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Abstract 

Spheres and hemispheres allow an interpretation as quantum state spaces quite similar as to 
projective spaces. Spheres describe systems with two levels of equal degeneracy. The geometric 
key lies in the relation between transition probability and geodesics. 

There are isometric embeddings as geodesic submanifolds into the space of density operators 
assuming the latter is equipped with the Bures metric. Then parallel transporting is considered. 
Manageable expressions for parallel transport along geodesic arcs and polygons can be given. 
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1. Introduction 

One of my aims is to show the existence of a consistent interpretation of the n-sphere S” 
as the space of (pure) states of certain quantum systems within the context of “orthodox” 
quantum theory. It is shown that n-spheres and (n + l)-hemispheres represent states, pure 
and mixed, respectively, of two level systems with equally degenerate levels. The basic 
concept is that of transition probability and its relation to the geodesics. 

The observables can be shown to form a Jordan spin factor of type 12 [26]. Representing it 
as a Jordan subalgebra of a matrix algebra, the spheres and hemispheres in question can be 
identified with submanifolds of density operators. By the introduction of the Bums metric 
[ 181 this identification becomes an isometric embedding onto geodesic submanifolds of the 
space of density operators. 
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This enables an unambiguous way to introduce the parallel transport a la Berry [ 151 
in its extension to density operators [37]. Explicit expressions for the parallel transport 
along geodesic arcs and polygons are derived, and possible implications for describing 
experiments are mentioned. 

The remainder of this section is devoted to review and to arrange some facts in order to 
prepare the treatment of the spheres. 

Let ‘H denote a Hilbert space of complex dimension m + 1, and let us recall that, allowing 
all hermitian operators to be observables, two of its vectors describe the same state iff they 
are linearly dependent. To get rid of this ambiguity the complex projective space P(3-I) = 
@pm of all complex one-dimensional subspaces of ?t can be introduced [30] the points of 
which correspond one-to-one to the pure states. Clearly, the possibility to handle all physical 
relevant questions of the theory within @Pm is principally known since long. The renewed 
interest raised from insights in the geometric nature of the Berry phase [ 15,35,44,37,38], 
and from the interesting role of the Study Fubini metric [2,8,3 11. 

Let R = D(X) denote the convex (affine) set of all density operators. Let us identify 
every density operator w with the state it defines, i.e. A + w(A) = tr(Aw). A point 
of a is called pure iff it is an extremal point of the state space 52 viewed as a convex 
set. The submanifold of extremal points of Q is identified with CPm by identifying every 
one-dimensional subspace (or every ray) of X with the projection operator projecting ‘H 
onto it. 

Assume now the complex Hilbert space X is equipped with an antiunitary time reversal 
operator 0 [43]. Let a hermitian operator be called observable iff it commutes with 0. 
With this restriction on the observables the states can be uniquely represented by the density 
operators commuting with 0. Let Qo denote the new state space. The extremal points of 
a@ are by definition the pure states of the quantum system (3-1, O}. They can be described 
more directly. To do so we have to distinguish between the Bose case O2 = 1 and the Fermi 
case O2 = -1. 

In the Bose case the vectors @ of ‘H satisfying 8 @ = $ constitute a real Hilbert space 
of real dimension m + 1, the real one-dimensional subspaces of which can be identified 
with the extremal points of 520, and hence with the space of pure states. Thus the space of 
pure states in the Bose case is a real projective space [WY’. 

In the Fermi case there are no O-invariant non-zero vectors contained in 1-1. Instead one 
has to consider its O-invariant projection operators of rank two, which, up to a normalizing 
factor i, are the extremal points of Q, . This reflects the well-known Kramer degeneracy 
[29] which will not be destroyed by O-invariant interactions and observations. 

Now 0 anticommutes with the imaginary unit i. Thus by adjoining 0 to the complex 
numbers one gets the quatemions, and 31, equipped with these multipliers, becomes a 
quatemionic Hilbert space [25]. Two vectors differing by a quatemionic multiplier cannot 
be distinguished one from another by O-invariant observables. Therefore the space of pure 
states carries the structure of a quatemionic projective space Wpk with 2k + 1 = m, while 
m + 1 is the complex dimension of 3-1. See [ 131 for more details. 

