like the α-

helix or β-sheets, which are solely controlled by the intrinsic thickness parameter, becomes

then evident. Finally, I will show in Sec. 4.7 (“The Hydrophobic-Polar Tube Model”), by
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way of example, results for a prominent and, without thickness contraint, extensively studied

heteropolymer and discuss, how the introduction of different types of monomers interacting

by different potentials, may influence the general structural behavior of tubelike polymer

models. See also [179–181].

4.1 Related Studies, Alternative Approaches

I mentioned in the above introduction, that simple linelike models with pairwise interactions

are not appropriate to study secondary-structure formation. It is generally true, that mod-

eling volume exclusion by means of pure pairwise interaction potentials without taking into

account further details is not sufficient for that purpose (see, for example, [79]).

But of course are there interesting studies on this topic. Aside from early attempts

to study helix formation with simple lattice models, resulting in the definition of the so

called “lattice helices” of different types [182], off-lattice models have been used which were,

however, to some extent dedicated or less general. Some time ago, for example, it has

been shown by Noguchi and Yoshikawa, that introducing a bending potential to the single

linelike homopolymer chain, i.e., considering stiff polymer chains, can lead to the formation of

toroidal structures, i.e., helices, in the crystalline or “frozen” conformational phase [183]. In

the same year, Kemp and Chen reported in a very interesting letter on the formation of very

stable helical conformations in a wormlike polymer chain with pairwise volume exclusion.

They found different helical phases at different temperatures, including perfect helical ground

states. Anyhow, the authors themselves point out that only a strong directional, anisotropic

pairwise interaction with fixed bond angles of π/3 led to these impressive results and, besides

further variable parameters in the potential, that this directional interaction, which is, for

example, caused by hydrogen bonds, is obviously essential [184]. Considering, for example,

also the work by Rapaport [185] on helix formation using torsional potentials including

information on the helical ground state, it becomes clear, that helices can be stabilized

rather easily with suitable potentials, as stated also by Sabeur et al. [186]. In their dynamical

study, helical structures appear as, relatively stable, intermediate conformations during the

collapse process of an also linelike model with pairwise interaction between beads connected

by harmonic springs. It should be noted, that the so far mentioned studies dealt “just” with

helix formation, other biological important secondary structures, like sheets, do not seem to

occur as relevant conformations in these models.

Helical tubes have been in the focus of recent works by Snir and Kamien, especially the

computation of compact shapes of helices, complementing the original ideas of Maritan et

al. [187–189]. A main result in these works is the computation of an optimal pitch to radius

ratio c∗ for most compact α-helices, which I will use as a reference structure later. Another

interesting statement there, which will be confirmed by my work, is that the helix is only

optimal in the sense of minimized excluded volume, up to a certain tube length. At longer
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tube lengths, the helix gives way to more complex tube conformations [189]. Introduncing

then a bending rigidity, Snir and Kamien study also the competition between elongated

tubes and helices. With a comparable ansatz, using a hard-sphere solvent and calculating

the solvation free energy Fsol, Hansen-Goos et al. confirm and extend the results of the above

mentioned study. Depending on the solvent properties, they present for example regions of

different protein structures which minimize Fsol [190].

In a fundamental work by Banavar and Maritan [81, 82] considering a square-well poten-

tial for the interaction between monomers, it was shown, that different secondary structures

may generally emerge by varying tube thickness and interaction radius (see also Sec. 1,

“Thick Polymer Models”). A possibility for stabilizing or facilitating the formation of sec-

ondary structures is, as briefly mentioned already above, indeed the consideration of hydro-

gen bonds, i.e., a further attracting interaction, between specific monomers or the integration

of further interactions. This was succesfully done for example in work by Hoang et al., Auer

et al. or Wolff et al. [191–193], where different classes of secondary structure types could be

assigned to different interaction strengths, relative to the hydrogen bond strength. Note, that

in the last both works, the cylindrical tube model is applied, where the tube is approximated

by real cylinders around the covalent bonds between the Cα monomers and spheres at the

position of them [194]. This is different in nature from the model I use here, as cooperative

behavior does not play a role and the consideration of hydrogen bonds is therefore necessary

for the generation of secondary structures [79, 179].

4.2 Technical Details

4.2.1 Model and Simulational Methods

As said, what I simulate in this part of my work is a model for flexible polymer (initially

homopolymer) chains consisting of a certain number of (equal) monomers, modeled as off-

lattice, pointlike particles. The bond length between consecutive monomers along the chain

is fixed to unit length. The whole object is then coated by a tube with certain thickness.

See for a visualisation for example Fig. 4.1 c.

Every monomer interacts pairwisely with every other monomer in the chain, except for

the neighbouring ones along the chain. The interaction potential consists of an attractive

van-der-Waals-like force and strong repulsive forces at short distances. In other words, I use

the Lennard-Jones potential for the pairwise interaction between two monomers i and j:

VLJ(rij) = 4ǫ

(

(

σ

rij

)12

−
(

σ

rij

)6
)

, (4.1)

with ǫ = 1. Note that VLJ(σ) = 0 and σ = 2−1/6 ropt
ij , where ropt

ij is the minimum position of

the potential. The thickness of the tube is implemented considering a three body potential

resulting in cooperative effets capturing the steric constraint imposed by the tube [79]. This
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concept will be described in detail in the following Sects. 4.2.2 (“The Global Radius of

Curvature”) and 4.2.3 (“The Tube Thickness”).

I study the model by means of advanced Monte Carlo computer simulations and numerical

methods. For ground-state problems (Secs. 4.4, “Ground State Analysis, σ = 1” and 4.5,

“Deeper Analysis and Remarks”), one may use for example the multicanonical method [115,

116, 121], the efficient random walk algorithm introduced by Wang and Landau (“Wang–

Landau algorithm”) [119], parallel tempering [107, 108] simulations or the energy-landscape

paving procedure [135]. All these methods guarantee, if appropriately applied, that one does

not stick in local energy minima, possibly “far away” from the ground state. Furthermore, for

the purpose of ground-state search, they work, in principle, nearly equally well as one does not

have, for example, to care about the quality of the sampling of the whole configuration space.

In fact, the performance of the simulation depends mainly on the simulational parameters

used, like temperature sets or energetic bin sizes, and, if necessary, updating procedures

of them. Additionally, I use standard deterministic conjugate gradient methods to refine

stochastically obtained results [139].

For the methodologically more challenging task of studying the thermodynamic behavior

(Sects. 4.6, “Thermodynamic Behavior of Tubelike Homopolymers” and 4.7, “The Hydropho-

bic-Polar Tube Model”), I use generalized-ensemble methods [115, 116, 119] to estimate the

density of states. I employ the recursive method of Wang and Landau [119] within a reason-

able, predetermined energetic interval, with the control parameter f initialized and subse-

quently decreased to f − 1 < 10−7 as described in [120]. Since detailed balance is violated,

as described in Sec. 2.2.4 (“Random Walk Algorithm by Wang and Landau”), I then freeze

the weights and perform multicanonical production runs for validation.1

Furthermore, I checked my results for reliability also against data [195] obtained by

parallel tempering simulations [107, 108, 112] for selected parameter sets, as well as against

data [196] from a multicanonical study presented in [68]. For such a comparison, see Fig. 4.29

(p. 93). The simulations of different polymer lengths and thickness constraint values were

carried out separately to avoid correlations and statistical imbalances. For a general descrip-

tion of the mentioned methods I refer to Sec. 2.2 (“Techniques for Off-Lattice Simulations”).

4.2.2 The Global Radius of Curvature

To implement the self-avoiding tube, I use the concept of the global radius of curvature. The

radius of curvature of three points, i.e., the radius of the circumcircle of three monomers i,

j and k located at positions xi, xj and xk, can be calculated as

rc(xi,xj ,xk) =
rij rik rjk

4A∆(xi,xj ,xk)
, (4.2)

1Actually, this was done for a reasonable number of simulations. As the preliminary estimates for the

density of states obtained by the Wang–Landau method were quite good, the final production run was not

carried out for every parameter set.
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Figure 4.2: Two examples of circum-

circles around three monomers and

the corresponding radii of curvature.

The small circle corresponds to the

radius of curvature of three consec-

utive monomers, i.e., to the local ra-

dius of curvature rlc of the monomers

(i, i + 1, i + 2) = (8, 9, 10). The

bigger circle corresponds to the ra-

dius of curvature rc of the monomers

(i, j, k) = (2, 10, 9).

where A∆(xi,xj ,xk) is the area of the triangle corresponding to the three points and rxy

denotes the distance between two points. Figure 4.2 shows for illustration two of such

circumradii in a specific polymer conformation. Note, that the value of the radius depends

on three monomers, which causes a three point interaction between monomers, in contrast to

a two-point interaction one may use in hard sphere models to incorporate volume exclusion

effects.

An interesting subclass of radii of curvature in this connection are local radii of curvature

rlc(xi,x(i+1),x(i+2)), i.e., the radii of curvature of three consecutive monomers. An example

can be found in Fig. 4.2 as well. Local radii of curvature are indeed related to the bending an-

gles ϑ between two consecutive bonds connecting these three monomers: ϑ = 1/rlc +O(r−2
lc )

for small ϑ. Besides this relation, local radii are of interest for technical reasons (see below),

they can help, for example, to determine the most compact exact helix conformation using

them to build an order parameter for the transition between, in its main direction, elongated

helices and compressed and, in the perpendicular direction, widened ones. For more details,

see the discussion in Sec. 4.4.2 (“Preliminary Remarks, Overview”) or [187, 189].

The global radius of curvature is then defined as the minimal radius of all circumcircles

rc of any three monomers in the chain:

rgc(X) := min{rc(xi,xj ,xk), ∀ 1 ≤ i < j < k ≤ N} . (4.3)

As a technical remark: Really calculating all radii of curvature explicitly to obtain the

global radius of curvature of a given conformations is obviously needless and would be very

expensive in terms of computing time as the number of radii grows with the third power of

the monomer number (O(N3)). Excluding a huge number of a priori too large radii with

much less effort, using previously calculated local radii as estimates or bounds for the global

radius of curvature, sorting then segments of the triangles with respect to one coordinate and

finally eliminating evidently to large segments, the calculation can be done, in practice almost

always, nearly in O(n log n) steps (eventually plus some marginal higher order terms) [177].
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Figure 4.3: Illustration of the relation between the thickness of a curve and the global radius

of curvature. Left : The tube interpretation. The radius of the tube is the global radius of

curvature of the curve. Right : The sphere interpretation. The radius of the spheres equals

also the global radius of curvature. Picture from [178]. Copyright (1999) National Academy

of Sciences, U.S.A.

4.2.3 The Tube Thickness

Figure 4.3 illustrates the relation between the above introduced concept and the generic

thickness of a tube. At the left side, the curve is shown with a smooth, non-intersecting tube

of constant radius centered on the it, the natural idea of a tubelike curve. The right subfigure

shows the same curve with spheres of the same radius intersecting the curve at at least three

point (shown is a continuous curve, but the concept can be applied to discrete curves as

well [178]). Bigger spheres, provided a rigid curve and hard speres, could not be placed at

these positions, spheres with a radius less than the tube radius would not intersect the curve

at three or more points. It has been shown, that both radii, the tube radius and the radius

of the shown spheres are equal to the global radius of curvature, i.e., that the global radius

of curvature is proven to be a concise characterization of the thickness of a curve [178].

Hence, given a polymer conformation X = (x1, . . . ,xN ) with N monomers, I define as

its “natural thickness” (diameter) d(X) twice the global radius of curvature rgc(X),

d(X) = 2rgc(X) . (4.4)

The other way around, considering a tube conformation X∗ with some diameter d(X∗), one

can of course find conformations X with 2rgc(X) > d(X∗) or even 2rgc(X) ≫ d(X∗) by

deforming X∗. It is, in a sense, natural, that all these conformations should account for

the partition sum of tube X∗, i.e., when simulating tube models, the conformational space

should be restricted by some constraint on the global radius of curvature, which I will call

ρ from here on, such that all tube conformations with d(X∗) < 2ρ are not allowed. Applied

to discrete homopolymers on can say that, given a such a thickness constraint ρ, one can

construct an excluded volume depending on ρ around two monomers, which is “forbidden” for
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any other monomer. A polymer conformation then complies with the thickness constraint if

any other monomer resides outside these circles. This view is nicely illustrated and amplified

in [177]. Since the energy of the polymer is given by E(X) =
∑

i,j>i+1 VLJ(rij), the partition

function reads in this case:

Zρ =

∫

DXΘ(rgc(X)− ρ) e−β E(X) , (4.5)

where Θ(z) is the Heaviside step-function and β = (kBT )−1 is the inverse thermal energy.

The constraint ρ will be used as the thickness parameter in all simulations done in this work,

the Boltzmann constant kB is set to kB = 1.

Please note that the model may behave different by setting d = 2ρ, i.e. by using the

natural thickness as the simulation parameter. A conformation then only contributes to

the partition sum, iff it actually has the natural thickness ρ. Θ(rgc(X) − ρ) is in that case

replaced by δ(rgc(X)− ρ) in the partition function [177].

4.3 Motivation and Overview

What precisely motivates one to simulate homopolymer models with a geometric constraint

“thickness” at all and especially in the way described above?

