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What I am going to describe may be called an interplay between concepts of differ- 
ential geometry and the superposition principle of quantum physics. In particular, it 
concerns a metrical distance introduced by Bures [14] as a non-commutative version of 
a construction of Kakutani [24] on the one hand, and on the other hand the purifica- 
tions of mixed states in physically larger systems, including the problem of geometric 
phases associated with a distinguished class of such extensions. The Bures distance and 
the general transition probability [15], [27] are discussed in [lo], [ll], [30]: and further 

papers. 
For the sake of clarity, and to avoid technicalities, I will be concerned with finite- 

dimensional objects. Let ‘Ft denote a Hilbert space with complex dimension n,. The set 
of density operators defined on it is 

fl = {Q > 0, trace e = l} (1) 

which, in turn: contains the pure states as its extremal set. This extremal set is iso- 
morphic to the complex projective space P(X), the points of which are conveniently 
described by the projection operators of rank one 

P(IFI) = {PER: P2=P}. (2) 

There are natural mappings 

from (X) \ (0) onto the unit sphere of the Hilbert space 

w-f) = {$EX :<$J,Q> = l} (4) 

tThe invited lecture to the XXV Symposium on hlathematical Physics, Toruri, 8-11 December, 1992. 
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and from that unit sphere onto P(R). 

Further, referring to an arbitrarily chosen orthogonal base, the sets (1) and (2) may be 
considered as sets of hermitian matrices. This gives embeddings 

P(X) c R c Rn2. (5) 

Pure states 

This section is a short review of some selected geometrical properties of E, SX, 
and PI-f. Their study goes back to the work on adiabatic approximations of Born, 
Oppenheimer, and Fock [13] in the late twenties (see also [20], appendix). In the last 
decade the interest in this topic has been triggered by the ideas of Berry [la], of Simon 
[26], and many others, in particular [37]: [a], [8], [6]. See also [l]. 

The following consideration should prepare the study of similar problems for density 
operators. Let 

t H r/Yf E S(X); o<t<1 (6) 

be a path on the unit sphere of ‘H. Its length is given by 

where, here and later on, the dot notation indicates differentiation. Hence 4 is an element 
of the appropriate tangent space at ?I. 

The length (7) does not remain invariant under phase changes 

which can be understood as a U(1) gauge transformation of the path (6). This opens 
the possibility of a canonical gauge fixing by demanding a minimal length of the path: 
the gauge is fixed if a replacement (8) can never result in a shorter path. 

What can be achieved by the desired gauge fixing is easily seen with the help of the 
inequality 

<ij:d!> 2 <4il,~~>-<Ij,:1;~><~‘,~> > O> 

showing that minimality of length is reached if and only if 

(9) 

<@,,G> = 0: (10) 

i.e. if the Berry-Simon parallel transport condition is fulfilled. The gauge is fixed by (10) 
up to a parameter independent gauge (a global gauge). Therefore, if (10) is fulfilled for 
the path (6), 

Iti,o><~lI and A - <tio,A&> (11) 

are gauge-invariant quantities. They depend only on the image in P’Ft of the curve (6) 
under the map (3). If this image is a closed curve then $1 = t@o, and E is Berry’s 
geometric phase factor. 
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It is sometimes necessary not to restrict oneself to the unit sphere and to allow more 

general gauges 

+t - qthh, X # 0, complex. (12) 

Then inequality (9) is usefully rewritten as 

where the right hand side is the Study-Fubini metric which is invariant with respect to 
(12). Hence, we can consider this line element as a lift of a metric of P(X). Indeed, 
because of (3) a short calculation yields 

Further, in leaving the unit sphere one has to replace the crucial condition (10) by 

(14) 

(15) 

where the left hand side is a U(l)- connection form which remains unchanged under the 
resealing of the vector length. (Note that its curvature defines the Kahler-Hodge 2-form 
of P(E) which also defines the Chern character of the bundle S(3-I) over P(ti).) A 
solution of (15) is given by 

so that G = P on the unit sphere. Because G is hermitian, (15) is fulfilled. 

