Prof. Dr. R. Verch Dr. T.-P. Hack

UNIVERSITAT LEIPZIG

Inst. f. Theoretische Physik

Summer Term 2016

Quantum Field Theory — Problem Sheet 3

Problem 3.1

Problem 3.1

Define $\widetilde{f}(k) = \int e^{i\eta(k,x)} f(x) d^4x$ and define the quantized Klein-Gordon field operators

$$\phi(f) = \frac{1}{2} (a(\tilde{f}) + a^+(\tilde{f})), \quad f \in \mathscr{S}(\mathbb{R}^4),$$

where the annihilation/creation operators are defined in $\mathcal{F}_+(L^2(H_m^+, d\Omega_m))$, on their natural domain \mathcal{F}_+ fin of Fock space vectors having only finitely many *n*-particle sectors different from 0.

Show that the following holds.

- (i) $\phi((\Box + m^2)f) = 0, \quad f \in \mathscr{S}(\mathbb{R}^4)$
- (ii) $\phi(f \circ (\Lambda, a)^{-1}) = \mathbb{U}(\Lambda, a)\phi(f)\mathbb{U}(\Lambda, a)^{-1}, f \in \mathscr{S}(\mathbb{R}^4)$, for all $(\Lambda, a) \in \mathscr{P}_+^{\uparrow}$, where $\mathbb{U}(\Lambda, a)$ is the 2nd quantization of the unitary representation of the irreducible unitary positive energy representation $U(\Lambda, a)$ $((\Lambda, a) \in \mathscr{P}_+^{\uparrow})$ which is on $L^2(H_m^+, d\Omega_m)$ given by $U(\Lambda, a)\tilde{\chi}(k) = e^{i\eta(k,a)}\tilde{\chi}(\Lambda^{-1}k)$.

$$[\phi(f),\phi(g)] = \frac{1}{4} \left((\tilde{f},\tilde{g})_{H_m^+} - (\tilde{g},\tilde{f})_{H_m^+} \right)$$

for all $f, g \in \mathscr{S}(\mathbb{R}^4)$.

(iv) The subspace spanned by all vectors of the form

 Ω , $\phi(f_1)\Omega$, $\phi(f_1)\phi(f_2)\Omega$, ... $\phi(f_1)\phi(f_2)\cdots\phi(f_n)\Omega$,

where $n \in \mathbb{N}$, $f_j \in \mathscr{S}(\mathbb{R}^4)$, and Ω is the vacuum vector in Fock space, coincides with \mathcal{F}_+ fin and is therefore a dense subspace of $\mathcal{F}_+(L^2(H_m^+, d\Omega_m))$.

(v) Let $\Psi, \Psi' \in \mathcal{F}_{+ \text{ fin}}$. Show that

 $f\mapsto (\Psi,\phi(f)\Psi')_{\mathcal{F}_+}\quad \text{is a distribution in }\mathcal{S}(\mathbb{R}^4)\,.$

(vi) Give an expression for

$$(\Omega, \phi(f)\phi(g)\Omega)_{\mathcal{F}_+}$$

in terms of the scalar product of $L^2(H_m^+, d\Omega_m)$, where again $\Omega = (1, 0, 0, ...)$ is the vacuum vector in Fock space.