Even if the most polymer models are general models for classes of polymers, what one

should always keep in mind is the most prominent subclass of polymers, namely biopolymers

or proteins. Definitely, polymers in biology are not thin strings. Amino acids, and thus

proteins do have side chains, which could not overlap and hence induce steric contraints. It

might be therefore useful, to introduce some constraint that could mimic this three dimen-

sional volume exclusion in a cooperative manner. The tube model using the concept of the

global radius of curvature is indeed appropriate, whilst pure pairwise volume exclusion is

not, as indicated in Sec. 4.1 (“Related Studies, Alternative Approaches”) and in detail dis-

cussed in [79]. Furthermore, and this is the main reason, it has been adumbrated, that just

introduncing the thickness of a curve could lead to secondary structure formation [78, 81].

A comprehensive study of the influence of the tube thickness over the whole parameter

range on ground-state formation as well as for the thermodynamic behavior is still missing,

to the best of my knowledge, and will therefore be the subject of this chapter.2 As some

kind of abstract, I will here give an outlook on the main results I present in the following,

exemplified by the polymer with N = 9 monomers.

2By the way, as a technical remark, the introduction of a geometric constraint might implicate some

technical advantages for finding minimal energy conformations or resolving thermodynamic properties by

providing a tool to restrict the conformational space of one-dimensional models, which is in general highly

beneficial in broad histogram simulations. See also the corresponding remark in Sec. 4.7 (“The Hydropho-

bic-Polar Tube Model”).
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a) b)

Figure 4.4: a Ground-state energy per monomer Emin/N of tubelike polymers with nine

monomers as a function of the global radius of curvature constraint ρ (solid line). For

comparison, also the energy curve of the perfect α-helix is plotted (dashed line). The inset

shows that for a small interval around ρ ≈ 0.686, the ground-state structure is perfectly α-

helical. b Side and top views of putative ground-state conformations for various exemplified

values of ρ. For the purpose of clarity, the conformations are not shown with their proper

thickness.

Figure 4.4 shows the energy of ground-state conformations of tubelike polymers as a func-

tion of the thickness parameter ρ. Also shown are visualizations of selected conformations

for particular values of ρ. The ground-state energy per monomer for the linelike 9mer, i.e.,

the polymer which is not influenced by the thickness at all (0 ≤ ρ . 0.6) is Emin/N = −1.85.

Increasing the thickness slightly such that the thickness constraint becomes important and

starts to affect the structure formation, the first interesting structure formation, namely

the helix formation can be observed. Furthermore, optimal space-filling helical symme-

try [187, 188] is reached when approaching ρα ≈ 0.68 (see inset of Fig. 4.4), where the

ground-state conformation takes the perfect α-helical shape. In that conformation, all tor-

sional angles are identical (near 41.6◦) and also all local radii are constant; the number of

monomers per winding is 3.6. Note that for proteins, where the effective distance between

two Cα atoms is about 3.8 Å, ρα in the units used here corresponds indeed to a pitch of about

5.4 Å as known from α-helices of proteins. Thus, as a first observation on will see, that an

α-helix is a natural geometric shape for tubelike polymers. For larger values of ρ, helices

unwind, i.e., the pitch gets larger and the number of monomers per winding increases. In the

interval ρα ≤ ρ . 0.92, fluctuation peaks of the derivative △Emin/△ρ indicate that there

are also stable helical conformations in the vicinity of ρ ≈ 0.73 (winding number ≈ 4.5)

and ρ ≈ 0.78 (winding number ≈ 5.0). Near ρ ≈ 0.92, the final helical state has been

reached. The thickness has increased in such a way that the most compact conformation

is a helix with a single winding. After that, a topological change occurs and the ground-

state conformations are getting flatter. The helix finally opens up and planar conformations

with similarities to β-hairpins become dominant. Of coure, the system size plays some role,
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T

ρ

CV (ρ, T ) 0.40.30.20.101.21.11.00.90.80.70.6 α
β

γ

δ

Figure 4.5: Structural pseudophase diagram of thermodynamically relevant tube polymer

conformations as a function of the thickness constraint ρ and temperature T for polymers

with N = 9 monomers. The height of the peaks corresponds to the value of the specific

heat. Helical or helix-like conformations dominate in region α, sheets in region β, rings in

region γ, and stiff rods in pseudophase δ. The general structure of the phase diagram will

remain unchanged also for longer polymers.

even if the dominant behavior will be the same for all (short) chains. For some reason, the

9mer shows the most pronounced helical behavior, whereas one will see the formation of

flat sheetlike structures more clearly for other system sizes. For thickness values ρ ≈ N/2π,

ground-state conformations are almost perfect circles with radius ρ.

After the preparatory study of ground-state properties, the thermodynamic behavior of

the tube polymers will be discussed in the following. Based on the peak structure of the

specific heat CV (ρ, T ) = (〈E2〉ρ − 〈E〉2ρ)/T 2 as a function of temperature T and thickness

constraint ρ, the structure of the conformational ρ-T pseudophase diagram is identified.

Figure 4.5 shows this specific-heat landscape for the N = 9 homopolymer as obtained from

the densities of states for given thickness constraint ρ. The peaks or ridges of the profile

indicate conformational activity and thus represent transitions between different conforma-

tional pseudophases. Guided by the analyses of the ground-state properties, one identifies

four principal pseudophases which will be called α, β, γ and δ. In region α, helical confor-

mations are the most relevant structures. In particular, as shown, the α-helix resides in this

pseudophase. Characteristic for the transition from pseudophase α to β is the unwinding

of the helical structures which become more planar. Thus, region β is dominated by simple

sheetlike structures. For very short chains, the only sheetlike class of conformations is the

hairpin. For longer chains, one also finds more complex sheets. A characteristic property of

the hairpins is that these are still stabilized by monomer contacts. These break with larger

thickness and higher temperature. Entering pseudophase γ, the dominating structures pos-

sess ringlike shapes. Finally, region δ is the phase of random coils, which are getting stiffer
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phase type views of representative example

α helix

β sheet

γ ring

δ rod

Table 4.1: Exemplified confor-

mations being thermodynami-

cally relevant in the respective

pseudophases shown in Fig. 4.5,

visualized in different represen-

tations.

for large thickness and eventually resembling rods. Representative polymer conformations

dominating the pseudophases in the regions α to δ are depicted in Table 4.1 in different

representations. In the following sections, I will present these results in more detail and also

explain the methodology and care about selected problems of special interest.

4.4 Ground State Analysis, σ = 1

4.4.1 Nomenclature and Methodology

I will characterize and/or identify conformations of course by their total energy E(X), but

naturally also by geometrical properties like end to end distance rend or radius of gyration

rgyr. However, as this turns out to be not sufficient to distinguish between different conforma-

tions satisfactorily, I also take into account local radii of curvature rlc,i := rc(xi,xi+1,xi+2),

which are related to the bending angles between two bonds ϑ via ϑ = 1/rlc + O(r−2
lc ) for

small ϑ, as well as torsion angles φ ∈ (−π, π].

One speaks of a κ0-conformation, if the chain has a constant local curvature at all

monomer positions, i.e., if rlc,i = rlc,j , ∀i, j. Analogously, a structure with constant tor-

sion angles is called a τ0-conformation [197]. For example, a prominent structure with both,

κ0- and τ0-property, is the perfect α-helix. A conformation is called “closed” if the distance

between both ends of the chain, i.e., rend, resides in the close vicinity of the Lennard-Jones

minimum, whereas a “symmetric” structure exhibits a symmetry of the torsion angles with

respect to the center of the chain (see the following subsection for a detailed description and
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remarks). Nice examples for “closed” κ0 conformations, namely twisted circles of constant

curvature (in German, so-called “windschiefe Kreise” [198]), are discussed in [197]. Finally,

in “flat” conformations, the backbone has an almost two-dimensional planar structure, where

all torsion angles converge to 0, i.e.,
∑

i φ
(i)
π/2 → 0, where

φπ/2 := min(|φ|, π − |φ|) . (4.6)

4.4.2 Preliminary Remarks, Overview

For the comprising study of the ground states of the model, I first set the Lennard-Jones

parameter to σ = 1.3 In this case, the “natural thickness” of a flexible LJ polymer with-

out thickness constraint, rmin
gc , i.e., the global radius of curvature of the ground state of

that system (cp. Sec. 4.2.3, “The Tube Thickness”), is roughly half the interaction length

rmin
ij /2 = 2−5/6 ≈ 0.56, which thus sets a reasonable bound for the thickness constraint.

Below this value, the thickness constraint does neither influence the ground-state properties

nor the thermodynamic behavior at all. See, in this context, Fig. 4.29 (p. 93), where the

thermodynamic behavior of an examplified polymer sequence at ρ = 0.0 and ρ = 0.6 is

directly compared. Thus, in the following, only tube polymers with ρ > rmin
gc are considered.

Actually, due to the discrete nature of the bead-stick polymer model, I measure a “natural

thickness” & 0.59 for all polymers considered. Data for ρ < 0.6 is therefore not shown

in the plots in this section. As mentioned before, I carried out simulations for different

thickness constraints separately. The bin size of the simulations is ∆ρ ≤ 0.01 in the most

interesting regions. Specific regions, for example the α-helices, have been studied with bin

sizes ∆ρ = 0.0005. Figure 4.6 displays the different thickness values for which ground-state

search and thermodynamic analyses have been performed. Overall, more than threehundred

ground-state searches and more than thousand flat histogram simulations 4 have been carried

out. This number of simulations was necessary to get reliable statistics and to obtain the

high coverage of the thickness space, particularly in the low-temperature regime, which is

essential for the high-precision results I present.

I compare some of my results with observables for the spacefilling, perfect, most com-

pact (all synonymously used here) α-helix. This helix is defined as the helix (x, y, z) =

(r sin φ, r cosφ, pφ/2π) with a pitch p such that the surface of the tube has a self-contact

at the cylinder with radius r and the radius r is minimal under the thickness constraint.

In other words, the optimally packed, i.e., spacefilling, helix corresponds to the transition

between the two qualitatively different regimes of p/r > c∗ and p/r ≪ 1 [187]. The local

radius of curvature can be used to distiguish them. While in the firstmentioned regime,

the global radius of curvature is always equal to the local radii, it is stricly lower than the

local radii in the latter. The computation of this helix is non-trivial, as the critical ratio c∗

3I will make this parameter variable for selected problems later.
4For every thickness value several independent simulations were done to get reasonable averages and to

estimate the standard statistical error.
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N = 13

N = 10

N = 9

N = 8

ρ

1.351.31.251.21.151.11.0510.950.90.850.80.750.70.650.6
Figure 4.6: Thickness values at which simulations have been performed for different tube

lengths. ×-signs mark values for ground-state searches, +-signs mark positions where the

thermodynamic behavior was determined by flat histogram sampling. A few simulations

have been performed at ρ > 1.35, but are not shown.

depends on the discretization level and ranges from c∗ ≈ 2 for ρ ≈ 0.7 to c∗ = 2.512 for the

continuous case, which is equivalent to ρ → ∞. An interesting and detailed discussion of

compact helix formation and the critical ratio c∗, leading of course to the same result, can

be found also in [189].

Figure 4.7 shows the energies of the ground states for various chain lengths in dependence

of ρ. Additionally, the energy of the corresponding calculated space-filling α-helix described

above is shown in comparison. In Fig. 4.8 the corresponding derivatives dE/dρ are plotted,

in order to emphasize regions of structural activity. In these regions, where the derivative

exhibits peaks, noticeable qualitative conformational transitions occur.

To describe and understand the different classes of ground-state conformations, I present

in Figs. 4.9 and 4.10 significant structures and plot in Fig. 4.11 the corresponding contact

maps, in which a contact is counted, if the distance between two monomers rij < rmin
ij + ǫ.

I set, to some extent indiscriminately, ǫ ≈ 0.2 but, of course, the contact maps do not depend

on minor variations of ǫ. Furthermore, due to the small size of the systems, the contact

maps do not become more meaningful by scaling ǫ with the thickness in some way, instead

of keeping ǫ constant. In addition, in Figs. 4.12 and 4.13 end-to-end distances and mean

torsional angles are shown, and Fig. 4.14 shows the fluctuations of local radii of curvature

and the torsional angles, which I use as a measure for the κ0 and τ0 property, whereas the

existence of these properties corrensponds to vanishing fluctuations. Based on this data, one

can classify the generic ground-state behavior by introducing three general regions: thin,

intermediate, and thick tubes, which will be discussed in detail in the following subsections.

Finally, in Fig. 4.15 torsional symmetry values τs∓ of the ground-state conformations are

plotted. Conformations are called symmetric, i.e, have symmetric torsional angles along the
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Figure 4.7: Energies of ground states depending on the thickness constraint ρ. Dashed lines

show for comparison the energy for exact α-helices.
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Figure 4.8: Numerical derivatives of the energies in Fig. 4.7 with respect to ρ.
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N = 8

ρ = 0.60 0.685 0.72 0.73 0.91 0.94 1.023 1.10

N = 9

ρ = 0.60 0.6855 0.73 0.78 0.88 0.92 1.20

N = 10

ρ = 0.699 0.76 0.83 0.87 1.10 1.12 1.25

N = 13

ρ = 0.68 0.73 0.74 0.75 0.80 0.97 1.02 1.60

Figure 4.9: Ground-state conformations for selected thickness parameters ρ for N = 8, 9,

10 and 13 (from top to bottom). The second rows for N = 9 and N = 13 show alternative

views of the same configurations. For reasons of better visibility, the thickness is not shown

in the proper scale. See Fig. 4.10 for an example of an appropriate visualization.

