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Introduction, Generalities.

The parallel transport governing Berry’s phase [1], [2], and the Wilzcek and Zee [3]
holonomy for degenerate states extends naturally to density operators [4] (and, up
to the peculiarities of infinite dimensional analysis, at least partly to state spaces of
certain ∗-algebras [5].) Our approach is consistent, for the pure states case, with the
point of view of [6].

Let
t 7→ %t (1)

be a curve of density operators in the set

Ω = {% ≥ 0, trace % = 1} (2)

of all density operators of an Hilbert space H.
One considers now extensions

Hext = H⊗Haux (3)

of H such that the original Hilbert space can be considered as a subsystem of the
extended one. Every unit vector of the extension can be reduced to a density operator
of H. The inverse operation is called purification. Therefore, a curve of vectors sitting
in Hext is called a purification of (1) if its reduction onto H coincides with the curve
(1).
The task of purification is of course not a unique one. However, in the set of all possible
purifications of a given curve of density operators (1) there are exceptional ones. These
exceptional ones are those purifications for which the usual Berry transport condition
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remains stable after applying operators out of the commutant of B(H) in B(Hext).
(Remind that every imbedding (3) induces a well defined imbedding of the operators
acting on H into those acting on Hext.) Purifications of this type are called parallel,
and the condition just mentioned (extended) parallel condition.
Under certain continuity assumptions a parallel purification of a given curve of density
operators is already determined by its initial value. Two parallel purifications of the
same curve of density operators do not intersect or they are identical. Thus parallel
purifications give rise to holonomy invariants if the curve which is to be lifted is closed.
For our present purposes it is sufficient to consider only standard purifications. This
means to identify Haux with the dual of H in (3). Then Hext can be realized by the
Hilbert space of the Hilbert - Schmidt operators defined on H, i.e. by the linear space
of operators W such that

traceWW ∗ = trace W ∗W < ∞ (4)

Its scalar product is given by

(W1,W2) := trace W ∗
1 W2 (5)

A standard purification of (1) is nothing but a curve

t 7→ Wt, Wt Hilbert - Schmidt (6)

such that
%t = WtW

∗
t for all t (7)

The (extended) parallelity condition can now be expressed [4] as

Ẇ ∗W = W ∗ Ẇ (8)

Indeed, this condition is equivalent with the more general recipe above, as seen as
follows. If A is an operator acting on H then

A 7→ AW := LA W (9)

is the canonical embedding of the operators of H into the operators acting on the
Hilbert space Hext of Hilbert Schmidt operators. The commutant of this embedding
is given by the operations

A 7→ WA := RA W (10)

Hence the stability of the Berry condition under the operators of the commutant is
expressed by

(RAẆ , RAW ) = (RAW,RAẆ ) for all A (11)

Now RA can be moved from the left hand side to the right hand side in the scalar
products, giving there an additional operator RA∗ . Every operator RB can be rep-
resented by a linear combination of operators of the form RA∗RA. As a consequence
equation (11) is equivalent with

(Ẇ , RAW ) = (W,RAẆ ) for all A (12)
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Using (5) one immediately derives (8) from (12) and vice versa.
An important conclusion is: Let t 7→ Wt be a parallel lift of t 7→ % for 0 ≤ t ≤ τ .
Then

t 7→ Wt W ∗
0 , 0 ≤ t ≤ τ (13)

depends only on %s, 0 ≤ s ≤ t. If the curve of density operators closes for t = τ
then WτW ∗

0 is an holonomy invariant. (It should be remarked that (13) defines trace
class operators, and hence a path of normal linear functionals A 7→ trace(AWtW

∗)
on the bounded operators of H.)
The parallelity condition (8), (12) allows for links to a peculiar Riemannian metric
on Ω, i.e. on the set of density operators, and to a connection (a gauge field) on the
unit sphere of Hext. One gets the first link by the observation, that the parallelity
condition (8) can be considered as the Euler equations of the variational problem

length( t 7→ %t ) = inf
∫ √

(Ẇ , Ẇ ) dt (14)

if the infimum is running over all purifications of the curve of density operator in ques-
tion [7]. This extends nicely an idea of Fock (see appendix of [8]) to fix the arbitrary
phases of moving orthogonal m-frames by requiring their minimal change during their
movement. Further aspects of this observations are discussed more recently in [9].
The length obtained by (14) is measured equally well by Riemannian metric on Ω.
This metric has been at first considered in the context of W ∗-algebra representations
by Bures [10], who defined it as a distance function for positive functionals of W∗-
algebras. On Ω the line element of the metric equals

ds2 :=
1
2

traceG d% (15)

where d denotes the total differential. G is determined by the Bloch-like equation
[11], [12]

d% = %G + G% (16)

The metric (15) extends the Study Fubini metric from the pure states to the mixed
states.
To obtain the second link one is looking for a connection form A for the gauge
transformations

W 7→ WU, U unitary (17)

acting in the fibre of all W purifying a given %. Again, within the many possibilities
to satisfy this demand there is a canonical one. It can be defined by [13]

W ∗dW − (dW ∗)W = W ∗W ·A + A ·W ∗W (18)

Denoting by D the covariant differential that goes with the connection form A one
computes

DW := dW −WA = GW (19)
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and this is one way to see how strongly A and the gauge invariant G are bound
together. And further:
Because of (18) A = 0 is a gauge fixing along a lift. In a gauge with this prop-
erty the parallelity condition is satisfied. The gauge fixing is up to a global gauge
transformation, i.e. it is a local one.
According to (19) this gauge fixing is equivalent with solving the system of partial
differential equations dW −GW = 0 [11].

