Prof. Dr. R. Verch Dr. T.-P. Hack

UNIVERSITAT LEIPZIG

Inst. f. Theoretische Physik

Summer Term 2016

Quantum Field Theory — Problem Sheet 4

2 pages — Problems 4.1 to 4.4

Problem 4.1

Let $\Phi, \mathcal{H}, \mathcal{D}, \mathcal{U}, \Omega$ be a scalar quantum field fulfilling the Wightman axioms (as discussed in the lectures). The *n*-point functions (Wightman functions) associated with this quantum field are defined by

$$\mathscr{W}_n(f_1 \otimes \cdots \otimes f_n) = (\Omega, \Phi(f_1) \cdots \Phi(f_n)\Omega) \quad (f_j \in \mathscr{S}(\mathbb{R}^4)).$$

Show that the Wightman axioms demanded to hold for the quantum field imply the following properties of the n-point functions:

- (i) The \mathscr{W}_n are in $\mathscr{S}'((\mathbb{R}^4)^n)$
- (ii) $\mathscr{P}_{+}^{\uparrow}$ -invariance:

$$\mathscr{W}_n((f_1)_{(\Lambda,a)}\otimes\cdots\otimes(f_n)_{(\Lambda,a)})=\mathscr{W}_n(f_1\otimes\cdots\otimes f_n)$$

for all $f_j \in \mathscr{S}(\mathbb{R}^4)$ and all $(\Lambda, a) \in \mathscr{P}_+^{\uparrow}$.

(iii) Locality:

$$\mathscr{W}_n(f_1 \otimes \cdots \otimes f_j \otimes f_{j+1} \otimes \cdots \otimes f_n) = \mathscr{W}_n(f_1 \otimes \cdots \otimes f_{j+1} \otimes f_j \otimes \cdots \otimes f_n)$$

if $f_j \perp f_{j+1}$.

(iv) Hermiticity:

$$\overline{\mathscr{W}_n(f_1\otimes\cdots\otimes f_n)}=\mathscr{W}_n(\overline{f_n}\otimes\cdots\otimes\overline{f_1})$$

for all $f_j \in \mathscr{S}(\mathbb{R}^4)$ (order of entries reversed on right hand side).

(v) Spectrum condition:

Use translation invariance to conclude that there are distributions W_n in the relative position variables $\xi_j = x_j - x_{j-1}$ (j = 1, ..., n-1) so that

$$\mathscr{W}_n(x_1,\ldots,x_n) = \mathsf{W}_n(\xi_1,\ldots,\xi_{n-1})$$

in formal notation for distributions. Then show that the Fourier transforms $\widetilde{\mathtt{W}}_n$ of $\widetilde{\mathtt{W}}_n$ have the property that

 $\widetilde{W}_n(q_1, \dots, q_{n-1}) = 0$ if $(q_1, \dots, q_{n-1}) \notin J^+(0)^{n-1}$

where $J^+(0)$ denotes the forward directed causal cone emanating from q = 0 in Fourier space (often denoted by V^+ in the literature).

Problem 4.2

Let \mathscr{W}_n $(n \in \mathbb{N})$ be the Wightman functions of the quantized scalar Klein-Gordon field. Show that the \mathscr{W}_n are determined by the 2-point function \mathscr{W}_2 as follows:

- (i) If n is odd, then $\mathscr{W}_n = 0$.
- (ii) If n = 2m is even, then

$$\mathscr{W}_n(f_1\otimes\cdots\otimes f_n)=\sum_{\text{pairings}}\mathscr{W}_2(f_{k_1}\otimes f_{\ell_1})\cdots\mathscr{W}_2(f_{k_m}\otimes f_{\ell_m})$$

where the sum is over all ways of writing the set $\{1, 2, ..., 2m\}$ as $\{k_1, ..., k_m\} \cup \{\ell_1, ..., \ell_m\}$ under the condition that

$$k_1 < k_2 < \ldots < k_m$$
 and $k_1 < \ell_1, \ldots, k_m < \ell_m$.

Hint: You need how the quantized field arises from creation and annihilation operators and their commutation relations. Prove the argument recursively by induction on n.

Problem 4.3

For the quantized Klein-Gordon field ϕ , one can form the unitary groups $e^{it\phi(f)}$, $t \in \mathbb{R}$, ("Weyl operators") for real-valued test functions f.

(i) It holds that

$$e^{it\phi(f)}e^{is\phi(g)} = e^{itsb(f,g)}e^{i\phi(tf+sg)}$$

for all $s, t \in \mathbb{R}$ and real-valued test functions f and g, with a bilinear form b(.,.)on the space of test functions. Determine b in terms of the 2-point function \mathscr{W}_2 .

(ii) Show that

$$(\Omega, \mathrm{e}^{it\phi(f)}\Omega) = \mathrm{e}^{-t^2\mathscr{W}_2(f,f)/2}$$

holds for all $t \in \mathbb{R}$ and all real-valued test functions f where Ω is the (Fock-space) vacuum vector of the quantized Klein-Gordon field. Using this, deduce that the n-point functions are determined by the 2-point function (cf. Problem 4.2).

Problem 4.4

Let \mathscr{W}_n $(n \in \mathbb{N})$ be the Wightman functions of the quantized scalar Klein-Gordon field. Show that they fulfill spacelike clustering, i.e. for any spacelike vector a, it holds that

$$\lim_{r \to \infty} \mathscr{W}_{\ell+m}(g_1 \otimes \cdots \otimes g_\ell \otimes (f_1)_{(1,ra)} \otimes \cdots \otimes (f_m)_{(1,ra)})$$

= $\mathscr{W}_{\ell}(g_1 \otimes \cdots \otimes g_\ell) \mathscr{W}_m(f_1 \otimes \cdots \otimes f_m)$

for any choice of test functions g_j, f_k .