Figure 4.10: The same ground states as in Fig. 4.9 for N = 8 shown with appropriate

thickness, to give a better idea of the “real” systems.
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Figure 4.11: Contact maps of the conformations shown in Fig. 4.9. The axes show the

monomer numbers i and j, the entries of the matrix are set (•), if two monomers i and j

are in contact with each other, i.e., if the distance between them in the three-dimensional

structure is shorter than a certain threshold value. This value is here slightly larger than

the minimum distance of the LJ potential rmin
ij .

chain, if opposite torsional angles, relative to the middle of the chain, are equal. They are

called antisymmetric if the respective angles cancel each other:

τs∓ =
2

Nφ

∑

i<Nφ/2

φi ∓ φNφ+1−i , (4.7)

where Nφ is the number of torsional angles along the chain. Hence, in the case of symmetric

conformations, τs− vanishes and for antisymmetric ones τs+. For an intuitive understanding,

one can say, that antisymmetric conformations are mirror-symmetric, i.e., one finds a mirror-

plane through the conformation (see, for example, the conformation with N = 8 at ρ = 0.72

in Fig. 4.9), whereas for the symmetric case, the ends of the conformations can “only”

be rotated onto each other (see, for example, the helical conformations). The observable

is finally normalized by Nφ/2. The symmetry is generally not essential for defining or

distinguishing different “phases”, but it is an interesting property of the theory and facilitate

the understanding of ground-state structures. One can imagine, of course, lots of similar
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Figure 4.12: End-to-end distances of ground-state conformations depending on the thickness

constraint ρ. The dashed line for N = 9 shows for comparison the end-to-end distance for

the exact α-helix.

observables, for example the symmetry of bond angles, i.e. local radii of curvature, κs,

or the periodicity of local radii curvature κp. These observables could give, for example,

some interesting insight in the unwinding or deformation of helices. Anyhow, I will confine

myself to the previously mentioned observables, the special study of deformed helices may

be subject of future work.

4.4.3 Thin Tubes, 0.6 ≤ ρ . 0.9

The thin-tubes region is dominated by helical and helicallike conformations. I call a con-

formation “helical”, if φ̄ = φ̄π/2, where x̄ is the arithmetic mean along the chain, x̄ =

(1/N)
∑

i xi (cp. Eq. (4.6) and Fig. 4.13). This is equivalent to the condition, that all

torsion angles lie in the range 0 . . . ± π/2, whereas I do not distinguish between right- and

left-handed helices, but the sign must not change within the conformation. Furthermore, the

entries in the contact map lie precisely parallel to the diagonal of the matrix in these cases,

a clear indication for helix structures (see, for example, N = 8; ρ = 0.685 or N = 9; ρ = 0.73

in Fig. 4.11). “Helicallike” conformations share some properties with helical structures, e.g.,

they exhibit a large, slightly increasing end-to-end distance (cp. Fig. 4.12) with increasing

thickness, but the torsion-angle criterion above may be violated (typically in a periodical

manner) and the contact-map entries do not form an exact parallel, but a line roughly par-
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Figure 4.13: Mean torsional angles of ground-state conformations depending on the thickness

constraint ρ. Shown are absolute mean values of φ and φπ/2 := min(|φ|, π− |φ|). The short-

dashed line for N = 9 shows the behavior for the exact α-helix.
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ground-state conformations depending on the thickness constraint ρ. Vanishing fluctuations

correspond to conformations of constant curvature (κ0) or torsion angles (τ0), respectively.
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Figure 4.15: The symmetry parameter as defined in Eq. (4.7) for ground-state conformations

depending on the thickness constraint ρ. Zero values indicates torsional symmetry of the

conformation relative to the middle of the chain.

allel to the diagonal (for example, at N = 8; ρ = 0.6 or N = 9; ρ = 0.78). Generally, one

finds three interesting effects looking at the contact maps in Fig. 4.11, which have been men-

tioned above or will be discussed later again: First one sees, that polymer chains without

thickness constraint (see the maps for N = 8 and N = 9 with ρ = 0.6) do not have a pro-

nounced structure. Just by increasing the thickness a bit, clear helical structures emerge,

indicated by straight “lines” parallel to the diagonal of the map (cp. N = 8 and N = 9 with

ρ = 0.685(5)). Secondly, by increasing the thickness further, one sees, for example for N = 9,

that this parallel “lines” moves away from the diagonal, i.e., the helical conformations are

“untwisting”. Finally, looking at the contact maps for N = 13, one sees that tertiary effects

come into play, indicated by “disrupting” vertical “lines”, which is typically an indication

for sheetlike structures.

Remarkably, within certain intervals (N = 8: 0.63 ≤ ρ ≤ 0.688; N = 9: 0.673 ≤ ρ ≤
0.6855), the ground-state conformations expand with increasing thickness to a perfect space-

filling helix with κ0- and τ0-property, i.e., an α-helix with constant bond- and torsion angles

(φ̄2 − φ̄ φ̄ and r̄2
lc − r̄lcr̄lc vanish5). The comparison of measured observables with the data

for the exact α-helix is emphasized in the insets of Fig. 4.7 and furthermore exemplarily

5A remark on the precision of the simulation: The values of φ̄2
− φ̄ φ̄ and r̄2

lc − r̄lcr̄lc become even with

the stochastic methods smaller than 10−8 at this point (see Fig. 4.14), i.e., the difference between any two

torsion angles, for example, in the chain is already less than 1.5× 10−4π.
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shown in Figs. 4.12 and 4.13. I will resume the discussion on this fact in Sec. 4.5.3 (“The

α-Helix Region”) below.

As a remark: What is the motivation to call these conformations α-helical in imitation of

the real biological α-helix? In natural proteins, α-helices possess about 3.6 amino acids per

helix turn [5] and have mainly constant bond and torsion angles. If one constructs a perfect

space filling helix with exactly 3.6 monomers per turn, one finds that it has a global radius

of curvature of rgc ≈ 0.69. Or, the other way around in the region 0.6845 ≤ ρ ≤ 0.688

(example for N = 8), one counts 3.576 . . .3.596 monomers per turn, which is in perfect

agreement with natural α-helices. I thus see the first biological relevant structure realized

by the simplest model with just Lennard-Jones interaction and thickness but without any

conformational assumptions or additional input. This observation is indeed one of the key

results, and among the most impressive ones, in this study. I would like to repeat, that

the α-helical structure arose “just” due to the incipient influence of the thickness parameter

added to a linelike homopolymer model with pairwise Lennard-Jones interaction.

A singular point of further particular interest is located in the vicinity of the perfect

helices at ρ ≈ 1/
√

2 ≈ 0.71, where ground states “attempt” to crystallize in a regular simple

cubic (sc) lattice structure. I find for example for N = 8 at ρ = 0.73 a κ0-conformation6

almost fitting the sc lattice (elsewhere called “simple cubic lattice helix” [182]), which then

untwists with increasing thickness. One sees the same tendency for longer chains as well, see

Fig. 4.9 for visualizations and Sec. 4.5.3 (“The α-Helix Region”) for further discussion. Note

that a perfect cube will not be a ground state at any thickness, as long as the Lennard-Jones

interaction length scale is larger than, or generally unequal to, the bond length. If the po-

tential is reconfigured such that its minimum value equals the bond length, i.e. set rmin
ij = 1,

one finds indeed that the ground-state conformations fit exactly into the simple cubic lattice

(i.e. are exact cubes for adequate monomer numbers) up to lengths of ≈ 36 [180]. A very

detailed analysis of special parameter set can also be found in [180]. Further general remarks

on the crystallization on regular lattices will be given in Sec. 4.5.2 (“The Crystallization on

Regular Lattices”).

At larger thickness one observes, see Fig. 4.9, extended helicallike conformations, which

may overlap due to the shortness of the chains only at the end bonds.

4.4.4 Intermediate Tubes, 0.9 . ρ . 1.1

In the interval 0.9 . ρ . 1.0, an abrupt switch to almost flat (cp. Fig. 4.13) and mostly

closed (cp. Fig. 4.12) conformations can be observed. One finds bended double-rings, hair-

pins, and even conformations that are “crystallized” on a two-dimensional honeycomb lat-

tice (cp. Fig. 4.9, N = 8, 13, ρ ≈ 1.02). These curves are, of course, κ0-curves as well

and have apparent similarities to β-sheets known from secondary structures of biopolymers.

6The fluctuation of the local radii of curvature along the cahin r̄2
lc − r̄lcr̄lc is about 10−9 at this point,

see Fig. 4.14.
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See Sec. 4.5.2 (“The Crystallization on Regular Lattices”) for general remarks and further

discussion on this crystallization and Sec. 4.7 (“The Hydrophobic-Polar Tube Model”) for

another example. In some small regions, one finds competitions between mesomeric struc-

tures, i.e. structures with the same monomer positions but different bond distributions (see,

for example, Fig. 4.9, N = 10, ρ ≈ 1.1).

It is particularly remarkable, that just the increasing of the thickness constraint can

drive the system from perfect α-helical conformations to planar crystallized conformations

like β-sheets without any further changes, a fact constituting a further major outcome of the

present work.

4.4.5 Thick Tubes, ρ & 1.1

At ρ ≈ 1.1, the ground-state conformation becomes (again) “closed” for all chain lengths.

Here begins the region of the twisted circles of constant curvature (“windschiefe Kreise”) [197,

198]. Nice illustrations of two examples of this class of structures with N = 32 monomers

consisting of four half-circles or helix segments can be found in [180]. With increasing

thickness, the rings become more and more flat until they reach the two-dimensional ring

at ρ ≈ N/2π, which is again a κ0- and τ0-curve. A further increasing of the thickness just

pushes apart the ends of the ring, what can clearly be seen in the end-to-end distance and

the torsion angles (see Figs. 4.12 and 4.13). For the somehow pathological case of ρ → ∞
one would reach the limit of stiff rods 7.

4.4.6 General Remarks

It is not surprising, that the situation becomes more complex with increasing chain length. At

least some of the described “nice-looking phases” above are artificial in the sense, that they

occur at exactly one short length, or are favored just by that very short length, respectively.

One sees, for example, for N = 10 and N = 13 no exact (α-)helices anymore, it rather

seems that at these lengths “tertiary” effects already play a role in the sense, that two small

secondary structures are formed which are then arranged “side by side”. An indication for

this trend may be that conformations with low thickness are often symmetric8, i.e., the

conformations get buckled and turn back at some point (generally in the middle). See for

example the helical region for N = 13 in Fig. 4.9. Anyhow, the helical structures being

present for shorter chains indeed exist as excited states “very close” to the ground states,

i.e., with a slightly higher energy. Two of these conformations, which appeared during the

7These stiff (random) rods will be later observed in the study of the thermodynamic behavior at finite

thickness ρ ≈ 1 for T > 0 and are separated from the ringlike conformations by a structural transition with

first-order-like behavior. See Sec. 4.6 (“Thermodynamic Behavior of Tubelike Homopolymers”).
8With “symmetric” I refer to the symmetry of torsion angles as defined in Eq. (4.7) on p. 68. It is

generally not essential for defining or distinguishing different conformational phases, but it is an interesting

property and helps the understanding. Corresponding symmetry observables are shown in Fig. 4.15.
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Figure 4.16: Snapshots of two N = 13 conformations from the simulation with ρ = 0.73 (left)

and ρ = 0.74 (right), which are not the ground-state conformations but have a just slightly

higher energy than these. The conformations correspond to distinguished ground-state struc-

tures at shorter chain lengths (helical and crystallized on the sc lattice, cp. Fig. 4.9). For

reasons of better visibility, the thickness is not shown on scale.

ground-state search and are most likely located in local minima close to the global minimum,

are depicted in Fig. 4.16.

There will be further convincing arguments for this classification scheme when I will

investigate in Sec. 4.6 (“Thermodynamic Behavior of Tubelike Homopolymers”) the thermo-

dynamic behavior of these polymers in the aforementioned general structural phases. The

transition lines between the phases then depend indeed on both thickness and temperature.

For low temperatures, the helical phase corresponds to polymers with low thickness, the

sheet phase to a little higher thickness and the ring phase to the very thick polymers. See

also [179, 181].

4.5 Deeper Analysis and Remarks

In the above section (4.4, “Ground State Analysis, σ = 1”), I analyzed ground states and

ground-state regions of the tube model with σ set to 1 (cp. Eq. 4.1) for polymers with chain

lengths 8 ≤ N ≤ 10 and N = 13.

In this part I address selected interesting questions arisen there witch may open the door

to a wide new field of things to investigate. I will comment on the effect of crystallization

on regular lattices and investigate parts of the (ρ – σ)-parameter space by varying both,

the thickness constraint and the Lennard-Jones potential (i.e., the σ-parameter). I will look

especially at the α-helical region for N = 8.

4.5.1 Ground-State Description in Detail

Beforehand, I would like to describe ground-state conformations again, but in more detail

and in a maybe somehow prosaic way. The reader may skip this section without loosing

essential information. The descriptions here will furthermore overlap in parts with those in

Sec. 4.4 (“Ground State Analysis, σ = 1”). Finally, I will not refer to this section elswhere,

either.
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N = 8

helical (0.63 ≤ ρ ≤ 0.688) The first notable region is a helical one, which follows a pre-

helical region 0 ≤ ρ ≤ 0.62. The region is characterized by a monotonous increase of the

mean torsional angle, followed by a monotonous increase of the end-to-end distance rend.