At this stage one may ask the following question: Let M be one of the Riemannian man- 
ifolds [WP , @P”, or WP, coming from Hopf bifurcating the real, complex, or quatemionic 
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Hilbert space and being equipped with the canonical Study Fubini metric, What geomet- 
ric properties ensure the reconstruction of the observables and of the state spaces Q, Qs, 
O2 = 4~1 ? A key statement to this question reads: Every geodesic of M closes with length 
x, i.e. M is a C,-manifold [16]. 

Let x, y E M be two points and Dist(x, y) their distance. If M is suitably embedded in 
an Euclidean space a given closed geodesic of M may be viewed as a circle of diameter 
one. The arc length between x and y then equals Dist(x, y). 

The transition probability p(x, y) between the states represented by x and y in the cases 
mentioned above is given by 

p(x, y) = cos2(Dist(x, y)). (1) 

If 0 < p(x, y) < 1 or, equivalently, 0 < Dist(x, y) < in, there is exactly one curve joining 
x and y with length Dist(x, y), the geodesic arc joining them. If, however, the distance is 
maximal, namely $YC, then p(x, y) = 0, the states are orthogonal, and y is a focal point 
ofx. 

For the usual pure states of quantum theory, parameterized by the projective manifolds, 
this and relation (1) is an observation [ 16,20,31,2,8]. It may serve as a dejinition for other 
C, -manifolds, in particular for the spheres. 

As seen above, the metrical distance allows to define the transition probability. The 
transition probabilities allow to characterize the observables. An observable is a real function 
on M the value of which at point x is its expectation value if the system is in the state 
represented by x. The set of observables is given by 

O = OM I= (A:x + A(X) = C & P(X, J’j)), 

where @k denotes real numbers and yl, ~2, . . . a finite set of arbitrary points of M. The real 
linear space 0 is finite dimensional. An observable is a positive one iff it is non-negative as 
a function on M. The cone of positive observable is called O+. It contains the function 1~ 
which is constant and equal to one on M. Thus M together with its metric determines the 
system of observables 

{o,o+,lM], lMMOO+CO. 

In the projective spaces every observable A allows for a decomposition (2) where all the 
points yl, ~2, . . . are mutually orthogonal (spectral decomposition). 

States and observables are dual objects: Defining one of these concepts, the definition of 
the other should follow unambiguously. In the treatment above at first the manifold M with 
its geometry has been defined to be the space of pure states, followed by the definition of 
observables. Hence the return to the states is programmed. 

A general stute o with respect to a system (3) is a real linear form on 0 taking only 
non-negative values on O+, and which is normed by o( 1~) = 1. Let us call the set of 
all these states DM. It is a convex subset of the linear space of all real linear forms on 
0. Physically, as is well known, the convex structure reflects the possibility of performing 
Gibbsian mixtures. 
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In this context a state is called pure if and only if it is a point of the extreme boundary of 
the convex set of all states. In fact, for the real, complex, and projective spaces one knows 

flP”re ._ 
M .- extreme boundary of GM 2 M (4) 

topologically and as Riemannian manifolds. 
Of course, all these statements apply to the n-spheres with II equal to 1,2,4, i.e. to the 

real, complex, and quatemionic projective lines (see [42,13] and. as will be shown, for the 
n-spheres). 

2. The n-sphere as a space of pure states 

Let S” be an n-sphere embedded in W+i with radius i such that 

x:+...+x;+, =;, ds2 = (d_+ + . . + (d_~~+l)~. (3 

Consider two states X, y E S” seen under the angle cr from the center. Their distance 
Dist(x, y) on the sphere, i.e. the minimal length of a curve on the sphere joining them, 
equals Y&X. According to (1) their transition probability is necessarily defined by 

p(x, y) := cos2(;cr) = ;(I + coscz) = i(l + 4 xy), (6) 