Lifts of Hamiltonian motion.

If the eigenvalues of the density operators of a sufficiently regular curve (1) remain
unchanged, this curve is a solution of a von Neumann - Liouville equations with a
time-dependent Hamiltonian.

i %̇ = [H(t), %] (20)

If (1) is a solution of (20), and if W = Wt is an arbitrary lift then one may write with
a suitable H̃(t)

iẆ = H(t)W −WH̃(t) (21)

This relation can be considered as a Schrödinger equation

iẆ = Hext(t)W with Hext(t) := (LH −RH̃) (22)

in Hext. In [13] it is shown how to choose H̃(t) for parallel purifications.
In the following the Hamiltonian in (20) is always assumed to be independent of time.
The formal solution of this equation reads

t 7→ %t := U(t)%0U(−t), U(t) = e−itH (23)

The corresponding solution for (21) with H̃ independent of time too is given by

W (t) = U(t)%1/2
0 V (t), V (t) = eitH̃ (24)

where the initial value for t = 0 is the positive square root of %0. Assuming that this
is already a parallel lift, the gauge invariant (13) can be written as

U(t)%1/2
0 V (t)%1/2

0

If now (1) is a loop, and the curve of density operator closes for t = τ , then U(τ)
commutes with %0. Thus the associated holonomy invariant reads

%
1/2
0 U(τ) V (τ) %

1/2
0 with %τ = %0 (25)

The parallelity condition demands the hermiticity of

W ∗ dW

dt
= V ∗%1/2

0 [−iH]%1/2
0 V + V ∗%0[iH̃]V (26)
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resulting in
2%

1/2
0 H%

1/2
0 = %0H̃ + H̃%0 (27)

If % is faithful this equation defines H̃. Otherwise, in order to determine H̃ uniquely,
one may require

< ψ, H̃ψ >= 0 if %0|ψ >= 0

However, in calculating the gauge invariants (13), the holonomy invariant (25), or
the line element of the Bures metric the ambiguity coming from (27) is cancelled
automatically.
Let us assume for simplicity the faithfulness of %0. Then (27) defines a linear map

H 7→ H̃ (28)

in the linear space of Hamiltonians. This map satisfies the following
a) If H% = %H then H = H̃.
b) If H% = %H then [H,H ′] = [H, H̃ ′] for all H̃ ′.
c) The map (28) is trace preserving for dimH < ∞.
d) It is trace%H = trace%H̃

Denoting the eigenvalues and eigenvectors of % by λm and ψm respectively, one writes

%0 =
∑

λm |ψm >< ψm| (29)

Inserting this into (27) results in

H̃ =
∑ 2

√
λmλn

λm + λn
|ψm >< ψm, Hψn >< ψn| (30)

The coefficient in (30) is the quotient of the geometric mean by the arithmetic mean,
and hence a number between 0 and 1. (30) can be rewritten as

H̃ = H −
∑ (λ

1
2
n − λ

1
2
m)2

λm + λn
|ψm >< ψm,Hψn >< ψn| (31)

Another useful relation is

(Ẇ , Ẇ ) = trace%2
0{H2 − H̃2}

=
1
2

∑ (λm − λn)2

λm + λn
| < ψm,Hψn > |2

(32)

The following section is devoted to Hamiltonians H which are generators of the ro-
tation group. There eigenvalues are integers or half integers, and (23) closes after a
time period of 2π. Thus

W2π = (−1)2j %
1/2
0 exp 2πi H̃, j denotes spin (33)
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and the holonomy invariant (25) of a loop will be

W2πW ∗
0 = (−1)2j %

1/2
0 e2πi H̃ %

1/2
0 (34)

Rotationally symmetric 2-spheres of states.