Remarkably, the conformations expand with increasing thickness to a perfect spacefilling

helix, i.e. a helix with constant bond- and torsion angles (κ0 and τ0, θ̄2 − θ̄ θ̄ and r̄2
lc − r̄lcr̄lc

become smaller than 10−8 (cp. Fig. 4.14), θ in units of π). I will call this the perfect α-helix.

It is realized in the range 0.6845 ≤ ρ ≤ 0.688.

tilted cubes (0.707 ≤ ρ . 0.8) After passing a small transition region, ground-state

conformation reach cubelike states. Below ρ ≤ 0.72 they have parallel end bonds (i.e., are

“closed”) and are antisymmetric (τs+ ≈ 0), at ρ = 73 a κ0-conformation (r̄2
lc− r̄lcr̄lc ≈ 10−9)

with non-parallel ends is formed (which is now symmetric: τs− = 0) which untwists with

increasing thickness. This somehow artificial transition between the two types of cubes is

best seen in the end-to-end distance and in the symmetry of the conformations, see Figs. 4.12

and 4.15. See also the notes on perfect cubes in Sec. 4.4.3 (“Thin Tubes, 0.6 ≤ ρ . 0.9”).

keyring (0.89 ≤ ρ ≤ 0.92) Here, the former cube has cranked up to a ring with two ends

lying on top of each other. The region is a κ0-region, too.

bended double-ring (0.93 ≤ ρ ≤ 0.99) At ρ ≤ 0.93, there is an abrupt switch to

“closed” conformations. The region has κ0 curves and is a transition region to the next,

remarkable region.

hairpin (1.0 ≤ ρ ≤ 1.023) This is the first region, where the ground-state conformation

becomes almost “flat”. (See the sharp dip in the plot in Fig. 4.13 at ρ ≈ 1.02. The configu-

ration would become exactly 2-dimensional, if φ̄π/2 would approach zero.). The boundaries

of this region can be clearly seen in the end-to-end distance, where it starts with a jump

from “closed” to rend ≈ 2. rend increases slightly and jumps at the end of the region to some

lower value. At the end of this region, the ground-state conformation becomes a κ0-curve.

Windschiefe Kreise (1.04 ≤ ρ ≤ 1.33) After an intermediate step (seven-ring with

tail), the ground-state conformation becomes again “closed” at ρ ≥ 1.04. This is the re-

gion of the so-called “windschiefe Kreise”, i.e., bended rings (of constant curvature). With

increasing thickness, the rings become more and more flat until they reach the planar 2-

dimensional ring at ρ ≈ 1.33, which now is a κ0 and τ0-curve as well. From here on,

increasing thickness just pushes apart the ring, what can clearly be seen by the end-to-end

distance and the torsion angles.
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N = 9

At N = 9 one sees even three not connected helical regions and several pre-helical re-

gions. Besides some regions, where the ground state structure falls into non-natural or non-

biological conformations, one observes here very nicely the “evolution” from the (α-)helix

through some intermediate states (“key rings”) to rings (“windschiefe Kreise”). This “pro-

cess” agrees well with the naive idea of untwisting a helix or a spring. I tried to visualize it

in the respectice lines in Fig. 4.9.

helical 1 (0 ≤ ρ ≤ 0.605) The first helical region begins already with the ground state

at zero-thickness, i.e. in the model without thickness constraint, in contrast to the helical

region at N = 8. The conformations are neither κ0 nor τ0, but the torsional angles shows

a notable symmetry. One may say, the helix is compressed from a horizontal and the vertical

direction.

helical 2 (0.673 ≤ ρ ≤ 0.6855) The second helical region is comparable in its behavior

with that one of the N = 8-chain. It also contains the α-helix at its upper end, with the

same characteristics as the α-helix at N = 8, namely κ0 and τ0.

helical 3 (0.72 ≤ ρ ≤ 0.74) The third helical region finally is again neither κ0 nor exactly

τ0, but the torsion angles are symmetrically distributed and almost constant and the local

radii of curvatures are periodically constant and symmetrically distributed as well.

pre-helical (ρ ≈ 0.78 and 0.85 ≤ ρ ≤ 0.88) The conformations here are not helical by

definition but share some properties with helical structures, e.g. they show a big, slightly

increasing end-to-end distance. At the end of this region the end-to-end distance reaches its

global maximum for the N = 9 chain.

key ring (0.92 ≤ ρ ≤ 0.98) Again, the key rings are circles with two parallel overlapping

end-bonds with a mainly constant end-to-end distance. The curves are generally no κ0-

curves.

rings (ρ > 1.05) This region have the same properties in all observables as the “wind-

schiefen Kreise” at N = 8. Especially they are “closed”, a property not seen so far for this

chain length, except for the non-natural transition regions at lower thickness.

N = 10

At N = 10 one finds no τ0-curves (except for the planar circles), in particular one finds

no helical region anymore. In fact, it seems, that at this length already “tertiary” effects
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become relevant at low thicknesses. An indication therefor may be, that conformations with

low thickness are often symmetric.

At higher thickness values, there are no symmetric structures anymore and one encounters

familiar structures like bended double-rings or “windschiefe Kreise”.

Ω-region (0.699 ≤ ρ ≤ 0.703) At the beginning of the region there is a discrete jump

in the end-to-end distance from “closed” to an almost constant value of about 2. The bond

angles are almost constant (κ0) and the torsion angles are symmetric. Leaving the region,

this symmetry breaks down abruptly.

anti-parallel planar five-rings (0.76 ≤ ρ ≤ 0.78) After some intermediate states, which

possess exactly symmetric torsion angle distributions at ρ ≥ 0.71 and may be “closed”

0.71 ≤ ρ ≤ 0.73 or become κ0 (at 0.75 . ρ < 0.76), this next stable region is reached. It

still has symmetric torsion angles distribution and is characterised by an almost constant

end-to-end distance plateau.

parallel bended five-rings (0.83 ≤ ρ ≤ 0.85) In comparison to the former region, the

five rings are not planar anymore but bended such, that a football-like pentagon-hexagon

surface is formed. For larger system sizes, this may lead to quasicrystalline structures, but

this is highly speculative.

pre-helical (0.86 ≤ ρ ≤ 0.89) This region shares the same properties as the pre-helical

region at N = 9. Parts of this region tends to be κ0-curves.

bended double six-ring (0.99 ≤ ρ ≤ 1.2) In this region one finds a “competition” be-

tween mesomerismic structures, i.e. the monomer distribution is (except for the perturbation

due to the inequality of potential minimum and bond length) the same but the distribution

of the bonds differs. Two of them are shown in the corresponding line in Fig. 4.9, whereas

one may call the first a β-hairpin. All conformations are “closed” and, at least almost, κ0.

windschiefe Kreise (1.25 ≤ ρ ≤ 1.63) These structures do not differ in their general

behavior from that ones at N = 8 and N = 9.

N = 13

For this length, the general statements given for N = 10 hold as well. Without going into

much detail I present shortly some interesting regions.
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0.68 ≤ ρ ≤ 0.74 The first noticeable region lies in the range 0.68 ≤ ρ ≤ 0.74. It is

characterized by the symmetry of bond and torsion angles and a high, slightly increasing

end-to-end distance, both indications of a (pre)helical region. There were a lot of helices in

this thickness range at lower chain lengths, including the α-helix as well as simple cubic-like

conformations.

The corresponding structures are indeed recovered during the ground-state search, see

Fig. 4.16, but although they are quite close to them in energy, they are not the ground-states

conformations anymore. In fact, ground states already show some “tertiary” structure, as

already mentioned above.

0.75 ≤ ρ . 0.79 Directly following, there is a region of locally distorted sc-like ground-

states. Locally means, that there is one single monomer not sitting on a corresponding

sc-lattice site.

0.80 . ρ . 0.85 The distorted sc-like region defects smoothly to the extension of the

bended double-ring (cp. N = 8), composed of the N = 8-ground state with an additional

attached ring (cp. also N = 10, 0.83 ≤ ρ ≤ 0.85).

0.97 ≤ ρ ≤ 0.98 This region is very similar to that one finds for N = 9, 0.92 ≤ ρ ≤ 0.98

(key ring), with four bonds overlapping.

0.99 ≤ ρ ≤ 1.06 The above groundstate “flips” into the almost planar six-ring region,

which can be seen in some sense as the “extension” of the regions found at N = 8 and

N = 10 and similar thickness. Within this phase, there is again a mesomeric flip between

“both end outside” and “one end inside”.

1.07 ≤ ρ Like for all chain lengths considered so far, one finds again the rings, which

become for ρ ≥ 1.4 “real” convex bended rings (“windschiefe Kreise”).

4.5.2 The Crystallization on Regular Lattices

In Sec. 4.4.3 (“Thin Tubes, 0.6 ≤ ρ . 0.9”) I showed an example for a special, isolated point

in the (ρ, σ)-parameter space, at which the ground-state structure crystallizes on a regular

lattice, namely the simple cubic lattice in three dimensions at ρ = 1/
√

2. 9 This can of course

be explained by the fact, that conformations at the simple cubic lattice would have local

(and hence global) curvatures of rlc = 1/
√

2 (or∞), see Fig. 4.17, left. The crystallization of

ground-states on the sc-lattice could be observed for chains with lengths up to N = 36 [180]

and it was argued, that these crystal structures are likely existing the thermodynamic limit

9And even if this, in fact, seems to be somehow unnatural in the context of secondary structure formation

of proteins for example, it is an interesting feature of the theory.
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Figure 4.17: Radii of curvature on the simple

cubic (left) and the honeycomb (right) lattice.

(N →∞) as well. I will later show (Sec. 4.6.2, “The Cuboid Region in Phase α”), that these

structures not only occur as ground states for lengths which are able to fill a complete cube

or cuboid, but are representatives of thermodynamic pseudophases at finite temperatures

also for other chain lengths. See also Fig. 4.16, right.

There are, of course, other regular lattices, which correspond, for example in two di-

mensions, to rlc = 1/
√

3 ≈ 0.577 (triangular lattice) and rlc = 1 (honeycomb lattice), see

Fig. 4.17, right. The curvature on the triangulat lattice is smaller than the natural thick-

ness d of about 0.6 (see Sec. 4.4.2, “Preliminary Remarks, Overview”). The crystallization on

that lattice should be visible therefore in simulations without explicit thickness constraint

and was indeed found, for example, in simulations in the original work by Stillinger and

Head-Gordon [65] or for groundstates of polymers on strongly attractive substrates [98].

The onset of the crystallization on the honeycomb lattice in three dimensions can bee seen

in the conformations at ρ ≈ 1 in Fig. 4.9. The crystallization in planar honeycomb struc-

tures in three dimensions is in any case surprising, but not at least due to the formation of

tertiary structure it is very unlikely, that these crystalline conformations would persist in

the thermodynamic limit. By contrast, one would expect this persistence for simulations in

two dimensions, which has, however, not been studied so far.

4.5.3 The α-Helix Region

For the N = 8 and 9 polymer, I found a thickness region, where the α-helix is the ground-

state conformation (see Sec. 4.4.3, “Thin Tubes, 0.6 ≤ ρ . 0.9”). Remember that I used the

Lennard-Jones potential with σ = 1 there, which sets the interaction length scale. There is

nothing special with it, except that the potential just vanishes at the bond length, a fact

that plays just a secondary role, as I am not counting energy contribution from consecutive

monomers at all.

Because of the special role of the α-helix in nature (besides its geometrical elegance),

I will here try to track the α-helix not only in the thickness but also in the σ-direction

of the parameter space, i.e. ρ and σ will be varied independently in the vicinity of the

assumed “α-region”. The results are displayed, exemplarily for N = 8, in Fig. 4.18. One

sees, that the α-helix occurs as ground-state conformation in a small, bounded thickness

interval (0.66 < ρ < 0.75) right “before” an abrupt conformational change (depicted by
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Figure 4.18: N = 8: The σ–ρ plane and ground-state conformations near the α-helix. The

left and right coordinates are connected just via rmin
ij = 21/6σ. See text for details.

the solid line) to cubelike structures. The transition line increases approximately linearly

in the interaction-length–thickness plane, a dependence, which seems to hold generally for

structural transitions in the vicinity. Following a perpendicular path, i.e., with increasing

interaction lengths and decreasing thickness, the helices untwist smoothly. The dashed-dotted

line together with the solid line define the region, where the α-helix is the ground state of

the system (cp. insets in Fig. 4.7 on p. 66). Note that for ρ < 0.66 and ρ > 0.75, α-helices

are no ground states at all.

A further interesting transition is marked by the dashed line in Fig. 4.18. This line

indicates the transition between the so-called simple cubic “lattice helices (ii)” and “(i)” [182],

i.e., cuboidlike structures with parallel and antiparallel tails (remember that for rmin
ij =

1 and ρ = 1/
√

2, one observes the “crystallization” exactly at the simple cubic lattice,

cp. Sects. 4.4.3, “Thin Tubes, 0.6 ≤ ρ . 0.9” and 4.5.2, “The Crystallization on Regular

Lattices”).