where x abbreviates (x1,x2, . , xn+l). The antipode of x is denoted by xl, i.e. it is 
xl - - -x. There is no other point than the antipode with distance ;X from x, and 
there is no other state than x’ which is orthogonal to x. If _V denotes a further point 
then p(x. y) + p(x’, y) = 1. Indeed, x, y,x’ form a rectangular triangle in KY+’ with 
base length one, and the squares of the Euclidean distances of x’, y and of v, .X coincides 
with the transition probabilities p(x, y) and p(xl, y) as seen from (6) and the Pythagorean 
theorem. Consequently, an observable, if not trivial, is necessarily an alternative, and the 
n-sphere behaves like a 2-level system: An observable A = AI-.h.p, is given by a pair of 
orthogonal states x and x’ = -x and by the values 1, p which are attained by individual 
measurements according to whether x or x ’ is found. These data fix the expectation value 
of the observable at an arbitrary state y as follows: 

y t--+ AX:A*w(y) := Ap(y,x) + ~p(y,x’) = ;(k + p) + 2(h - p) xy. (7) 

Thus the observables form an (n + 2)-dimensional real linear space 0 = On = O(S”). 
The same set of observables will be obtained by inserting into (2) the expression (6) for the 
transition probability. 

In 0 there is a unit element, 1, satisfying l,(y) = 1 for all states y. 
If all the expectation values of an observable are non-negative, the observable is called 

positive. For the observable (7) this just means h 3 0, p > 0. The positive observables 
form a cone O+ containing 1,. Hence we meet exactly the situation (3), and we have to 
consider the positive normed linear functionals to get all states, pure and mixed ones. 
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Denoting the convex set of general states by 

Q, = L?(P) = {o E 0*: o(A) 1 0 for all A E O+,w(l,> = I), (8) 

it is to show that 52, can be identified with the convex hull of the n-sphere. This implies 
the validity of (4) because the boundary of the n-ball coincides with the extreme boundary, 
and this is the n-sphere. Indeed, let us see that the general states are parameterized by the 
points of the ball 

Qn -{E”:y;+...+y,2+l i $, (9) 

in the following manner: To every state w there is one and only one point y of the ball (9) 
such that for all observables 

w=wy, y w (A”:h,p) = ;(h + p) + 20\ - ,u) xy. (10) 

In fact, with no restriction on y the right-hand side can represent every real and normed 
linear form on 0. But such a form is non-negative for all positive observables if and only 
if y is a point of the ball with diameter one. 

The symmetry group is the orthogonal group O(n + 1). If n > 2 its generators cannot be 
identified with observables, a fact shared by the real and quatemionic projective spaces. A 
generator X defines a Killing vector field of the ball (9). Hence i = Xx can be regarded as 
an evolution equation. If n = 2 this is a rewriting of a von Neumann equation, see [2,3 1,171 
for more details. Converting the equation to the observables one obtains a Heisenberg like 
equation 

,t(Y) = 2(A. - W)iY. (11) 

There is yet another important parameterization of the state space in the case at hand: By 
introducing a new variable j the inequality (9) can be made an equality. The states can be 
described by the points 

52, 2: ($+I: y; +. ‘. + y,2+1 + 92 = $, j 2 O), (12) 

which is a deformation of the ball (9) to a hemisphere of dimension IZ + 1. In the interior 
of the ball the metric has been changed. The new metric reflects partly the superposition 
principle. Below we shall see its close relation to the Bures distance [ 181. 

The metric (12) indicates an extension of the notation of transition probability as intro- 
duced by (6): 

p(x,y) = p(wx,q) := $(l +4xy + 4fj% x,y E E”, (13) 

so that the mixed states appear embedded within the pure states of an (n + I)-sphere: they are 
purijied. The purification can be achieved by allowing the points yj in (2) to be chosen from 
the hemisphere (12), and by using (13) to define the transition probability. This enlarges 
the set of observables 0” of (7), and one gets On+‘. 
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As a first indication that things go together with the definition (13) we compare it with the 
transition probability in the state space of unital *-algebras, [ 19,361. (The rather different 
definitions in these references turned out to coincide for unital C*-algebras, [33,11].) For 
two states, et, ~2 of a unital C*-algebra A one knows [3] 

p(wl, 04) = inf wt (A) o2(A-I), A > 0, A, A-’ E A. (14) 

A similar relation is true with (13). At first, a power A (k) of an observable A = A”:*.p 1s 

defined by the substitutions x H X, h H (h)k and I_L H (CL)&. Here k is a natural number 
and, if h and I_L both are different from zero, k may be an arbitrary integer. We call A’“’ the 
kth Jordan power, and we write Ack) to distinguish it from the k-power of A as a function 
on the sphere. An observable A is positive, A E 0 +, iff it is a Jordan square, A = B”‘. 
Now for x. y within the unit ball it is 

(i +2xy+2BQ) =infw,(A)w,(A(-‘)), A > 0. (15) 

That the assertion is true can be shown either by explicit computation or, as seen below, by 
embedding arguments. 