Real planes and circles 

For later use I need some elementary geometric facts. A real 2-dimensional subspace 
of a Hilbert space is called a real plane. Every such plane can be given as 

{$ : $ = Xi& +X2+,2, Xj real}. (17) 

Every pair of vectors that generates a plane like that in (17) is called a base of the plane. 
The intersection of a real plane with the unit sphere S(Y) is a large circle. Its length in 
the Hilbert space metric equals 27r. Every geodesic closes on the unit sphere. Every closed 
geodesic on the sphere is a large circle and vice versa. Let us now assume that in (17) 

<+1,1cI1> = <$2&z> = 1, <$l,q!~2> = a+ib (18) 

with real a, b. Then the intersection of the plane (17) with the sphere is parameterized 
by an angle Q as 

Xi = cos o - * sine, X+n&. (19) 



This implies <<I, $ > = 1, and the differential &t is the line element on the circle. The 
(oriented) arc length ~1.2 between &I and @J is given by cosal.2 = a. 

If one varies the relative phases of the two vectors, the arc length becomes minimal 
iff b = 0. Then the transition amplitude becomes real, and every curve on the plane 
satisfies the parallel transport condition (15). 

It follows from (18) and (19) that on a general circle 

< q;’ : p” > = - ; d&r (20) 

and the invariant (11) is given by F / v!I:! >< tin ) with 6 = exp < 4, @ > al,2 
Further, introducing (20) into the Fubini-Study metric (13), one gets along the circle 

the line element 

The manipulation with the factor 2 has been done because after projecting down the 
Hilbert space circle according to (3) into P(X), it appears as a double covering of the 
resulting base curve. This is reminiscent of the Hopf bifurcation: $ changes it sign if the 
circle is rotated by r. Therefore, the factor before dd becomes the radius of a circle if 
P(R) is embedded into an Euclidean space (5) with suit,ably chosen Euclidean metric. 
This radius becomes minimal, namely $, iff b = 0. On a circle with this condition the 
equality holds in (13). (14) th en shows (3) to be locally isometric. Thus, a geodesic on 
t,he unit sphere gives a geodesic on the projective space of pure states iff b = 0 is fulfilled. 
,4s a further consequence, every geodesic closes in P(ti) with length ?r. 

It has been shown above that a unit circle in a plane with b = 0 contains with Q also 
L~I. and both vectors form an orthoframe. The arc connecting both vectors is of length 
7r/2. It has been already remarked that on real plane with b = 0 every curve fulfills the 
parallel transport condition (15). Let us call such a plane horizontal. 

Density operators 

While in the pure state case the st,arting point is a Hilbert space 3-t which is projected 
down to P(%) (with the exception of its zero vector), the situation with the density 
operators is somewhat reversed. We have to start with the space of density operators, 
52, and to look for a covering by a Hilbert space. say ‘WXt, which carries a representation 
of the operators acting on the Hilbert space 7-t which defines a. One may use any “large 
enough” representation; the results are the same. Physically, the construction of ‘WXt 
is an embedding of the original physical system into a larger one so that it becomes a 
subsystem. (This procedure is also heavily used in the so-called therm0 field theory.) 
The vectors of the extended system. i.e. the pure states of the extended system, can be 
reduced to the subsystem. The result of the reduction is a density operator (a mixed 
state). The extension should be large enough so that every density operator should be 
reachable by reducing a vector st,ate of ‘WXt 

If a density operator Q can be gained by reducing a vector II7 of ‘W”” then W is 
called a plLr$cntion of Q. While t,he reduction gives the unique result, there is some 



DENSITY OPERATORS AS AN ARENA FOR DIFFERENTIAL GEOhIETRY 257 

arbitrariness in the procedure of purification: there are many vectors in the extended 
systems which purify a given density operator. 

A good choice to realize l-text . 1s the set of all those operators 11’ acting on ‘H for which 
WV* (and hence W*W) has finite trace: i.e. we consider Hilbert-Schmidt operators. Of 
course, the trace condition is trivially fulfilled for finite-dimensional Hilbert spaces we 
are dealing with. 