For the sake of completeness, the dotted line indicates a conformational change to some

intermediate structure “between” α- and lattice helices and the arrows on the y-axes mark

the line σ = 1 investigated so far in this study.
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4.6 Thermodynamic Behavior

of Tubelike Homopolymers

4.6.1 General Observations and Description

After having studied the low-temperature regime, i.e., ground states, so far, I here concen-

trate on the conformational phase behavior at finite temperatures. As common, the specific

heat is calculated and the peak regions of this observable are considered as indicators of

relevant thermodynamic activity. Figure 4.19 shows these specific-heat landscapes for the

N = 8 and N = 9 polymer. The points (+) plotted in the top-view representation of

Figs. 4.19 c and d indicate the positions of the crest lines in this landscape, i.e., the lines

signaling structural changes. One notices four major pseudophases, which I denote by α, β,

γ, and δ. In Fig. 4.20, I show the corresponding canonical energy histograms at temperature

T = 0.1 for different thickness constraints ρ. The histograms at the transition values of ρ are

T

ρ

CV (ρ, T )

0.4 0.3 0.2 0.1 01.2 1.1 1.0 0.9 0.8 0.7 0.6 T

ρ

CV (ρ, T )
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ρ
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Figure 4.19: Phase diagrams of the homopolymers with N = 8 (left) and N = 9 (right).

The labels α, β, γ, and δ indicate the different pseudophases at finite temperature. Figures

a and b show the perspective views of the specific-heat landscapes, and in c and d, the top-

views are plotted with marked peak positions for various parameters ρ. The specific-heat

values are encoded in gray scale. The pictures in the insets in c and d correspond to the

ground-state conformations presented in Fig. 4.9, the pictures in the δ regions show relevant

conformations there.
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Figure 4.20: Energy histograms for various thickness constraints ρ at T = 0.1. Histograms

corresponding to specific-heat maxima are marked with arrows. a N = 8 polymer. His-

tograms correspond to the following thickness parameters: ρ = 0.7 (solid line), 0.72, 0.74,

0.76, 0.78 (solid line, α → β), 0.8, 0.82, 0.84, 0.86 (solid line, β → γ), 0.88, 0.9, 0.95, 1.08

(solid line, γ → δ), 1.13. b N = 9 polymer. Histograms correspond to ρ = 0.72 (solid line),

0.75, 0.78, 0.81 (solid line, α→ β), 0.83, 0.85, 0.87, 0.89 (solid line, β → γ), 0.92, 0.95, 1.11

(solid line, γ → δ), 1.14. The histograms were obtained by reweighting the density of states

and are consistent with histograms obtained from independent canonical simulations at this

temperature. These histograms contain about 1010 entries. Statistical errors are less than

1% and, almost everywhere, smaller than the line width.

marked by arrows. Both plots, for N = 8 and N = 9, do not differ qualitatively, i.e., have

all interesting features in common. The phase structure will be discussed in the subsequent

analysis of the pseudophase diagrams.

In the insets of Figs. 4.19 c and d, ground-state conformations at positions according to

their thickness, are shown. They provide a first indication for the population of the respec-

tive pseudophase at finite temperatures. Deeper analyses will strengthen the expectation

that the ground-state conformations are the relevant conformations in the corresponding

pseudophases at finite temperatures as well. This includes, for example, the analyses of

distributions of structural observables like end-to-end distance, radius of gyration, radial

distribution of monomers, bond angles, torsion angles and so on. A further possibility would

be the comparisons with reference structures, e.g., by using pattern recognition [199], or

counting structural components (as for example in [182]) during separate canonical simula-

tions at fixed temperatures. This has been done experimentally but was not that effective

and meaningful in first attempts compared to the methods mentioned before. Let me remem-

ber, that I neglect data for ρ . 0.6, which corresponds to the pure Lennard-Jones volume

exclusion, as the thickness constraint does not influence the system at all below this “natural

thickness” (see Sec. 4.4.2, “Preliminary Remarks, Overview”).
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4.6.2 Analysis of Structural Phases of Short Polymers

The Phases γ and δ

I begin the detailed discussion of the different structural phases with the high-thickness

region, i.e., with the phase γ and the transition to δ. Based on the knowledge of the

ground states and the general structural behavior of polymers, I assume in γ a population

of bended rings, which undergo a structural change to sprawled random coils in δ, which

become more and more rodlike with increasing thickness. This assumption can be illustrated

and strengthened by an example in little more detail. For N = 8 monomers, let me consider

the geometrical objects “octagon” and “straight line” as limiting prototypes of these regions.

Based on the calculation of the geometrical properties of these prototypes, one expects for the

end-to-end distance distributions a sharp peak at the position of the LJ potential minimum,

i.e., at rend ≈ 1.12, for the rings and a diffuse peak at r < 7 for the rodlike structures.

For the radius of gyration distribution a sharp peak at rgyr ≈ 1.3 (rings) and a diffuse

peak at r < 2.34 (rods), and for the radial distribution function sharp peaks at r ≈ 1.1,

1.8, 2.4, and 2.6 (see Fig. 4.21 c) and smooth peaks below integer values for the respective

conformations. In Figs. 4.21 a and b, the respective distributions are shown, measured in

canonical simulations at the transition temperature and within both phases. In Fig. 4.21 a,

the end-to-end distance and radius of gyration histogram are plotted, Fig. 4.21b shows the

radial distribution function. These quantities exhibit exactly the assumed behavior, i.e.,

the peaks of the measured distributions appear exactly at the calculated values given above

for the anticipated “prototypes”. Additionally, the bimodal shapes of the distributions in

Fig. 4.20 at the transition γ → δ indicate a first-order-like character of the transition with

coexisting conformational phases. The energy histograms near the transition point exhibit

two distinct peaks separated by broad energy gaps. During simulations at the transition

point (T = 0.1, ρ = 1.08), both structures appear equally, as can be seen in Fig. 4.21 a.

The Phase β

Reducing the thickness parameter ρ, the sheet phase β is reached. Figure 4.22 shows the

results of simulations at ρ = 0.82 and T = 0.1 for the N = 8 polymer, which belongs to

the histogram labeled β∗ in Fig. 4.20 a. There are mainly three structures dominating this

phase, amongst them the two ground-state conformations in the range 0.89 ≤ ρ ≤ 0.99

(cp. Figs. 4.9 and 4.19). As shown in Fig. 4.22 a, they can be well distinguished by their

end-to-end distance, where three distinct peaks in the distribution appear, whereas they are

not resolved by specific heat. The plot in Fig. 4.22b shows the overall energy distribution

as well as the contributions from the three regions corresponding to the peaks in the end-to-

end distribution. As illustrated in Fig. 4.22 d, the actual peak in the energy distribution is

associated with ring-like conformations and their excitations, whereas the shoulder is caused

by the hairpin-like conformations. In Fig. 4.22 c, the distribution of torsion angles is plotted.
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Figure 4.21: Measured histograms from simulations at fixed temperatures for the N = 8

polymer a at the transition from the bended-ring phase γ to the sprawled-coil phase δ and

b deep inside these two phases. a End-to-end distance (solid line) and radius of gyration

(dashed line) at the γ ↔ δ transition (ρ = 1.08 and T = 0.1). b Radial distribution (ρ = 1.2)

in the bended-ring phase γ (solid line, T = 0.04) and in the sprawled-coil phase δ (dashed

line, T = 0.3). The histograms are differently scaled for better visibility, each contains more

than 109 entries. Statistical errors are less than 1% and smaller than the line width. In c,

the limiting prototype for phase γ, the octagon, is shown with its respective observables.

Sharp peaks in a and b are located very close to the calculated values.

The contributions of the different structural classes can be distinguished very well again.

One notes for example an accumulation of torsion angles around φ = 0 in the contribution

of the hairpin-like conformations (dashed line), an indication for the planar structure of

the conformations. At β∗, the conformations extend into the third dimension, i.e., bonds

within the conformations begin to overlap. An analogous behavior is found for N = 9, see

Fig. 4.20b.

The Cuboid Region in Phase α

The region of lowest thickness, α, is the helical phase. This phase can be further separated

into subphases, where in one of them the exact α-helix resides as a ground state for N = 8 and

N = 9 (see Sec. 4.4.3, “Thin Tubes, 0.6 ≤ ρ . 0.9”). In a further region, simple-cubic helical

structures [182], or cuboids for N = 8, corresponding to the ground-state conformations in
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Figure 4.22: Measured histograms in phase β for ρ = 0.82 and T = 0.1 for the N = 8

polymer. a The end-to-end distance histogram exhibiting three separate peaks indicating

three different major contributing groups of conformations. b The energy histogram and c

the histogram of torsional angles. Error bars were obtained from independent simulations

and are shown exemplarily. In b and c, the histograms for each group of conformations,

distinguished by its end-to-end distance, are shown in addition. Each histogram contains at

least 109 entries. d Representatives of each group of this energetic pseudophase and their

corresponding properties.

the range 1/
√

2 ≈ 0.707 ≤ ρ . 0.8, respectively, dominate.10 These regions are separated

by noticeable, but in the context of the whole phase diagram less important, transition

lines. For illustration, I show in Fig. 4.23 the distribution of torsional angles in the cuboid

region for N = 8, ρ = 0.7 and N = 9, ρ = 0.72 at temperature T = 0.1. For the N = 8

polymer, it can clearly be seen that only conformations with torsional angles of 0 and ±π/2,

i.e., cuboids, occur. For the N = 9 polymer, these angles are still dominant, although not

occurring exclusively. In any case, the existence of that region is insofar worth mentioning

as the corresponding conformations do not appear as ground states for this length and as it

shows that it is a characteristic feature and not only a length-dependent artefact.

10The occurrence of these structures as ground states for certain system sizes, e.g., the crystallization on

regular lattices as singular solutions of the theory, has been analyzed and discussed in detail in Ref. [180].
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Figure 4.23: Torsion angle distributions at T = 0.1 for the a N = 8 and b N = 9 polymers in

phase α at ρ = 0.7 and ρ = 0.72, respectively (cuboid or sc-helical region). Each histogram

contains about 1010 entries. For visualizations of corresponding conformations see, e.g.,

Fig. 4.19 c.

4.6.3 Analysis of and Remarks on Longer Tubes

Figure 4.24 shows the phase diagrams for the longer tubes consisting of N = 10 and N = 13

monomers analogously to Fig. 4.19. In general, beside the short-length artefacts near T = 0,

the phase diagrams at different lengths do not differ qualitatively much from each other.

The general thermodynamic behavior is quite similar for all system sizes, especially one finds

again the four major phases discussed above. Also, the characteristics of the sprawled-coil

and bended-ring regions do not depend, beside an obvious shift of the thickness parameter,

on the polymer length. One notes, however, the onset of the formation of tertiary structures,

as also discussed in Sec. 4.4.6 (“General Remarks”). Particularly the helical phase α becomes

internally more complex. Furthermore, the relevant thermodynamic activity shifts to lower

temperatures.

The ground-state conformations for these systems, plotted again in the insets of Fig. 4.24 c

and d, support the interpretation of the phases given above. Especially the motivation for

denoting β the sheet phase becomes clearer, as I found almost planar, “two-dimensional”

ground states seeming to crystallize on a honeycomb lattice. These conformations are the

dominant conformations in β at finite temperatures as well and form, in the case of the N =

13 polymer, three LJ contacts, in the sense of a contact map, cp. Fig. 4.11 on p. 68. One finds

a further interesting detail here, which occurs only for these longer chains. The 13mer is long

enough, that an intermediate phase β′ emerges between β and γ. This phase is populated, as

indicated by the ground-state conformation shown in Fig. 4.24d, by conformations consisting

of two small bended circles such that two LJ contacts are formed. The transition between

β and β′ also exhibits some characteristics of first order transition, namely two separated

peaks in the energy distribution with a gap in between, i.e., dominating conformations of

both phases coexist in the transition region. See Fig. 4.25.
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Figure 4.24: Phase diagrams of the N = 10 (left) and N = 13 (right) polymers analogously

to Fig. 4.19.

4.7 The Hydrophobic-Polar Tube Model

The central goal of this study is, of course, to make a contribution to the understanding of

structure formation like it occurs in nature. As mentioned in the introductory part to this

chapter, one of the main question is: What do one have to put into a model necessarily, to see

secondary-structure formation? I have shown above how the sole introduction of a thickness

constraint leads to the formation of different structural classes, including helix and sheet

conformations, for classes of homopolymers.

What if one upgrades the model in a specific manner? As presented in Sec. 4.1 (“Related

Studies, Alternative Approaches”), there are several studies, where the here used tube model

or an intentionally similar model have been used in different environments or with additional

potentials influencing, facilitating or potentiating structure formation. These include for

example the formation of hydrogen bonds or the introduction of stiffness, see again for

example [188, 189, 191–193].11

I here modify the homopolymer tube model, following the basic ideas of the HP- and AB-

model, by introducing two species of monomers: hydrophobic (A) and hydrophilic or polar

(B) ones [42, 43]. The nonbonded Lennard-Jones interaction between pairs of monomers

11I would like to emphasize again, that the tube model used in [192, 193] differs significantly from the

version used here. See the discussion in the mentioned section and also in [179].
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depends now on their types:

V AB
LJ (ri,j) = 4

(

1

r12
i,j

− C(i, j)

r6
i,j

)

, (4.8)

where

C(i, j) =



















+1 for AA contacts ,

+1/2 for BB contacts ,

−1/2 for AB contacts .