3. The Jordan structure 

The powers ACk’ Introduced above serve to define the Jordan product 

A o B := ;(A + B)c2’ - ;(A - B)‘2’. (16) 

By this definition 0 becomes a real Jordan algebra. It is a Jordan spin factor (of type 12) 

P61. 
A straightforward calculation yields 

A”: 1.~1 o A&t.-’ = cos (211, = 4xyl,, (17) 

where cos (Y is given by (6), and, for arbitrary A and B, it is, abbreviating 

A := AX&C = i(a + c) 1, + ;(a - c)Ax:‘-’ and B := Ar:b,d, (18) 

AoB=$(b+d)A+i(a+c)B 

-~((ab+cd)sin2(~a)+(ad+cb)cos2(~cr)}l. 

thus obtaining the multiplication law of a Jordan spin factor. 
On the other hand, 0 admits a distinguished linear form, called trace: 

TrA x.Lfi := k + I_L. 

The Jordan product enables one to define a positive definite scalar product on 0: 

(A, B) := TrA o B, 

which is uniquely associated to the Jordan structure. 

(19) 

(20) 

(21) 
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Every real linear form w on 0 allows for a unique representation by 

o(A)=TrAoD. (22) 

D is positive iff w is positive. Namely, with respect to the scalar product (2 1) the cone O+ 
becomes self-dual. Clearly, D has trace one iff o( 1,) = 1. 

A (general) state of 0 appeared now as a positive and normed real linear form on the 
Jordan algebra 0. Then D of (22) is called its density operator, 

It is a known fact that n-balls (respectively) n-spheres are the (pure) state spaces of Jordan 
spin factors [6]. 

4. Isometric embedding of L2(S”) into L?(Tl) 

Let ti be a complex Hilbert space of even complex dimension m with m 1 n. A unital 
Jordan isomorphism of the Jordan algebra O(V) to a Jordan subalgebra of B(H) can be 
constructed. ‘FI carries a Clifford base El, . . . , E,,+l of operators fulfilling 

EjEk + EkEj = 26jkl, Ej = Ej* = E;‘, 

I = Zm denotes the identity operator. The real linear and unital map 

(23) 

is a Jordan isomorphism into the hermitian operators. To see this, it suffices to look at the 
anticommutator 

~(l(AX:I,-I),l(AY:l.-I >) = 2 xnkYj(Ek, EjJ = 4XY1, (25) 

which is ,(AXi’--’ 0 A~;l+-l) according to (17). Remark that h and F are the eigenvalues 
of l(AX;‘~~ ). Their degeneracy is irn. Now 0” can be identified with the real unital Jordan 
subalgebra of B(H) generated by E 1, . . . , E,,+l and the identity operator I. 

Being a positive and unital mapping its dual L* maps 52(X) onto a@“). There is a map 
K from G’(V) into Q(3-1) such that r = L* K is the identity map of L?(S”). 

To construct K one associates to every pointy = (~1, . . . , yn+l) of the ball (9) the density 
operator 

(26) 

Then 

K(Wy) = WY, WY(B) := tr(BDY), B E B(7-0, 

where “tr” is the trace on 3-1. This is justified by 

my(A x:&P) = A”:A*@(y) = tr@(AX;*.l*) DY) = oY(L(A”;h~fi)). 