The scalar product of VXt is given by 

(22) 

The mapping that replaces (3) is 

w - ww* H QILl := 
WW” 

tr WW*’ 
W$O. 

It goes from (‘Wxt) \ (0) onto th e unit sphere of the extended Hilbert space; S(X)“Xt, 
and from that unit sphere onto 0. 

If Q = WW* then W is called a standard purification of Q. Let ~1, ~2,. be the set 
of non-zero eigenvectors, and $Q, $2, an orthoframe of corresponding eigenvectors of 
e. If now W is a standard purification of Q; there exists a unique orthoframe, 91, ~2:. . ., 
of the same length such that 

Clearly, every IV, given by an expression (24), is a purification of Q. Given Q, the fibre 
(or leaf) of all purifications sitting on the unit sphere of the extended Hilbert space is 
the Stiefel manifold of orthoframes of W of rank k, k = rank(e). The fibre admits the 
unitaries of IFI as right multipliers, 

w - wu, U unitary. (25) 

If the rank Ic equals rz = dimx, then this action is free. Otherwise, there is a stable 
subgroup U(n - k). 

If A is an operator acting on ti then one defines 

A-AW := LAW and A-WA := RAW. (26) 

The first expression defines the representation of the operators of 7-t as operators acting 
on the Hilbert space Y”“. The second expression defines its commutant. Hence, the 
gauge group given by (25) is build from the unitaries of the commutant. 

After these preliminaries it is possible to mimic the pure state case in the domain of 
density operators. 

Starting with a curve of density operators and one of its purifications, 

t - et, t-w,, et = wti,q, (27) 
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the length of the latter in the extended Hilbert space is by no means invariant against 
gauge transformations (25). To get a gauge fixing, and at the same time the length of 
the original curve of density operators, we consider the variational problem [30], [33] 

length(tH Pt) = inf /&$JF)&, (28) 

where the infimum is running over all purifications, or? what is the same, over all curves 
t H IVtU, with unitaries Ut. The Euler equations of (28) read 

l$+ w* = w* l/I’> 
(29) 

a set of equations which I call the (extended) p arallel condition, see [29]. It is a family 
of Berry conditions which is stable under the commutant of the representation A H LA. 

Indeed, (29) is equivalent with 

(R&, RAW) = (&Ii, &&/I/) for all A. (30) 

If WYi is the endpoint and We the beginning of a parallel lift fulfilling (29), WeiVT 
is important for the definition of the geometric phase attached to curves of density 
operators. It generalizes the invariant (11). However, in this paper I shall not go into 
this branch of the game, which can be successfully considered even in von Neumann and 
C*-algebras [4], [5]. 

The parallel condition can be solved by an ansatz [17], [31] 

I&’ = GW, G = G*. (31) 

After inserting this into the differentiated relation Q = WW* one gets G as the solution 
of a Bloch-like equation 

@=Ge+eG or de = @GIG@. (32) 

The last relation defines a matrix-valued l-form G, the restriction of which to a given 
curve of density operators yields G. (31), (32) g eneralize (16). If in (32) Q and 4 commute, 
then G is the logarithmic derivative of &. If no eigenvalue of Q equals zero, (32) has 
exactly one solution. 

It is easy to insert r/k = GW into the expression for the Hilbert space metric, and 
one gets using (32) 

#‘,I@) = (GW,GW) = trG2Q = :trGi. (33) 

Now, the minimal length (28) can be calculated as well on the unit sphere of the extended 
Hilbert space as on 0. One can get rid of the norm condition and extend these expressions 
to ‘Wxt \ (0) and to the cone of all positive (trace class) operators to obtain the analogue 
of (14)? which may be called the projective Bures metric: 