Hence, besides the strong attraction of A-type monomers, there is a weak attraction between

B-type monomers and a weak repulsion between monomers of different type, favoring hy-

drophobic core formation of A monomers. To enable a direct comparison with the literature

on the standard linelike AB model introduced by Stillinger et al. [64, 65], an additional

bending term is introduced and the total energy is then

EAB(X) =
1

4

∑

k

(1− cosϑk) +
∑

i,j=i+2

V AB
LJ (ri,j) , (4.9)

where the ϑk are the bending angles of adjacent bond vectors. See for a general introduction

and remarks also Sec. 1 (“The HP Model” and “The AB Model”).

Just to acquire a taste for the effects of these changes, I show as an example results for

the 13mer Fibonacci sequence AB2AB2ABAB2AB,12 which has been studied in the linelike

AB model, i.e., with ρ = 0, in three dimensions some time ago [65, 67, 68] 13. Figure 4.26

12The usage of Fibonacci sequences in the context of heteropolymer models goes, to my knowledge, also

back to Stillinger and Head-Gordon [65]. They used them because of some advantageous features like “All

As are isolated and flanked on both sides by Bs”, “Bs appear isolated or in pairs”, the special ratio of

A and B monomers, etc. On the other hand, the Fibonacci sequence appears in nature, for example, in the

context of quasicrystals or quasiperiodic ordering [200–202], or, mathematically spoken, play a role in the

tiling problem (see, for example, Figs. 7.12 or 7.21 in [202]). As a very nice example, the Fibonacci sequence

was found in the row separation of a ultrathin Cu film on the surface of an icosahedral quasicrystal [200].

However, a correlation between the importance and role of the Fibonacci sequence in the solid state physics

and within this model is by no means obvious.
13There are much more works investigating these AB-Fibonacci sequences, but mainly focusing on special

algorithmical developments and using the formerly published data “only” as benchmarks. See for some

examples Table 4.2.
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Figure 4.26: Ground-state energy (a) and end-to-end distance (b) of ground-states of the

N = 13 Fibonacci AB heteropolymer depending on thickness. In a, the contribution of the

bending energy to the total energy is shown by the dashed line.

shows the energies and end-to-end distances of the ground-state conformations.14 Figure 4.27

then shows the phase diagram analogously to Figs. 4.19 and 4.24, as well as visualizations

of selected ground-state conformations. The general structure including several separated

structural subphases is similar to that for the presented homopolymers. The most prominent

finding, anyhow, is definitely the very stable β-sheet region in the interval 0.90 ≤ ρ ≤ 1.01,

at T → 0. The conformations there are neither of κ0- nor τ0-type, i.e., they have neither

constant bond nor torsion angles (cp. Sec. 4.4.1, “Nomenclature and Methodology”), but

they are indeed “planar” (see Fig. 4.27 for visualization). These qualitative properties do

not change over the entire region.15 A quantitatively remarkable fact is the variation of the

intra-monomer distances within the conformations. One notes, that the interaction length

between the opposite hydrophobic A monomers 1 − 12 (r1,12 = 1.13, see Fig. 4.27 c for

monomer numbering) and 4− 9 (r4,9 = 1.15) in this sheet conformation does not change in

the whole thickness region at all. On the other hand, the distances between the B monomers

2−11 and 3−10 increase (∆r2,9 = ∆r3,10 = 0.27) and decrease between the A monomers 1−4

and 9−12 (∆r1,4 = ∆r9,12 = −0.10, differences respecting the conformations at ρ = 0.9 and

ρ = 1.0). The van-der-Waals attraction between the A monomers is thus the dominant factor

that stabilizes the β-sheet. Remarkably, as becomes clear by the listed geometrical quantities

above (and can also be observed in Fig. 4.26 a), the bending energy is even increasing with

increasing thickness in this region, contrarily to the general overall trend, that the bending

energy decreases with increasing thickness (I will continue to discuss the influence of the

14Showing other observables depending, for example, on torsional angles or symmetries does not make that

much sense like in the study of the homopolymers. Torsional angles are not well defined for three consecutive

parallel bonds, a conformation which occurs here not only for the very thick rods, and possible symmetries

in the secondary structure are mainly already suppressed by the unsymmertric primary structure, i.e., the

monomer sequence.
15Remember, that planar sheetlike structures of homopolymers have been found more or less at singular

points or at least within a comparativly small thickness region.
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Figure 4.27: Pseudophase diagram of the N = 13 Fibonacci AB heteropolymer. a The plot

shows the top-view with marked peak positions of the heat capacity for various parameters ρ,

b the qualitative view on the heat-capacity landscape. Gray scales encode the value of the

specific heat. The pictures in c illustrate selected ground-state conformations. Conforma-

tions are shown from different viewpoints, A monomers are marked by red color (dark gray),

B monomers are white.

bending term further below). To summarize this point, recall that there are planar six-ring

conformations at comparable thicknesses for the N = 8, N = 10, and N = 13 homopolymer

ground states, cp. Sec. 4.4.4 (“Intermediate Tubes, 0.9 . ρ . 1.1”). These structures are now

stabilized by the specific monomer sequence, whereas the tube thickness of course remains

the “driving force” of the structure formation. 16 This observation, that specific monomer

sequences can stabilize general secondary structures, is a further central results of the here

presented work.

At lower thickness parameters one finds structures with helical properties governed by

the actual monomer sequence. One notes here a very pronounced conformational transition

from random coils to native conformations at 0.1 . T . 0.15, which is in detail discussed for

the linelike limit “ρ . 0.6” in [68]. With increasing thickness the ground-state conformation

becomes a ring and finally switches to a stretched rod, which, contrarily to the homopolymers

discussed above, appears as ground-state conformation because of the changes in the poten-

tial. This is a qualitative difference to the results in Sec. 4.6 (“Thermodynamic Behavior of

Tubelike Homopolymers”).

16Just simulating the given sequence in a two-dimensional space without thickness leads to completely

different conformations consisting of a hydrophobic core and a polar shell [65].
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Figure 4.28: Comparison of homopolymers with and without bending energy at ρ = 0.0

(left) and ρ = 0.95 (right). In a and b, specific heats of the respective homopolymers are

shown, c shows ground-state conformations.

Finally two remarks are in order. Firstly, using the described model, two independent

changes compared to the homopolymer model used before were made. I introduced on the

one hand different kinds of monomers with different interactions and on the other hand

a bending stiffness. To evaluate the influence of each of the two changes, I simulated the

13mer with a sequence consisting of just hydrophobic A monomers (A13), which is equal to

the homopolymer studied without bending stiffness in Sec. 4.6 17, for the two exemplified

thickness values ρ = 0.0 and ρ = 0.95. Figure 4.28 illustrates, that the influence of the

bending stiffness is marginal for both, ground-state structures and thermodynamic behav-

ior. The ground-state energies change by 1% to 5% for the presented conformations, the

structures themselves remain qualitatively the same. This can be quantified, for example,

by measuring the root mean square deviation (rmsd) Drms of the respecive conformations

Xhomo and XA13

Drms =

√

√

√

√

1

N

N
∑

i=1

∣

∣

∣
x̃A13

i − x̃homo
i

∣

∣

∣

2

, (4.10)

where the x̃i denote the ith monomer positions relative to the center of mass and with the

implicit assumption that the two conformations are already globally rotated against each

other in order to find the best match.

17Note that choosing a B homopolymer (B13) would correspond to σ = 21/6 and ǫ = 1/4 in Eq. (4.1),

with ropt
i,j = 21/3 and VLJ(ropt

i,j ) = −1/4. Absorbing the energy scale in the definition of temperature (i.e.,

ǫ = 1/4→ ǫB = 1), one would work with TB = TA/4.
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For equal conformations, this value is of course zero and becomes the larger, the less the

two conformations coincide. The deviation of the conformation at ρ = 0 is Drms = 0.045,

which can be considered as a quite good match of the conformations. For ρ = 0.95 the

deviation is Drms = 0.098. To calculate Drms, I used the same algorithm as applied and

described in [68, 196]. I have to state, that for this measurement of the deviation Drms only

the monomer locations in space and not their position in the sequence were considered, i.e.,

the path of the conformation through fixed monomer locations has been changed if necessary.

Of course, there are several paths through a given “lattice”, i.e., configuration, of monomers

with almost the same Lennard-Jones energy. Taking the actual sequence of monomers into

account when measuring the rmsd, it would be of the same order as for arbitrary conforma-

tions with similar radii of gyration, i.e., of similar compactness, as in Eq. (4.10) monomers

at equal positions in the sequence are compared with each other, which generally occupy

different locations in different paths. As illustrated in Fig. 4.28 c, the A13 sequence at ρ = 0

chooses a path with as much as possible obtuse angles to reduce the gain of bending energy,

whereas in the homopolymer ground-state conformation without bending stiffness, acute an-

gles dominate. At the thickness ρ = 0.95 (see Fig. 4.28 d), both ground states are helical

conformations changing the direction of winding within the conformation, what is natural,

taking into account that the model does not favor a certain winding direction, i.e., left-

handed and right-handed helices have the same energy (cp. also the respective conformation

illustrated in Fig. 4.9). Roughly spoken, it turns out, that the strong Lennard-Jones inter-

action is responsible for the arrangement of the monomers and the bending stiffness then

potentially “optimizes” the path through these monomers. Particularly, it becomes clear,

that for a given AB sequence and hence a given AB monomer “lattice”, the choice of a path

through it is determined, or at least drastically limited, by the fixed AB sequence itself.

Furthermore, it is shown in Fig. 4.28 a and b, where the specific heats of the homo13mer

without bending and the A13 sequence with bending are compared at ρ = 0.0 and ρ = 0.95,

that the effect of the bending potential on the thermodynamic behavior is marginal, too. In

particular peak positions in the specific heat are not influenced at all, or just slightly shifted to

lower temperatures for the case of bending energies, what may be explained by the fact, that

collapsed chains have a higher bending energy and will therefore “un-collapse” to random

rods more easily, i.e. need less thermal activity to unfold. However, it can be concluded,

that the described behavior of the N = 13 AB Fibonacci sequence is predominantly based

on the influence of different monomer types and not by the bending stiffness. Remember

also the above discussion of the stable β-sheet structure with respect to this statement.

Secondly, as a methodological remark, and as already mentioned: It turns out that ground

states of one-dimensional linelike models do intrinsically have some measurable “natural

thickness” d(X) in the meaning of the interpretation of the global radius of curvature (see

Eq. 4.4). Below this value, the thickness does not influence the thermodynamic behavior of

the polymer at all, which is shown exemplarily in Fig. 4.29. I there compare the specific heats
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own data, ρ = 0.6

[68, 196], ρ = 0.0

Figure 4.29: Comparison of specific heat of the N = 13 Fibonacci AB heteropolymer at

ρ = 0.6 (solid line, and +) with data obtained in independent previous studies [68, 196] by

multicanonical simulations without thickness constraint, i.e., at ρ = 0.0 (dashed line and ×,

mainly covered by solid line and hence not visible). The curves are clearly identical, which

confirms the observation, that the thickness does not influence the thermodynamic behavior

of the system at ρ . 0.6. They correspond to the data shown in Fig. 4.27 a and b at ρ = 0.6.

Error bars are plotted on both curves.

of the N = 13 Fibonacci AB heteropolymer at ρ = 0.6 and ρ = 0.0, which are indeed equal.18

It may be therefore favorable to search for ground states by simulating the polymer with

a thickness constraint slightly below its natural thickness. One restricts the conformational

space significantly and may travel much faster through the remaining phase space. As a first

test of this idea, ground-state energies and -conformations for the Fibonacci 13mer and other

widely-used AB polymers with N ≤ 21 monomers presented over the past years [68, 203–205]

could be confirmed. See Table 4.2 for details.

4.8 Summary

In this chapter I presented an analysis of tubelike polymers. The tube picture is, in the first

instance, a simplification of the volume extension of polymers due to steric constraints of their

backbone or the presence of side chains. Using sophisticated simulation techniques, I have

analyzed in the first part of this work systematically and in detail ground-state structures

for the described model with fixed interaction length. As a key result, I have shown that

basic secondary structures like helices and sheets, including the perfect α-helix and planar

sheets “crystallized” on the honeycomb lattice, form solely driven by the variation of the

thickness constraint. This statement is, due to the simplicity of the model, valid for various

18The data for ρ = 0.0 were obtained in an independent previous study [68, 196]. Hence, the correctness

of the used methods and results obtained in the present study is additionally confirmed (cp. Sec. 4.2.1).
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[68] [203] [204] [205] this work

MUCA ELP CSA DM HAb ELP+b WLc WLc+

13a 4.967 4.967 4.975 4.975 4.975 4.975 4.974 4.975

21 12.296 12.316 12.327 12.327 12.327 12.327 12.324 12.327

20.1 33.766 33.810 33.843 33.843 33.840 33.843

20.2 33.920 33.926 33.945 33.945 33.938 33.945

20.3 33.582 33.578 33.609 33.605 33.603 33.610

20.4 34.496 34.498 34.526 34.526 34.522 34.526

20.5 19.653 19.653 19.661 19.661 19.658 19.661

20.6 19.322 19.326 19.347 19.347 19.343 19.347
a Sequences 13 and 21 are the Fibonacci sequences used in [65],

Sequences 20.x introduced in [66]
b using ELP results from [68] as input
c with thickness constrint ρ = 0.55

Table 4.2: Comparison of (negative) energies of native conformation of various AB sequences

presented over the last years. “+”-sign indicates the application of a (subsequent) determin-

sistic optimization (conjugate gradient method [139]). Data of some otimization runs can be

found in Appendix B.

classes of polymers. I investigated furthermore in detail the neighborhood of the α-helix

in the parameter space by varying both, thickness and interaction length. It turned out

that the α-helix exists as ground state in a small, bounded area in the (σ–ρ) space, and is

surrounded by other helical and helicallike conformations.

