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Abstract

Cyclic evolutions of quantum states are accompanied by geometric phases. This
should remain true not only for pure but also for mixed states, then resulting in non-
commutative phases. After a short introduction expressions for the parallel transport
of these phases along geodesic polygons are derived. They become rather explicit for
two-level systems, predicting definite deviations from the pure state case which should
be detectable experimentally.

1 Introduction

It is the aim of this paper to give manageable expressions for the geometric phase of certain
cyclic evolutions of mixed states.

The phase of a single state is not an observable quantity. In particular, the phase
commutes with the observables which define the system. Nevertheless the change of states
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is generally accompanied by a change of the phase that can be called phase transport. If a
state ω is changed in two different ways to become another state ω′, the transport of the
phases may yield different phases. Then their ”difference”, the relative phase, may become
observable by virtue of the superposition principle. A particular case is the cyclic change
where ω comes back to itself and the change of the phase will be compared with that of a
”trivial” process where ω remains stationary.

All this is obvious, both experimentally and theoretically, for pure states. But it should
remain true, to a certain instant, for mixed states: At first, in deviating from the pure
to the mixed states, i. e. in going from the extreme part into the inner parts of the state
space, coherence and correlations will not be destroyed suddenly but gradually, continuously.
Secondly, if embedded in a larger system, the mixed states may be seen as restrictions of
pure states. Then some ”parts” of the relative phase of a cyclic change in the larger system
may become decodable already by observables of the smaller system in which the states
appear as mixed ones.

The phase transport and the relative phase consist (at least) of two parts, a dynamical
and a geometrical one. The geometric part depends only on the shape of the curve in
state space which describes the changes of the system, and not on the time needed for that
changes. It is this feature that allows to distinct the geometric phase and its transport from
the total phase change.

This remarkable fact also opens an heuristic way to see why the geometric phase survives
the adiabatic approximation in which the changes become ”infinitely slow”. Thus, seen from
to-day, it seems quite natural that the geometric phase firstly appeared within applications
of the Born Oppenheimer approximation, Herzberg and Longuet-Higgens 1958, [3], Mead
and Truhlar 1979, [8]. Berry 1984, [10], has shown, beside others, the generality of the
phenomenon for adiabatically guided Hamiltonians, remarking that the transport condition
appears, in the language of Mechanics, as an anholonomic constraint. Simon 1983, [9]
elegantly explained its geometric structure in showing that it is a morphism from the cyclic
evolutions, which form a loop group in the state space, into the holonomy group of a natural
parallel transport. Because he restricted himself to pure states, that holonomy group is U(1).
Then, 1987, Aharonow and Anandan [13] settled the existence of the geometric phase in
every cyclic evolution of pure states, whether adiabatic or not.

F. Wilczek and A. Zee, 1984, [11] have been the first in considering the geometric phase
of degenerate eigenstates of a parameter dependent Hamiltonian. Here the state ω can be
described by the projection P onto the subspace of eigenvectors. Choose in the Hilbert space
H any ortho-frame ψ1, . . . , ψm of length m of eigenvectors. It can be considered as a point
of an orthogonal Stiefel manifold which is an U(n)-bundle over the Graßmann manifold of
projections P of rank m. Changing the projections along a curve C, t → P (t), calls for
a (parallel) transport of the ortho-frames, which constitute the fibers over the projections.
For a cyclic evolution of the projections, one comes back to the same subspace, and hence
to another ortho-frame. This latter one is related to the one chosen at the beginning of the
evolution by a U(m)-transformation U . In [11] the transport condition reads

〈ψj ,
d

dt
ψk〉 = 0, 1 ≤ j ≤ m, 1 ≤ k ≤ m (1)

and U becomes the geometric phase. In that scheme the fiber bundle depends on the length
of the ortho-frames. A reformulation without that defect is as follows: With an auxiliary
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ortho-frame ϕ1, . . . , ϕm define the partial isometry W :=
∑ |ψj〉〈ϕj |. Then (1) can be

expressed by

W ∗ d

dt
W = 0, W W ∗ = P, rankP = m (2)

Indeed, let C : t → P = P (t) be a curve of projections of rank m and C ′ a path of ortho-
frames ψ1, . . . , ψm of P H. The path C̃ : t → W = W (t) respects (2) if and only if it is
of the form W :=

∑ |ψj〉〈ϕj | where the path C ′ fulfils (1) and the auxiliary ortho-frame
remains unchanged along the path, W ∗W = const.