(W,G”lY) (W,GW)” = 1trGQ 

(TV>/,) - (W,W)Z 
___ _ ;(F$ 
2 tre 

(34) 
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This metric is scale invariant and gauge invariant. 
The next goal is to ask for the appropriate connection form in the extended Hilbert 

space. To this end, let us use the differential l-form G which is gauge-invariant. Hence, 
GW behaves under gauge transformations (25) like W. If one, therefore, defines the 
l-form A by 

dW-WA = GW, (35) 

the result is an operator-valued connection form 

A++A =: U*AlJ+U*dU. (36) 

Reinserting (35) into (32), one finds compatibility iff 

A+A* = 0. (37) 

Finally, calculating the left hand side of the following equation with the help of the 
relations above, one easily finds 

W*dW - (dW*)W = W*W . A + A. W*W. (38) 

Originally, [32], I guessed this as the relevant definition of A. 
Unfortunately, it is difficult to obtain explicit expressions for G and A with the 

exception of density operators of rank two, where various results have been obtained: 

1251, WI, PI, 1231, [361. s ee also [18], [19] and a forthcoming paper of J. Dittmann. 

R-horizontality, geodesics 

To get some insight into the geometric meaning of the Bures metric, we play again 
the game with real planes and circles, but this time within the extended Hilbert space. 
In accordance with (17)) we consider real planes 

{W: W=X~W~+XSW~, A, real, W~,WzEV-F}. (39) 

Let us assume that the plane contains an invertible element. Then one may choose as 
a base two elements, WI, W,, which are both invertible and of Hilbert norm one. The 
determinant of WI + AW, can be zero for at most n real values of X. From (39) one 
sees X = X2X11, and with W, -W always sits on the circle. Hence, the number k of 
points on the unit circle of the plane which are not invertible is even and restricted by 
k < 2n. After projecting down the circle to R according to (23), these points and no 
others become boundary points of 0. If there is one turn of the W-circle, the projection 
on R runs through two turns. 

Parameterizing the circle as indicated in (19), we may call its non-invertible W’s and 
the corresponding boundary points 

W(CYl),W(Cr2),.'.,W((Ylc) and @(%L@(Qz),.. *,d%> (40) 

ordered with increasing o-parameters. (Every Q appears twice.) If k = 0, the projected 
curve remains in the interior of R. If k = 2, the Q-curve starts at a boundary point and 
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returns to it. Generally, the projected curve may start at ~(crl), and go through inner 
points to ~(cwz). It then starts from this point t.o go to Q(CQ) through the interior of St? 
and so on. At last, it goes from the projection I of W(Q~) to that of W(al), i.e. to 
~(a,). This shows that the projected curve, in general, goes through the interior of the 
set of density operators. and if it hits a boundary point, it will be reflected to start again 
into the interior region. We may represent this by a polygon with Ic/2 vertices which are 
sitting on the boundary of 0. 

A plane (39) is called R-horizontal iff 

is satisfied for one of its bases, or, what is the same, is satisfied for every base of the 
plane. It is also evident that a plane is R-horizontal iff every curve on it fulfills the 
extended parallelity condition (29). 

A circle of an 0-horizontal plane consists of pieces, which, after projecting them to 
R according to (23), b ecome geodesics with respect to the metric of Bures. 

Returning to the “generic” case, where there are invertible elements in the plane, 
let us choose the base of the plane consisting of normed elements WI; W; which are 
sufficiently close near neighbours. Then WTr/l/; is not only hermitian but also positive 
definite. In moving these two points continuously, the positive definiteness can be lost 
only if one eigenvalue becomes zero. and, consequently, the determinant of one of the 
two points becomes zero. This means at least one of the Q’S goes into the boundary of 
R. The argument shows 

w*(y)w(4) > 0 0,-Y E (0 : a.7 < 0 < q+1} 1 (42) 

where cuk+l = CQ is to be understood. 
k is twice the number of real zeros of the determinant of Wz + Xl&‘1 if X varies. hlul- 

tiplying by the non-singular liv; and exploiting Chorizontality one gets a characteristic 
equation of the form det(A + XB) = 0 with positive definite matrices A and B. Such an 
equation allows only for real, negative solutions. If a root is degenerate the corresponding 
density operator possesses as many zero eigenvalues as the degree of the relevant root. 
This means 

c number of zeros ofQ(cr,7) = n = dim(X), 0 < N,] < 7i. (43) 