(27) 

(28) 
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We now identify Q(S”) with ~(a@“)). Then the map r can be expressed by 

83 

r(o) = WV, Yj =2W(Ej), j = 1,2, . . . . ?I+ 1 (29) 

and becomes an affine map from R(Y) onto its fix-point set, the fix-point set being the 
embedded state space of the embedded Jordan algebra. The next aim is to compare and to 
compute some transition probabilities. Let w and e be two states of R := C?(R). Their 
transition probability can be expressed by their density operators D, and D, [ 10,361, 

p(w. e) 1/2 = tr Jm. (30) 

A nice way to describe this is by the help of an operator version of the non-commutative 
geometrical mean [ 321 

S#R := R’12(R-‘i2SR-‘i2)“ZR’12, R > 0,s > 0. (31) 

Then, assuming e and o faithful, consider the operators 

A := D,#DJ’, A-’ = D,#D,‘. (32) 

They have the property 

p(ww, WQP2 = w(DQ#D;‘) = e(DJ#D;‘), (33) 

so that with this choice of A the infimum of (14) will be attained. 
Now let us return to the embedded states of the sphere, i.e. to density operators of the 

form (26). For them 

(D’)‘-zD”+-$j1~1=0, m=dim3_1 (34) 
m 

is valid. This enables a direct calculation of the operators (32). One obtains 

Dx#( D”)-’ = m2 Dx + 4Q(DY)-’ 

or 

@#(@‘-I = 
t(Z + P>I + C(jXj -T_Yj)Ej 

Inserting this into (33) yields 

~(w”,~w’)“~ = w”(D’#(D’)-‘) = ; + 2 Cxjyj + 2z_t, 

(35) 

(36) 

which again justifies the setting (13) see also [27,40]. 
This short discussion of transition probabilities will be finished by the following general 

remark. The definition given in [36] can be converted in one which uses only the Jordan 
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product A o B = i(AB + BA) in B(X): Consider all hermitian functionals v satisfying 
for all hermitian operators of the algebra 

MA 0 B)12 I u(A2) e(B2). (38) 

Then one gets 

P(WV e) = sup lN)12. (39) 

Let us now relate the discussion above to the Bures distance [ 181 and to the Riemann 
metric associated to it. The distance of Bures between two states reads 

distB(,, Q) = 42 - 2dm = inf ,/(t - r], 6 - Q). (40) 

where 4, n run through all the possibilities to represent the given states simultaneously as 
vector states. Restricting to states the vectors [ and r] are points of the unit sphere in the 
representation space. The length of a geodesic arc between them equals arccos [([I, 4f2) (. 
Thus it seems more appropriate to use this length than the Hilbert distance as in (40). It is 
therefore natural to define, literally as in (l), 

cos2 DistB(ot, w2) = p(ol,wz), 0 5 DistB 5 ix. (41) 

This arc length can be restricted to irr because c and -c yield the same state. Comparing 
the metric on the semisphere (12) with DistB using (37) the proposition follows. 

Proposition 1. The (n + I)-semisphere (12), Q(V), is isometrically embedded by K within 
52(X) ifthe latter is equipped with the (modified) distance of Bures, DistB, of (41). 

Proposition 2. Q(S”) is a geodesic subset (a geodesic submanifold with boundary) of 

Qv-0. 

Proposition 3. t is a DistB-contraction of L?(‘H) onto L?(P). Being the&-points oft, 
the set Q(F) is a retract of 52(X). 

Proposition 1 is already proved. Proposition 3 follows from the fact [4] that transition 
probabilities never decrease under the action of affine maps of 52(7f) into itself. Hence 
DistB (as well as distB) never increase and those mappings are metrically contracting. This 
applies in particular to r, and proves Proposition 3. But now Proposition 2 is almost evident. 
A metrical contraction maps geodesics onto curves (or onto points) with smaller length. 
If, therefore, two points of the geodesic do not change the arc connecting them remains a 
geodesic after a metrical contraction. Considering r, the mapped geodesic belongs to the 
retract Q(S”). 

There is a remarkable Riemann metric dsn on the state space 6?(X) [38] induced by 
either the Bures distance distB or DistB. Both distances give the same Riemann line element 
[40,41]. With the solution G of [21] 

;Du = GD, + D,G, (42) 
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one gets along a curve with parameter t 

dsB = dmdt = ,/adt = vadt = ,/Gdt. (43) 

In quite another context the Riemannian metric belonging to the Bures distance has been 
considered in [45]. 

On a(V) a manageable solution of (42) can be gained: 

G = g(i - CyjEj) + $ CYjEjy 

where 

g = $lnj if? #O, 

while g remains undetermined if j = 0. Inserting into (43) results always in 

(d+s~)~ = dy* + c dyj2. (46) 

5. Geometric phases 

Having transition probabilities at our disposal one may ask for transition amplitudes 

(transition amplitude) - /transition probability (relative phase). 