The unit vectors ~n in 3-space characterize the points of a 2-sphere. By the help of
the generators of an irreducible representation of SU(2), Jx, Jy, Jz, one associate to
it an 2-sphere of states with monopole-like structure. To this end one considers the
vectors |m,~n > of norm one satisfying

~n ~J |m,~n >= m |m,~n > (35)

If λm > 0 with
∑

λm = 1 is given then

% =
∑

λm |ψm >< ψm| where ψm = |m,~n > (36)

is a density operator.
Varying the direction of the unit vector ~n one gets a set of density operators which
uniquely fill a 2-sphere S = Sj,λ. It is determined by the given eigenvalues λm, and the
chosen irreducible representation labelled by j. It is an obviously rotational invariant
sphere.
On this sphere we shall consider curves which are (parts of) circles. Their start-
ing point %0 should be attached to the z-direction in the sense of (36), while ~n =
{0, sin θ, cos θ} will be chosen as rotational axis. The resulting curve is given by

φ 7→ U(φ)%0U(−φ), U(φ) = e−iφ (sin θ Jy+cos θ Jz) (37)

and the associated parallel lift of this curve with initial value %
1/2
0 by

φ 7→ U(φ)%0V (φ), V (φ) = eiφ (sin θ J̃y+cos θ Jz) (38)

in accordance with (23) and (24). The holonomy invariant (34) can now be obtained
by setting φ = 2π. An obvious calculation shows for the linear map (28)

J̃z = Jz,

J̃+ =
∑

am+1,m

√
j(j + 1)−m(m + 1) |ψm+1 >< ψm|,

J̃− =
∑

am−1,m

√
j(j + 1)−m(m− 1) |ψm−1 >< ψm|,

(39)

where

am,m′ =
2
√

λmλm′

λm + λm′
(40)

One remarks as a byproduct

[[J̃x, J̃y], Jz] = 0, [Jz, J
±] = ±J± (41)
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and further

(Ẇ , Ẇ ) =
1
4

sin2 θ
∑
m

(λm+1 − λm)2

λm+1 + λm
{j(j + 1)−m(m + 1)} (42)

Things become simpler for suitable chosen eigenvalues of the %.
At first, as a check, let S be a sphere of pure states, i.e. it consists of 1-dimensional
projectors. Thus let %0 project onto a vector |m > with Jz-eigenvalue m in a spin j
representation. Then λm = 1, and all other eigenvalues are zero. Consequently the
numbers (40) will be zero, and J̃y = 0, therefore. Our holonomy invariant (34) reads

W2πW ∗
0 = (−1)2j %

1/2
0 e2πi cos θ Jz %

1/2
0 = e−2πim (1−cos θ) |m >< m| (43)

Its trace is the well known [1] phase factor of Berry. Our loop is circle on a sphere.
The radius of that circle in the Bures metric (which is for pure states that of the
Study Fubini metric [6]) can be obtained from (42). On gets

radius of the circle if %0 = |m >< m| equals sin θ

√
j2 + j −m2

2
(44)

Another interesting case constitute the Gibbsian states of the form

% =
eα ~n ~J

trace eα ~n ~J
(45)

which fill for a given value of α a 2-sphere called Sα
j if ~n runs through all directions

in 3-space. This problem has been partly considered in [4] and, for j = 1
2 , explicitly

in [14], [15]. From the number (40) we only need

a := am,m+1 =
2 e

α
2

1 + eα
=

1
cosh α

2

(46)

It follows now (39) that J̃± = aJ±, and hence

H̃ = cos θ Jz + a sin θ Jy (47)

It is now possible to look at V (φ) as a rotation with angle

φ̃ = κφ, κ =
√

cos2 θ + a2 sin2 θ ≤ 1 (48)

and rotation axis
~ξ = {0,

sin θ

κ
,
a cos θ

κ
} (49)
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The holonomy invariant can be written as

(−12j)%1/2
0 e2πi(cos θ Jz+a sin θ Jy)%

1/2
0 = (−12j)%1/2

0 e2πiκ~ξ ~J %
1/2
0 (50)

See also [14], [15], and [16] for j = 1
2 .

The Bures radius of the considered circle of density operators is easily computed from
(32) because H and H̃ are known as linear combinations of Jy and Jz, and because
%0 commutes with Jz. The result is

radius of the circle: sin θ
√

(1− a2)trace %0J2
y := sin θ rα

j (51)

where rα
j is the radius of the sphere Sα

j as determined by the Bures metric.
As a cross check one may consider the limits

α 7→ ±∞, % 7 → |m >< m|, m = ±j

showing that (51) is consistent with (44).
The trace within (51) can be simplified.

trace%0J
2
y =

1
4
trace%0(J+J− + J−J+) =

1
2
{j(j + 1)− trace%0J

2
z } (52)

The remaining trace can be explicitly computed, for example

trace%0J
2
z =

{
1
4 if j = 1

2
eα+e−α

1+eα+e−α if j = 1

This yields according to (51) and (46)

rα
j =

{
1
2

√
1− a2 if j = 1

2√
2(1−a2)
4−a2 if j = 1

In the most simple case of spin 1
2 the spheres Sα

1
2

with varying α can be isometrically

imbedded in a S3 - hemisphere [16], [17]. However, for larger spin and varying α the
set of the 2-spheres Sα

j form a more complicated piece of a Riemann 3-space.
See also [18].
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