From this and other observations I wonder (as a working hypothesis) whether there 
is a Riemann manifold of dimension n2 - 1 which allows for a decomposition into n, 
cells. The interior of every cell should be isometric to the interior of R, equipped with 
the metric of Bures. Let me call that hypothetical Riemann manifold nfancy. A more 
stringent hypothesis for fifancy is by demanding in addition: a density operator Q is 
covered by flfa”‘y exactly rank(Q) times. The hypothesis is true if n = 2. where the 
desired manifold is a Y-sphere with radius l/2. 

C&horizontality obviously implies horizontalit,y as defined in the case of pure states. 
Consequently, the intersection of such a plane with the unit sphere S(ti) is a large circle 
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of this sphere! and at the same time one of its geodesics. If (Y H W(a) parameterizes 
this circle as indicated in (19), then W, W is an orthonormal base of the plane for every 
W = W(a), and it is *I@‘= W(o T 7r/2). 

There is an interesting observation. Let Wi, Wz denote a base of 
plane (39), and Y an invertible operator. Then 

I,Vl = (tvl:2wl) ’ 
Y-lwz wz = (w&(YY*)-lwz) 

an R-horizontal 

(44) 

generate an R-horizontal plane. Indeed, (41) remains valid after such a replacement. 
Inserting (44) into (22) allows for the corollary: 

If WI, W, is an orthonormal base, so is r?/l, lkz. 

Hence, (44) induces, if applied to an orthonormal base, an isometric map from one 
R-horizontal plane onto another one. Remark, however, that the positions of the singular 
points (40) are changed by that transformation, and the same is with the regions (42). 

As a next step we choose an element W E S(‘l-Ft) which is not singular and we call 
hp(W) the union of all those R-horizontal planes which contain W. The intersection of 
two different planes contributing to hp(W) consists of W only. (Otherwise they would 
be identical.) hP( W) is an Euclidean submanifold of 7-Pxt. 

Proof: In order that X belongs to hp(W) the expression H = W*X has to be 
hermitian. Thus hp(W) is parameterized by H H X = (W*)-lH. 

- Two such spaces, hP( W) and hp(W), are diffeomorphic and, moreover, their con- 

stituent planes are isometric. To see this one sets WI = W, l@l = l$’ in (44), and for 
Wz, Wz their orthonormal partners. 

By (23) hP( W) is mapped onto the cone of positive (trace class) operators 

X E hp(W) H XX* = H(WW*)-lH (45) 

while H runs through the hermitian operators. 
All this remains essentially valid when going from hP(W) to h,(W) which will be 

defined as the union of all horizontal unit circles containing W. 
h,(W) contains a cell h:(W) diffeomorphic to R. The diffeomorphism can be realized 

by (23). The reason is that W belongs to exactly one segment (42) of every circle 
constituting the manifold h,(W) and the union of this segments is called h:(W). 

Along the intersection of hf (W) with a horizontal circle the diffeomorphism is an 
isometry from the induced Hilbert space geometry to the metric of Bures. Its projections 
to Cl give all the Bures geodesics of R which cross ezu. Transverse to the mentioned 
directions all this is not true. 

How far away is now Clfa”“Y? Let us equip h,(W) with the lifted Bures metric (33) or 
(34). Then, already for n = 2, there are points on h,(W), where this metric degenerates. 

Let e E R. Because h,(W) is mapped continuously onto R, the inverse mapping maps 
Q onto a closed subset of h,(W) with ( eventually) several connected components. flfancy 
should be obtained after contracting these connected components to points for every Q. 
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But is the result a manifold? As already said, presently this is known only in the 
simplest case dim7-L = 2. It would certainly be very interesting to get complete control 
for the dimensions 3 and 4. And this seems not to be out of reach. 
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