For a state o E L?(X) we start with an ansatz 

(47) 

co+ D,= WW*, W = JDwV (48) 

and call W an amplitude and V aphase of w. The phases commute with the observables so 
that only relative phases can become physically relevant. 

At this point we do not fix the support of V V* to be that of D, but require only that V 
is an isometry. Within this restriction the phases posed by (48) should be arbitrary. 

For faithful states in finite dimensions the ambiguity of W (and of V) is a gauge trans- 
formation by unitaries 

WH wu, u E U(‘H), (49) 

so that for a given curve y of states there are many lifts to curves of amplitudes: 

w, = JDo,clt? ify:tH0_+,05tIl. (50) 

Following [37] one can fix the amplitude along a smooth curve y with smoothly changing 
supports by the parallelity condition 

-W=W”dW dW* 

dt dt 
(51) 

up to a global, t-independent gauge. (For the existence and properties of parallelity in the 
state space of W*- and C*-algebras, see [5].) For aparallel curve of amplitudes the operator 

w, w; = vf5tu,u;& v, := u,u; (52) 
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is a gauge invariant quantity. The same is true with that part of the relative phase V, which is 
fixed by the supports of the initial and final density operators involved in (52). The relative 
phase should be called geometric as it depends only on the curve y . On the observables one 
may introduce the linear functional 

u,(A) := tr(A WI W$) = tr(,&AfiV,) (53) 

measuring the interference of WJ and wt if wg is parallel transported along y to wt. 
In the following we are mainly concerned with parallel transport along geodesics. But 

it had to be remarked that the transport along circles on the 3-hemisphere [22] and most 
of the calculations [23,24], of the associated gauge potential [39] can be extended to the 
n-(hemi)spheres. 

One observes that the parallelity condition (5 1) implies 

dss = ,/Gdf along y (54) 

and, indeed, the necessary integrations to compute I+, can be carried out if y is a geodesic 
arc connecting wu with wt. 

Lemma 4. Let Wo and WI be amplitudes of the states cq~ and 01, and 

wo* Wl > 0. (55) 

Then there is in the state space one and only one oriented smooth geodesic arc y starting 
at COO and terminating at WI, such that: 

no proper subarc of the considered arc already connects 00 with WI and 
W) is the result of transporting Wo along a parallel liji of y. 

Corollary 5. 
(1) y is of constant support at its inner points. 
(2) The But-es length of y does not exceed in. 
(3) rf y is part of a closed geodesic, its complement transports WO to - WI. 

Abbreviating 

CY := DistB(m,wt), 0 < (Y ( $lt, (56) 

let us construct y . Because of (55) every curve contained in the real linear space X spanned 
by Wo and WI fulfills the parallelity condition (51). Now 

(W, W’) = tr W* W’ (57) 

is a real scalar product on X, and there is exactly one W& in X with 

(W,‘, W,i) = 1, (Wo, W,I) = 0, (WI, W,I) > 0, (58) 

namely 

w,l = Wl -cosa WI-J 

sina! ’ 
(59) 
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(Itissincr > Oandcoscr >OforO <c cz ( irr.)Now 

W(4) := Wocos@ + W,l sin@ 

is a parallel curve of amplitudes where 4 measures its Bures length 

dW* dW 
--=ll, 

” d4 d@ 
d@ = d@. 

Inserting (59) into (60) shows 

W(O) = wo, W(a) = Wl, s dns = DistB(wo, wi) (62) 

87 

(60) 

(61) 

and 

0 

4 -+ W(4)WG$)“, 0 54 5 a (63) 

is an oriented curve which connects og with wr . It is of the shortest possible length: On the 
unit sphere of the W-space the length of parallel curves coincides with their Hilbert length, 
and a geodesic arc has to be a part of a large circle. The latter is defined by the unique real 
plane X containing Wa and WI. (In W-space Wo and WI cannot be real linearly dependent 
if 00 # wt .> Remark that the complement part goes from 4 = 0 to #J = in - CY and 
transports the amplitude to - W1 according to (55). One observes further 

W(@)*W(+‘) > 0 if 0 ( C#J. 4’ 5 (Y. (64) 

Hence the support of W(4)* W (4’) cannot change on the interior of the allowed parameter 
interval. Otherwise there would be a change on the sign of at least one eigenvalue on the 
left-hand side of (64) contradicting its semipositiveness. 

