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Problem 1.1

Show that SL(2,C) is the universal covering group of the proper orthochronous Poincaré
group L ↑

+, with the covering map Λ( . ) : SL(2,C)→ L ↑
+ given by

Λµν(A) =
1

2
Tr(AσµA

∗σν)

where σ0 = 1 is the 2× 2 unit matrix and σ1, σ2, σ3 are the Pauli matrices.

For the proof, proceed along the following steps:

(1) Show that there is a one-to-one correspondence between coordinate vectors x =
(xµ)µ=0,...,3 in Minkowski spacetime and hermitean 2× 2 matrices Hx given by

Hx = xµσµ , xµ = ηµνTr(Hxσν)

where (ηµν) = (ηµν) = diag(1,−1,−1,−1) and the Einstein summation is em-
ployed, i.e. doubly appearing indices (one of them downstairs, the other upstairs)
are summed over.

(2) Show that

det(Hx) = ηµνx
µxν ,

1

2
(det(Hx +Hy)− det(Hx)− det(Hy)) = ηµνx

µyν .

(The 2nd equation results from the first by applying the parallellogram identity to
symmetric bilinear forms such as the Minowski product η(x, y) = ηµνx

µyν .)

(3) Use the previous findings to show that for any A ∈ SL(2,C) there is some proper,
orthochronous Lorentz transformation Λ(A) such that

AHxA
∗ = HΛ(A)x .

(4) Show that Λ(A)Λ(B) = Λ(AB), Λ(12×2) = 14×4, Λ(A) = Λ(B) ⇒ A = ±B, and
that the matrix Λ(A) is given by the equation above.
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You may use the fact that SL(2,C) is simply connected to conclude that (i) L ↑
+ is not

simply connected and (ii) SL(2,C) is the universal covering group of L ↑
+. If you like, you

can also show that SL(2,C) is simply connected.

Problem 1.2

Denote by f̃(p) = (2π)−2
∫

e−iη(p,x)f(x) d4x the Fourier transform of a function f ∈
S (R4), using the Minkowski product in the argument of the phase.

Let m > 0 be a fixed number and define for f, g ∈ S (R4),

W (f, g) = C

∫
R3

f̃(−ω(p),−p)g̃(ω(p),p)
d3p

ω(p)

where C > 0 is a constant and ω(p) =
√
|p|2 +m2 .

(a) Show that W has the properties of a distribution in S ′(R4 × R4).

(b) Show that W (f, f) ≥ 0 .

(c) Show that W (f(Λ,a), g(Λ,a)) = W (f, g) for all f, g ∈ S (R4), where

f(Λ,a)(x) = f((Λ, a)−1x) (x ∈ R4)

for all (Λ, a) ∈P↑
+.

Problem 1.3

For some complex Hilbert space H,
∨n

H and
∧n

H denote the n-fold symmetrized,
resp. n-fold antisymmetrized tensor product Hilbert spaces of H; by convention,

∨0
H =∧0

H = C. Then one defines F±(H), the bosonic (+) / fermionic (−) Fock space on H,
as the infinite direct sum Hilbert spaces

F+(H) =
∞⊕
n=0

∨n
H , F−(H) =

∞⊕
n=0

∧n
H ,

i.e. the spaces consist of sequences ψ = (ψn)∞n=0 with

ψn ∈
∨n

H or ψn ∈
∧n

H according to case,

and with (ψ,ψ)F <∞, where

(ψ,χ)F =
∞∑
n=0

(ψn, χn)n

and (ψn, χn)n denotes the scalar product in the appropriate (anti-)symmetrized n-fold
tensor product Hilbert spaces.

One then defines bosonic creation/annihilation operators a+(χ) / a(χ) in F+(H) on the
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domain D of all ψ = (φn)∞n=0 where ψn 6= 0 only for finitely many n by linear extension
of the maps

1√
n+ 1

a+(χ)(f1 ∨ · · · ∨ fn) = χ ∨ f1 ∨ · · · ∨ fn ,
√
na(χ)(f1 ∨ · · · ∨ fn) = (χ, f1)f2 ∨ · · · ∨ fn + . . .+ (χ, fn)f1 ∨ · · · ∨ fn−1 ,

a(χ)f0 = 0 (f0 = ψ0 ∈ C =
∨0

H)

Similarly, one defines fermionic creation/annihilation operators b+(χ) / b(χ) in F−(H) by
linear extension of

1√
n+ 1

b+(χ)(f1 ∧ · · · ∧ fn) = χ ∧ f1 ∧ · · · ∧ fn ,
√
nb(χ)(f1 ∧ · · · ∧ fn) = (χ, f1)f2 ∧ · · · ∧ fn

− (χ, f2)f1 ∧ f3 ∧ · · · ∧ fn . . .+ . . .− . . . (χ, fn)f1 ∧ · · · ∧ fn−1 ,

b(χ)f0 = 0 (f0 = ψ0 ∈ C =
∧0

H)

In all cases, χ is in the 1-particle Hilbert space H. The summands on the right hand side
of the definition of b(χ) have alternating signs.

Prove that the following holds.

(a) (a(χ)ψ,ψ′)F = (ψ, a+(χ)ψ′)F for all ψ(′) = {ψ(′)
n }∞n=0 ∈ D,

(b) [a(χ), a(η)] = 0 = [a+(χ), a+(η)], [a(χ), a+(η)] = (χ, η) · 1 for all χ, η ∈ H, with the
commutator [X, Y ] = XY − Y X

(c) {b(χ), b+(η)} = 0 = {b+(χ), b+(η)}, {b(χ), b+(η)} = (χ, η) · 1 for all χ, η ∈ H, with
the anti-commutator {X, Y } = XY + Y X.

(d) (b(χ))∗ = b+(χ)

(e) b(χ) and b+(χ) are bounded .
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