If W with WW ∗ = P runs through all lifts of a given curve, C, of fixed rank projections,
parallelity is characterized by

∫
(
dW

dt
,
dW

dt
)dt = Min! or

∫ √
(
dW

dt
,
dW

dt
)dt = Min!,

with (W1,W2) := TrW ∗
1 W2 (3)

As a device to transport ortho-frames of degenerate eigenvectors Fock (1928), [1] appendix,
minimizes an ”energy integral”, similar to (3), to obtain (1).

But a finite rank projection is nothing than a rather special density operator, and the
present author could extend (1986) [12] the scheme to all density operators: Assume a curve
of states is given by a curve of density operators (normalized or not):

t → ωt, ωt(A) = TrD(t)A /TrD(t), rankD(t) = const. (4)

a lift
t → W (t), D(t) = W (t) W (t)∗ (5)

is called parallel iff

W ∗ dW

dt
=

dW

dt

∗
W (6)

See also Dabrowski and Jadcyk (1989) [17]. One may regard every W with WW ∗ = D as
an amplitude of the state given by D, so that two amplitudes of the same state differ by an
unobservable unitary (or partial isometric) phase U , W → WU .

In 1987, [15], I observed that the parallel condition (6) follows from the variational
principle (3).

2 Parallelity and Geodesics

Let us shortly return to the pure states. Pancharatnam (1956), [2], asked for the relative
phase of two photon beams such that their superposition is of maximal intensity. For two
states Pj = |ψj〉〈ψj | one has to adjust phases so that the norm of ψ2 + ψ1 is maximal. The
requirement is satisfied if 〈ψ1, ψ2〉 is real and positive. The norm in question is maximal
if the distance of ψ1 and ψ2 is minimal. There is a geodesic arc connecting these vectors
that satisfies the Berry transport condition, and the phase transported from ψ1 to ψ2 fulfils
Pancharatnam’s rule.
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Let now W1, W2 be amplitudes of faithful density operators D1, D2. Let us assume that
their Hilbert space distance with respect to (., .) of (3) is as small as possible. This minimal
distance equals the Bures distance (1969) [4] from D1 to D2 and

W ∗
2 W1 = W ∗

1 W2 > 0, (W2,W1) = p(D1, D2) :=
√

(D1/2
1 D2D

1/2
1 )1/2 (7)

where the last expression was first obtained by Araki (1972) [5]. (For various definitions and
properties of the transition probability p(., .) see [7].) In the state space, D1 is connected by
a geodesic arc (see [22]) with D2. After choosing an amplitude W1 of D1 the transport along
a parallel lift of a short geodesic arc results in the unique amplitude W2 of D2 determined
by (7).

An ordered finite set of faithful density operators determines a geodesic polygon

D1 ⇒ D2 ⇒ . . . ⇒ Dn ⇒ Dn+1 = D1 (8)

in the state space. (There is just one short geodesic between two faithful density operators.)
Now one fixes an amplitude W1 of D1 and chooses successively the unique amplitude Wj+1

of Dj+1 by W ∗
j+1Wj > 0 for j = 1, . . . , n. The geometric phase, U of the geodesic polygon

is now implicitly given by Wn+1 = W1U .
Expressions in terms of the density operator follow from squaring (7)

W ∗
2 W1 =

√
W ∗

2 W1W ∗
1 W2 =

√
W ∗

2 D1W2 (9)

by the help of polar decompositions. Abbreviating the Pucz and Woronowicz geometric
mean [6] by (S, R positive)

S#R := R1/2(R−1/2 S R−1/2)1/2R1/2 (10)

one gets
Wj+1 = (Dj+1#D−1

j ) Wj (11)

W1U := Wn+1 = (D1#D−1
n )(Dn#D−1

n−1) . . . (D2#D−1
1 ) W1 (12)

U can be decomposed into relative phases Uj+1,j defined by

Wj = D
1/2
j Vj , Wj+1 = D

1/2
j+1Vj+1 = D

1/2
j+1Uj+1,jVj (13)

which implies by virtue of (11)

Uj+1,j = D
−1/2
j+1 D

−1/2
j (D1/2

j Dj+1D
1/2
j )1/2 (14)

Let us now stick to finite dimensions. Then the unitaries (14) are expressed through prod-
ucts of positive operators. Therefore, their determinants have to be one:

detUj+1,j = det U = 1, U ∈ SU(n) (15)

The reduction to SU(n) in the interior of the state space is due to Dittmann and Rudolph
[20], and Alberti [19]. If one or both the density operators involved in (14) tend to the
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boundary by prolonging the geometric arc, the uniqueness of the limits is guaranteed.
Hence, with some caution, the equation

W1U = Wn+1 = D
1/2
1 Un+1,nUn,n−1 . . . U2,1V1 (16)

can be used if one or more of the polygons edges touch the boundary. Problems can arise
with geodesics contained in the boundary (”level crossings”, pairs of focal points). See
Alberti (1992) [19].