The lemma and the corollary are now established. 
Next we try to calculate (52) and (53) for geodesic arcs. According to (55) 

W; WI = dm = V,*(D;‘* D1 D;‘*)“*Vo. (65) 

The support of this expression is contained in the left support of Wu. Restricting operation 
on this support we are allowed to write 

PoW,Wo* = (w,*>-two*wl(w~), PO = vuv,*, (66) 

so that we obtain 

POWI W; = Do -1/~Pg(D~i2DlD~/2)~/2D~~2 

and we obviously need the condition 

(67) 

supp(w0) S supp(wl), orequivalently, supp(Do) C supp(D1) (68) 

to get the invariant (52) and the linear form uY . With this support property we are allowed 
to abandon the projection PO. Recalling (31) and (33) one can state: 
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If (68) is fulfilled then 

WlW; = D, -1!2(D~/2D~D~/2)1/2D~/2 = (D1#Dt’)Do, (69) 

q(A) = wo(AVWD~‘N. (70) 

We need the even stronger assumption of equal supports of Do and DI to rewrite (52) by 
inserting (69): 

-l/2 V,=lJ,lJ,*=D, D,‘/2(D~f2D,D~f2)1/2. (71) 

Denoting by P the assumed common support of the density operators involved, and taking 
care of the operational definitions, one observes 

vyv; = v;vy = P. (72) 

The equal support condition is fulfilled for two parameter values in the interior of the 
geodesic arc y. So we can try to define in the general case 

V, := lim VJ, S t+ y, 6 C interior(y), (73) 

so that in concrete cases one has to examine whether the lim is unique or not, and, in the bad 
case, whether the arbitrariness cancels in certain expressions. If P is the projection onto the 
support on the inner part of the geodesic, PO and PI the projectors belonging to the starting 
and of the terminating point of the arc, then PO _( P and PI 5 P. The rank of the density 
operators can possibly decrease at the end points of the arc. They can then cut some part of 
the relative geometric phase. An example is the transport: 

Wo = Dli2 U 0 o+ WI = D”2 V 1 Y 0. U (74) 

Let us return to the hemisphere CO@“) embedded within O(‘/Y), and let us set wt = w” 
with density matrix D1, and wg = WY with density matrix Do. Eq. (36) then shows that 
Dl#Di’ is continuous in DI, so that (74) exists with respect to the end point of the geodesic 
arc. The arbitrariness is hence at most in the starting point of the arc. 

Using Wo = (Do)‘/~ as starting amplitude, one gets from (35) 

Wl = 
m2D, DA” + 4Zj3D;‘12 

(75) 

as the transported amplitude. With the projection operator PY onto the support of Do = DY 
one gets from the characteristic equation 

j(Dy)-‘/2 = (l/m)(tr(DY)‘/2)PY - (Dy)1/2. (76) 

Therefore WI depends smoothly also on the starting point of the geodesic. 
Hence the transport of the amplitude along a geodesic arc within Q (S”) depends smoothly 

on the geodesic arc, even if the supports at its starting and (or) terminating point do not 
coincide with the support of its inner points. 
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Similar is the situation with respect to the relative geometric phase. A short calculation, 
again based on (35) or (36) yields 

v, = (h)-‘p(~,~,)-‘~~(m~D~‘~D~‘* + 4ij21,“2D,-“2) (77) 

if y is the geodesic arc transporting wg to wt. It can be seen that (76) guarantees: 
The relative geometric phase depends continuously on the starting and on the terminating 

state for all short geodesic arcs on the hemisphere. 
Whether this behavior can be proved for 52(X) remains to be seen. The problem is the 

uniqueness of the limit in coming from the interior to the boundary. Due to the complicated 
boundary of G’(7-1) (see [l] for n = 4) this is not evident. 