The analysis of ground states was, of course, just a first step to an understanding of the

model. In the subsequent step, based on the knowledge of the ground-state conformations, I

focused on the thermodynamic behavior and conformational phases at finite temperatures. I

identified dominant structural pseudophases at finite temperatures, whereas the specific-heat

landscapes depending on the thickness parameter and temperature represents the conforma-

tional phase diagram. Independently of the polymer length, I found four major structural

phases. These include helices, sheetlike planar structures, bended rings and sprawled ran-

dom coils. These different secondary structure phases can be assigned to different ranges of

the tube thickness. The thickness parameter is therefore suitable for a classification of the

structural behavior of classes of polymers.

Finally, I introduced the AB tube model for hydrophobic-polar heteropolymers with

different interactions for the different kinds of monomers and an additional explicit stiffness

potential similar to that in wormlike chain models. I discussed results for a specific sequence

of monomers, which has extensively been studied before without thickness in a linelike model.

These previous results are contained in my data as special cases for which the thickness
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contraint is smaller than the natural thickness of the system. In particular, I found a very

pronounced region of a β-sheet structure stabilized by the special sequence of A and B

monomers. Hence, I showed in this additional part, that special sequences of amino acids, i.e.,

different intramolecular interactions, can stabilize general secondary structures. Regarding

the introduced bending stiffness, I assured myself that it plays a minor role for both, the

ground-state formation and the thermodynamic behavior. For the scientific placement of the

model and remarks on the two-letter alphabet, see also Appendix A (“The HP-Transcription

Problem”).
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Summary

In this work, I presented results on the phase behavior of different coarse-grained models

of polymers, which have been obtained by means of computer simulations. Polymers are

macromolecules consisting of a large number of (equal) small molecules, the monomers,

connected such, that they form a monomer chain. At high temperatures, these chains are

in the swollen random coil state. Cooling them down, they collapse at the so-called Θ-

temperature into much more compact globules. At very low temperatures, they freeze into

glassy or crystalline solids. In the case of proteins, a special and very important class of

biopolymers, one speaks also of the “folding” transition.

In the first part of this work, I study lattice polymers using the interacting self-avoiding

walk model. Special attention has been paid to the collapse and the freezing transition and

the scaling of both. The interesting question is, if the intermediate amorphous phase is stable

or vanishes in the thermodynamic limit. In the second part, I study an off-lattice tube model

for polymers with the emphasis on the different low-temperature pseudo-phases depending

on the thickness of the tube and the folded secondary structures therein.

Simulational Methods For the study of the lattice polymers, in particular for the low

temperature freezing regime, I applied sophisticated chain growth algorithms based on the

Pruned Enriched Rosenbluth Method (PERM) [29], which are able to perform a quite good

random walk through the energy space and system size [104, 105] and can hence estimate

the entire density of states of the system within one single simulation. These methods can of

course be used for the simulation of the Θ regime as well. But as they sample, in principle,

the whole temperature space in parallel, they become relatively demanding with respect to

the computational effort. Although the methods can be tuned to sample special temperature

ranges as well, I applied for very large system sizes (N > 4000 on the simple-cubic lattice) an

improved “canonical” version of PERM, which has been shown to be very efficient [159]. For

the simulation of the off-lattice systems, I used mainly generalized ensemble Monte Carlo

methods, like the Wang–Landau algorithm or the multicanonical recursion. The Wang–

Landau algorithm is relatively easy to implement and works well for a variety of problems,

but has in its original formulation some intrinsic “defect” as it violates the detailed-balance

condition during the simulation. This can be fixed by a subsequent simulation run with fixed

97
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algorithmic parameters, which corresponds then, in fact, to a multicanonical simulation. For

reliability reasons, cross-checks have been made for some results using parallel tempering

simulations and independent data from previous multicanonical studies. Ground states have

been refined using deterministic minimization techniques.

Lattice Polymers In the study of lattice polymers, I considered homopolymers on the

simple cubic (sc) and the face centered cubic (fcc) lattice. I studied conformational tran-

sitions of these systems, namely the collapse (or coil–globule transition) at the so-called

Θ-temperature and the freezing transition at very low temperatures, i.e., well below the

Θ-temperature. A question of particular interest deals with the coincidence of these transi-

tions, i.e., with the instability of intermediate phases between the random coil (vapor) phase

and the frozen (solid) phase, in the thermodynamic limit, as found for colloidal systems

with short range interaction [167]. Both scenarios, the disappearance and the stability of

the liquid phase in the thermodynamic limit, have been found later for polymeric systems

as well and were explained in a similar way by different interaction ranges [63, 127]. In

general, this behavior can be attributed to the range of the (attractive) interaction between

the single monomers or particles. It can be qualitatively described introducing an interaction

range parameter R. In colloidal systems, for R smaller than some threshold value, different

solid phases can coexist and for R larger than another threshold, there is a stable liquid

phase [169]. As I used in the first part of my work a potential leading to R → 0, i.e., R is

smaller than any finite threshold, one would expect a two-stage collapse from random-coil

conformations at high temperatures to the ground states of the system. 19

I studied the thermodynamic behavior of the polymer systems considering peaks in the

specific heat as indicators of structural activity. In contrast to similar studies for different

polymer models [127], these peaks seem not to behave in any regular way at first view.

Unraveling the non-uniform peak structure, it became rather clear, that the general behavior

of the finite size freezing temperature is strongly superposed by systematic lattice effects.

Due to the high precision of my simulations, it was also possible to explain this behavior.

The freezing temperature fluctuates systematically between almost fixed boundaries. In

particular, there are “magic” lengths where the ground states fit into compact cuboid shapes

and where the transition temperature jumps between these boundaries. Even though for

polymers on the fcc lattice, the situation is more complex, polymers behave similar on both

lattices with respect to the general behavior of the freezing transition.

To estimate the scaling of the finite size collapse transition temperature, I had to simulate

much longer polymers with lengths up to N = 32 000 monomers for the sc lattice. This task

is by far not trivial, as the upper critical dimension is just dc = 3 and hence logarithmic

corrections to the leading order scaling Tc(N) − TΘ ∼ 1/
√

N are expected. By fitting my

data to various scaling functions motivated by field-theoretic studies, it was not possible

19With the implicit understanding that the theory is applicable analogously to polymeric systems as well.
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to uniquely identify the nature of these corrections. It rather turned out that even these

apparently large systems are still to short to determine the type of corrections and hence

verify theoretical predictions. This remains a major task for future work on this field.

Anyhow, the value of the infinite length Θ temperature seems not to be affected seriously by

the explicit type of scaling corrections, as they can mimic each other effectively to a certain

degree. Beside a very well agreement of my estimates on the sc lattice with the most precise

estimates from the literature, my data confirm, to my best knowledge, the only numerical

value existing so far for the fcc lattice.

However, concerning the question of the stability of the structural phases, it can be

concluded from my results, that both transitions, the collapse and the freezing remain well

separated also in the extrapolation towards the thermodynamic limit. This may be explained

by the expected stable “solid” pseudo phase due to the very short attractive interaction in

the model. Hence, the separate pseudo phases identified in this study can be understood

qualitatively using the analogy to the behavior of colloids. The low-temperature transition

can be interpreted as the “freezing” of compact globular shapes into polymer crystals. Even

though, a general, qualitative agreement between the behavior or polymers and colloids has

been found (see, for example, also [63]), a precise analysis the phase behavior of polymers

with different interaction ranges and of the analogy to colloidal systems is left for future

work.

The Tube Model In the presented analysis of the tube model, I concentrated on the

formation of secondary structures of short systems. The polymer is modelled as an off-lattice

chain consisting of monomers, which interact between each other by means of a Lennard–

Jones potential. The chain itself is coated by a tube, mimicking the three-dimensional

extension of polymers due to steric constraints introduced, for example, by amino-acid side

chains in the case of proteins. The diameter of a mesoscopic tube can be considered as

a single steric parameter that induces cooperative effects and permits the discrimination of

polymers. It was introduced using the concept of the radius of curvature which is indeed,

in the first instance, a mathematical concept. In fact, it has been proven that “[it] is

connected to various physically appealing properties of a curve. In particular, [it] provides

a concise characterization of the thickness of a curve, [. . . ] as have been investigated within

the context of DNA” [178], it was further successfully used in more complex models for

proteins [79, 80, 82] and it was finally shown, that this concept is effectively equal to a volume

exclusion using two-point functions for polymers in good solvents [177].

The main task of this work was, to take this simple coarse-grained model and to show, to

which degree secondary structure formation as observed in nature can be understood even

with this approach. The other way around one may ask: What are the essential ingredients

to a model, i.e., which level of coarse graining is necessary, to observe secondary structure

formation including helices, sheets, etc. Therefore, I first studied systematically the ground-
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state structures depending on the thickness parameter and the system size. It turned out

that, driven by the variation of the thickness parameter, several different conformations occur

as ground states. In particular, I could show that the exact α-helix and planar β-sheets are

amongst them. This is remarkable as the model consist of nothing but Lennard–Jones

interaction and an additional length scale, the tube diameter. It should be stated though,

that special ground-state structures are generally not very stable against variations of the

thickness, but this was not expected either. Anyhow, the thickness can be considered as the

“driving force” of the process of structure formation in this system. Doubtlessly, secondary

structures can be stabilized by further interactions, for example due to special primary

structures (see below).

It was of course known for a long time, that helices and sheets form within coarse-grained

models including a somehow defined volume exclusion. One of the first basic studies was

done by Banavar and Maritan et al. using the tube model and a square well potential for the

interaction between the monomers. They showed, that in principle in this model secondary

structures like helices and sheets occur [80–82]. Further studies on that topic mainly used

dedicated or less simple and not that general models. In some interesting works, for example,

explicit hydrogen bonds [191, 193] or solvent particles [188–190] play a role, which indeed

support structure formation. It is a common ansatz to investigate and understand protein

folding, stressing that I do not speak only of proteins but of a general class of polymers

including proteins, at different abstraction (coarse grained) levels. It can be concluded so far

that at least parts of the general secondary structure formation can be attributed to simplest

generic models for thick polymers.

This was of course just a first step in the understanding of the model. Subsequently,

in detailed and elaborate studies I could develop the full conformational phase diagrams

depending on the thickness constraint and temperature for short polymers. In contrast

to an earlier study of a similar model, where rough sketches of the folding- and collapse-

transition line are presented [82], I could unravel the internal structure of the pseudo phases

of folded conformations. Independently of the polymer length, I identified four major struc-

tural phases, where helices, sheetlike planar structures, bended rings and sprawled random

coils are the dominant conformations. These dominant conformations correspond gener-

ally to the ground states in the respective regions. Furthermore I found special regions in

the parameter space, where conformations crystallized on regular lattices dominate. After

introducing then the AB tube model for heteropolymers, I studied a special AB protein

in this tube model, which has been subject of several preceding works without thickness.

As a key result, I showed that special sequences of different monomers, involving differ-

ent intramolecular interactions, can stabilize the secondary structures of tube polymers. In

particular, I found a broad and stable ground-state region of a β-sheet structure for that

protein. On the other hand, the general qualitative structure of the pseudo-phase diagram

keeps unchanged.
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To conclude, I could resolve in this work the complete (pseudo)phase behavior of the

Lennard–Jones tube model for polymers with respect to the thickness constraint and tem-

perature, including the formation of the native states for T → 0. This allowed, for example,

for the classification of thermodynamic conformational phases. Hence, I have identified the

generic structure of the conformational phase space for classes of polymers, parameterized

by their thickness. Although a mesoscopic model for flexible polymers was employed, I found

that the thickness constraint is an intrinsic source of an effective stiffness and enhances the

capability of a polymer to form secondary structures which are stable against thermal fluc-

tuations. It is therefore suitable for a classification of the structural behavior of classes of

polymers.

Of course, the here studied tube model may be employed in other contexts as well, for

example, for simulations of a tube model for entangled networks of polymers, where the

hypothetical tube around a polymer models the suppression of transverse undulation by

the network [2, 206]. As another example one could imagine, that the tube picture also

may be applicable for the the diffusion of knots in knotted DNA [207]. Finally, the model

may be applied in the context of branched or bottle-brushed polymers, a field which is very

popular not only in computational physics. Such a bottle-brush polymer consists of an, in

principle, flexible main chain or backbone, where many short side chains are attached. The

resulting polymer is a cylindrical brush, which becomes rodlike for long enough attached side

chains [208–210]. However, the problem is still not completely understood. One question

for example, and the work here and subsequent studies of tube polymers may contribute to

the answer, is that dealing with the structural behavior depending on control parameters

like the length of the side chains [210], i.e., in a sense, the tube thickness. In order to follow

this idea, one should firstly find an appropriate mapping between the main characteristics

of both models, as for example persistence lengths of the brush polymers and bond lengths

of the coarse-grained tube model and mean radii of gyration of the side chains and tube

diameter. Then one should, for example, be able to reproduce data like the mean square

radius of the backbone depending on the (adequately scaled) monomer number for different

perpendicular extensions, as presented in [211]. These considerations may be the starting

point of further future work on the tube model.
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Appendix A

The HP-Transcription Problem

I will here comment on the general difficulty to translate sequences of potentially twenty

amino acids in real polymers into a two-letter code, what has been attempted occasion-

ally [48, 49]. Indeed, one of the main properties of amino acids is the hydrophobicity, which

is either positive or negative. But, on the one hand, the dispersive strength of this property

is neglected completely, on the other hand it seems not to be trivial to determine the hy-

drophobicity in a standardized manner. This difficulty led to different hydrophobicity scales,

as shown in Table A.1.