3 Two-level Systems

To the first experiments [14] establishing Berry’s phase belong configurations with mirrors
or mirror-like devices which can be described by geodesic polygons in the space of pure
states equipped with the Study Fubini metric. (The metric of Bures is restricting to the
Study Fubini on the extreme boundary of the state space.) If one respects helicity reversals
by an extra iπ phase, the polygon can be thought as consisting of short geodesic arcs. These
and similar situations (use of filters) with ”quantum jumps” are clearly examined in [16].

Two-by-two density operators may described by

D =
1
2
1 + x1σ1 + x2σ2 + x3σ3 =

1− s

2
1 + sP (17)

where s is the degree of polarization, and

s2 = 4(x2
1 + x2

2 + x2
3), 4x2 := det D = 1− s2 (18)

The transition probability in (7) can be computed to [21]

p(D, D′) =
1
2

+ 2(x1x
′
1 + x2x

′
2 + x3x

′
3 + xx′) (19)

One may establish

D′#D−1 ==
D′ + x′xD−1

√
p(D′, D)

(20)

and for the relative phases (14) one gets

U(D′ ← D) =
(D)1/2 (D′)1/2 + xx′ (D)−1/2 (D′)−1/2

√
p(D′, D)

(21)

This is valid for all short geodesics of length smaller than π/2, i. e. if p(D′, D) 6= 0.
A particular simple case appears if the degree of polarization does not change, s =

s′, x = x′. Then √
p(D′, D) D′#D = 1 + D′ −D = 1 + s(P ′ − P ) (22)

As an application let us compute the geometric phase U of geodesic triangles and quadran-
gles consisting of short geodesic arcs. Let us denote the common degree of polarization by
s, and the projections of the involved density operators Dj by Pj = |j〉〈j|, see (17). We
abbreviate

a12 := 〈1|2〉 〈2|1〉, a321 := 〈3|2〉 〈2|1〉 〈1|3〉 and so on (23)
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geodesic triangles
The expression relevant for the intensities is

√
a12a23a31 TrD1U = s4a321 + s3(1− s)

a12 + a23 + a31 + 2a321 − 3
2

+

+s2(1− s)2
a12 + a23 + a31 + 6

2
+ 4s(1− s)3 + (1− s)4 (24)

For s = 1 on gets ε = a321/|a321| as it should be for pure states.
geodesic quadrangles

√
a12a23a34a41 TrD1U = s5 a4321 +

s4(1− s)
2

(6a4321 − a432 − a421 + 3a431 + 3a321 + a43 + a21 + a41 + a23 + a42 − 3a13 + 2) + . . . (25)
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Addendum, March 1995

Another easy to calculate process makes use of

D′#D−1 = D′1/2D−1/2, U(D′, D) = 1id, if D′D = D′D (26)

for commuting density operators.
Let us consider the following cyclic process with photons travelling in z-direction. The

in-state D1 is linear polarized in, say, x-direction and with an polarization degree ξ. Then,
conserving the polarization direction, its degree is changed to η. To do this we use (26)
to get D2. In the next step the degree of polarization remains constant but the linear
polarization is changed by an angle α. We arrive at D3. The third step consists of changing
the degree of polarization back to ξ, leaving unchanged its direction. We obtain D4. Finally
the direction of the polarization is rotated back to the x-direction, so that the initial state
D1 is recovered.

To get from D2 to D3 we have to calculate the relative phase transporting the state
along a piece of a SU(2)-orbit on the Poincaré sphere. This has been calculated in different
settings in [12] and [18] yielding

U(D3, D2) = exp(−i α η σ3) (27)
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Because of (26) the phase obtained in the cyclic process, its holonomy, is computed to

U = U(D1, D4) U(D3, D2) = exp i α(ξ − η)σ3 (28)

What can be observed from the relative phase U according to the formalism of quantum
theory is basically encoded by the transition form

A → ν(A) = TrD
1/2
1 AD

1/2
1 U∗ (29)

Similar considerations can be done with spin 1/2 particles and other two-level systems.
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