6. Comment on cyclic processes 

For the spheres and hemispheres we are now in a position to calculate holonomy invariants 
of closed curves which consists of short geodesic arcs. This seems to be sufficient to discuss 
the outcome of some (possible or gedanken) experiments with mirrors as described in [28] 
or by the help of filters [7,34,14], see also [9]: Whether the pure state is rapidly changed 
by devices like mirrors or by filtering measurements, the phase change resulting from such 
“quantum jumps” can be described by parallel transporting the wave function along the 
shortest path connecting the corresponding points in the projective Hilbert space. 

In these experiments an isoenergetic (monochromatic) beam of particles (photons) goes 
in a cyclic process through some devices and the outcome is superposed with a split part 
of the original beam. (Or, more generally, every part of a split beam undergoes a cyclic 
evolution.) By varying the devices the dynamical phase will (ideally) not alter, and the 
change in the interference pattern shows the appearance of the geometrical phase. 

However, there is no reason within Quantum Theory that prevents the scheme to work 
also with beams starting with a definite degree of polarization (mixedness) and (or) with 
devices altering the mixedness. In mirror-like devices the intensity of the beam will be 
unchanged. In a filter-like device that converts a state w into a state e the intensity loss is at 
least by a factor p(w, Q) according to (30) and (13) 

Intensity,,, 5 p(w, Q) IntenSityi,. (78) 

Equality in good approximation would indicate an ideal filtering device. Whether this can 
be reached if both states are mixed ones has to be seen. 

Let us assume 

WI k+ W2 I+ .‘. I+’ Wk I+ Wk+l = WI (79) 

is a cyclic process as described above where no pair of consecutive states is orthogonal. 
Then there is a unique shortest geodesic arc, yj,j+l connecting wj with wj+t, and these arcs 
close to a geodesic polygon. We have to adjust for every j an amplitude Wj of wj in such a 
way that Wj+l is the result of the parallel transport along yj.j+t with initial amplitude Wj: 
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w, H w2 H . . . H wk+ 1 = WI VcycL (80) 

where Vcycl is the geometric phase that accompanies the cyclic process. 
In superposing the cyclic transported and the original initial state wt one has to respect 

a possible dynamical phase c which, for isoenergetic processes, is a complex number of 
modulus one depending on the geometry of the experimental equipment and (almost) not 
on the action of the devices which change the state. The reason is that in going from one 
device to another, the particle remains in one and the same eigenstate of the Hamiltonian. It 
“rests a while at a comer of the geodesic polygon in state space”, getting there a dynamical 
phase factor. The dynamical phase factors emerging from all the comers (i.e. from the path 
between the devices in real space) will be multiplied to +t and compared with that one CO 
coming from the other, unchanged part of the split beam. This gives the relative dynamical 
phase ??= EoE,~~~ which contributes to the observable relative phase. 

Hence the final amplitude and intensity of the cyclic transported beam will be proportional 
to 

W superposed = Wl + WI Vcyc~ 6 and 1 + i@ DI (E Vcycl + V&S>, (81) 

where D1 is the density operator of wt. 
Substitute in (77) Oj for WY and Oj+ 1 for wX and call the resulting phase V,+t ,j. Repeated 

application of (74) results in 

112 Wj = Dj V’,j_lVj_l,j-2 ..’ V2,1U1, WI = D;‘21J,. (82) 

The cyclic geometric phase and the holonomy invariant (52) can be written as 

V cycl = Vl,kVk-l,k-2...V2.1, (83) 

112 
wk+lw; = D, 

112 
vc,,~D, 

If the supports are changing in the course of the cyclic process we nevertheless stay slightly 
inside the hemisphere, performing only at the last moment the limit to the boundary. 

In the interesting case where we stay always in the interior of the state space, not touching 
its boundary, the general recipe (79) shows 

-I 
wk+l = (h#D, )(Dk#D;:,) . . . (D2#D+R, (85) 

where one may insert the expressions (35) or (36). 
This can be further simplified if the degree of polarization (the degree of mixedness) is 

not changed during the cyclic process. Because, then 

1 Di+l#Dl: = 
2I+ m(Dj+l - Dj) 

qmmm 
(86) 

which is easier to handle. It allows for a reformulation in terms of suitably weighted par- 
allel transports of the eigenstates of the density operators along all closed and oriented 
subpolygons of the given one. A more detailed explanation is in preparation. 
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