Take, for example, the Trp-cage miniprotein with code 1RIJ from the Protein Data

Bank [176] (this is one of the small proteins studied in [87]). It has the amino-acid sequence:

ALQEL LGQWL KDGGP SSGRP PPS .

Using now the data given in Table A.1, one notes that for several amino acids in 1RIJ it is

not obvious, whether they should be translated into hydrophobic (H) or polar (P) ones in

the HP- or AB-model. In Fig. A.1, this dilemma is visualized.

Apart from the above mentioned difficulty, I tried to simulate 1RIJ in the AB model with

thickness anyhow by translating the above given sequence as follows:

AABBA A0BAA BB00A BB0BA AAB ,

where “0” monomers (the “G”s in the original sequence) does not interact at all with any

other monomer. Furthermore, I measured the global radius of curvature of 1RIJ and used

that value as the thickness constraint ρ for my simulation (cp. Sects. 4.2.2, “The Global

Radius of Curvature”, 4.2.3, “The Tube Thickness” and 4.7, “The Hydrophobic-Polar Tube

Model”). To make it short, this naive procedure could not reproduce structural properties of

the real protein. (Data and results on the study of 1RIJ and a further miniprotein (2EQV)

designed to fold into a sheet are not shown.)

It remains unclear, how to translate real proteins into two-letter coarse grained models

reliably. It is, furthermore, doubtful, if it makes sense to study specific proteins within these
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Amino acid Abbrev./ Hydrophobicitya 1RIJ

Symbol [212] [213] [214]

ab b c d OONS Consensus

Isoleucin Ile I + + + + + + + X

Valin Val V + + + + + + + X

Leucin Leu L + + + + + + + X •
Phenylalanin Phe F + + + + + − + !

Cystein Cys C + + + + + − + !

Methionine Met M + + + + + + + X

Alanin Ala A + + + + + + + X •
Glycin Gly G − 0 0 0 0 0 + ! •
Threonin Thr T − − + + − − − !

Tryptophan Trp W − + + + + + + ! •
Serin Ser S − − − − − − − X •
Tyrosin Tyr Y − − + + + − + !

Prolin Pro P − nv + + + + − ! •
Histidin His H − − + + − − − !

Glutamat Glu E − − − − − − − X •
Glutamin Gln Q − − − − − − − X •
Aspartat Asp D − − − − − − − X •
Asparagin Asn N − − − − − − − X

Lysin Lys K − − − − − − − X •
Arginin Arg R − − − − − − − X •
a Only sign is given. For precise numbers, see the given references.
b The scale is adjusted such that the value is zero for glycin.

Table A.1: The twenty standard amino acids occurring in real proteins with their hydropho-

bicity according to different scales from literature [212–214]. Negative values correspond to

hydrophilic amino acids, positive values to hydrophobic ones. The “X” in the second last

row indicates, that all scales are in agreement for the respective amino acids, whilst “!”

indicates disagreement. Amino acids marked by “•” in the last row occur in the protein

1RIJ (see text). Horizontal lines are inserted only for clarity. “nv” means “no value given”.

models at all. Rather, the results obtained using these two-letter models should represent

a general frame and lead to a more general understanding of the hydrophobic core forma-

tion in proteins and protein systems and, in particular the results for the AB tube model,

of possible conformational phases of secondary structures and their stabilization for thick

polymers and proteins. Hence, they are the basis of further analysis of pseudo phases of

models designed for specific polymers or proteins.
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Figure A.1: Backbone of 1RIJ. Color code: green – clearly hydrophilic, “−” in all scales in

Tab. A.1, → “B” monomer. red – clearly hydrophobic, “+” in all scales, → “A” monomer.

white – Glycin, depending on scale “+”, “−” or “0” (adjustment). blue – Tryptophan, de-

pending on scale “+” oder “−”. yellow – Prolin, depending on scale “+”, “−” or undefined

(“nv”).
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Appendix B

Non-Stochastic Minimization –

Examples

I show in this appendix some examples of the application of the deterministic conjugate

gradient optimization [139] to different systems studied during this work and the work on

FENE polymers [76]. I will comment on different (technical) aspects shortly. The introduc-

tion of the method an some general remarks can be found in Sec. 2.2.6 (“Conjugate Gradient

Optimization”).

iteration i

lengthofgrad
ient

E
i

CG: Ei

CG: |~hi|
SD: Ei

SD: |~gi|
1e-051e-061e-071e-081e-091e-10302520151050

-43.0263-43.0264-43.0265-43.0266-43.0267-43.0268-43.0269-43.0270-43.0271-43.0272
Figure B.1: Conjugate gradient optimization of a N = 13 FENE polymer. Left: Energy

and lengths of gradients during the iterations, right: Visualization of the ground-state con-

formation.

107



108 APPENDIX B. NON-STOCHASTIC MINIMIZATION – EXAMPLES

FENE Polymers

As FENE Polymers have flexible bonds, every monomers has three independent degrees of

freedom. Hence, one optimizes in a 3N -dimensional phase space. In Fig. B.1 the results of

such an optimization for N = 13 is shown. The pure lines show the length of the gradients

(solid line: Steepest Descent (SD) method, dashed line: Conjugate Gradient (CG) method,

note the logarithmic scale), + (SD) and × (CG) mark the energy of the system at every

iteration step of the optimization. The iteration converges after a few steps, both methods

(SD and CG) do not differ significantly. The picture shows the ground-state conformation

in a specific representation (spheres at monomer positions, bonds are not shown explicitly).

iteration i

lengthofgra
dient

E
i

CG: Ei

CG: |~hi|
SD: Ei

SD: |~gi|
0.00011e-051e-061e-074035302520151050

-1819.7-1819.8-1819.9-1820.0-1820.1-1820.2-1820.3-1820.4-1820.5-1820.6

iteration i

lengthofgra
dient

E
i

CG: Ei

CG: |~hi|
SD: Ei

SD: |~gi|
0.001
0.0001
1e-0535302520151050

-3350-3360-3370-3380-3390-3400-3410-3420-3430-3440
Figure B.2: Conjugate gradient optimization of FENE polymers with N = 309 (top) and

N = 561 (bottom).
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Results for more interesting systems with N = 309 and N = 561 are shown in Fig. B.2. The

dimensions of the phase spaces are 927 and 1683, respectively. The shown data is the same

as for the example above. Here it can be seen, that the conjugate gradient method performs

better than the steepest descent method. Anyhow, the absolute times both methods required

for the optimization are in the range of some seconds on a single standard processor. The

input conformations were obtained during exhaustive multicanonical simulations [132], the

energy is lowered by the deterministic optimization in the range of . 1%.

Lennard-Jones Cluster

Figure B.3 shows the result of a conjugate gradient optimization of a Lennard-Jones cluster

consisting of N = 102 particles. The input state was obtained by a multicanonical simu-

lation [132]. Its energy was still higher than the actual accepted minimum of that system

Emin = −569.363652 [215], but the particles were already in the correct qualitative positions

with respect to each other. With the conjugate gradient method, it took a few seconds and

about 10 iterations to bring the system into a state with E = −569.3636525.

There are much similarities between ground states of FENE polymers and Lennard-Jones

clusters [76, 77]. Hence, it might make sense to search ground states of FENE polymers,

what has some technical advantages compared to simulations of Lennard-Jones clusters,

optimize them, remove the bonds to get ground state estimates for Lennard-Jones cluster

and optimize again. A naive experiment following that protocol with N = 561 particles

led to a ground-state energy of ELJ ≈ −3826, which corresponds to a FENE energy of

EFENE ≈ −3437. The at the moment accepted minimum energy is ELJ,min ≈ 3842 [215],

iteration i

lengthofgra
dient

E
i

CG: Ei

CG: |~hi|
1e-051e-061e-071e-081e-091e-106050403020100

-569.335-569.340-569.345-569.350-569.355-569.360-569.365
Figure B.3: Conjugate gradient optimization of a Lennard-Jones cluster consisting of

N = 102 particles. The minimum energy is the same as given in the Cambridge Cluster

Database [215].
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so just a few (ELJ,diff ≈ 16) monomers were still located at “wrong” positions (without

figure).

Thick Polymers

The optimization becomes more difficult and less efficient when considering thick polymers,

where the energy landscape is, in practice, arbitrarily restricted by “hidden walls” due the

thickness constraint. This effect is worsen by the fixed bond length of the system. In the first

instance, I forget the conjugate gradient method, otherwise I would “hit” the walls perma-

nently, and use the naive steepest descent method instead. Furthermore, non-differentiable

points at the walls has to be treated separately using several case differentiations.

Figure B.4 shows the results of two steepest descent runs (starting with different input

states) for a thick polymer with N = 10 monomers at ρ = 0.6. One sees, that both input

states result in the same ground state. Very interesting here is, that the structure of the

energy landscape seems to be non-trivial, as indicated by the local and global fluctuations

of the lengths of the gradients. 1

iteration i

lengthofgrad
ient

E
i

Sample 2, SD: Ei

Sample 2, SD: |~gi|
Sample 1, SD: Ei

Sample 1, SD: |~gi|
1e-061e-071e-081e-091e-101e-11160140120100806040200

-20.032-20.033-20.034-20.035-20.036-20.037-20.038-20.039-20.040-20.041
Figure B.4: Conjugate gradient optimization of a thick polymer with N = 10 monomers and

thickness ρ = 0.6. Shown are results of two independent samples, i.e., optimizations of two

different input states. Both result in the same ground state.

As shown in Chap. 4 (“Tubelike Flexible Polymers”), the thickness constraint does not

influence the ground state below ρ . 0.6. An optimization with ρ = 0.0 should lead there-

fore to the same ground state energy. This is indeed the case, see Fig. B.5, where the

characteristics of such an optimization are shown.

It was above mentioned, that several difficulties may arise while optimizing thick poly-

mers. A probably misbehaving optimization (it might of course be, that the input state

1I have honestly to admit, that I can not provide a clear picture of the correspondence between the

observed behavior of the gradients and the structure of the energy landscape.



111

iteration i

lengthofgra
dient

E
i

SD: Ei

SD: |~gi|
1e-061e-071e-081e-09100806040200

-20.034-20.035-20.036-20.037-20.038-20.039-20.040-20.041
Figure B.5: Conjugate gradient optimization of a thin polymer with N = 10 monomers and

thickness ρ = 0.0. Compare results with Fig. B.4.

iteration i

lengthofgra
dient

E
i

SD: Ei

SD: |~gi|
1e-081e-091e-101e-116543210

-8.1996-8.1998-8.2000-8.2002-8.2004-8.2006-8.2008-8.2010-8.2012-8.2014
Figure B.6: Conjugate gradient optimization of a thick polymer with N = 9 monomers and

thickness ρ = 0.8.

already was extremely close to the ground state and the minimum was found by chance di-

rectly) is shown in Fig. B.6. The optimization stops already after five iterations, supposably

because it got trapped due to the thickness constraint.

AB-Polymers

Figure B.7 shows characteristics of some optimization runs for ground-state conformations of

linelike AB proteins from [68] presented in Table 4.2 (Sec. 4.7, “The Hydrophobic-Polar Tube
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SD: Ei

SD: |~gi|

20.1

iteration i

lengthofgra
dient

E
i

1e-041e-051e-061e-0710008006004002000
-33.81-33.82-33.83-33.84

SD: Ei

SD: |~gi|

20.2

iteration i

lengthofgra
dient

E
i

1e-041e-051e-061e-074003002001000

-33.928-33.932-33.936-33.940-33.944
SD: Ei

SD: |~gi|

20.4

iteration i

lengthofgra
dient

E
i

1e-041e-051e-061e-076005004003002001000
-34.50-34.51-34.52-34.53

SD: Ei

SD: |~gi|

20.6

iteration i

lengthofgra
dient

E
i

1e-041e-051e-061e-07250200150100500

-19.325-19.330-19.335-19.340-19.345-19.350
Figure B.7: Conjugate gradient optimization of ground-states of AB proteins from [68]. For

clarity, only values for every nth iteration are shown in the curves for the gradient length

(solid lines, n = 10 (20.1), 5 (20.2), 7 (20.4), 2 (20.6)).

Model”, p. 94). The fact, that the energies after the optimization process are lower or equal

to that presented in the meantime [203–205] indicates, that the ground-state conformations

in [68] are in fact the same ones, besides some marginal fluctuations in the positions of single

monomers.

Note that the optimization proceeds not always equally smooth, or smooth at all, re-

spectively. Compare, for example, the energies for the 20.4 and the 20.6 polymer during the

optimization or check the peculiar fluctuations of the gradient lengths against those for some

homopolymer optimization runs shown earlier. This might be some additional indication of

the complexity of the energy landscape.
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[134] D. T. Seaton, T. Wüst, and D. P. Landau, A Wang–Landau Study of the Phase

Transitions in a Flexible Homopolymer. Comp. Phys. Commun. 180(4), 587 (2009)

[135] U. H. E. Hansmann and L. T. Wille, Global Optimization by Energy Landscape

Paving. Phys. Rev. Lett. 88(6), 068105 (2002)
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