
This paper is published in:
DIFFERENTIAL GEOMETRY, GROUP REPRESENTATION,
AND QUANTIZATION,
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Abstract

General features of the concept of Berry’s phase are reported and extended to parallel
transport based on curves of density operators. Product integral representations and
a natural connection is introduced.

1. Introduction

Parallel transport of phases is a natural structure in the fundamentals of Quan-
tum Theory. It is my aim to describe some essentials of that structure according to
Berry [1] and Simon [2], which is defined via transport conditions for vectors and
phases along curves of pure states. A further purpose is to introduce to the extension
of these constructions to curves of more general states (i.e. mixtures) [3]. To do so is
a problem of internal consistency: In Quantum Theory - and in contrast to Classical
Statistical Mechanics - the question wether a state is a pure or a mixed one is decided
by the set of observables and can, consequently, be changed by adding or neglecting
observables (operators). The criteria for parallelity should be compatible with this
feature. On the other hand, the case of pure states is basic and most important, and
serves as a guide. See also [4].

The vectors of a Hilbert space H represent pure states if two of them can be dis-
tinguished by their expectation values provided they are linearly independent. To do
so one needs enough observables acting as operators on H. The simplest and also nat-
ural assumption for this is that potentially every self-adjoined operator is allowed to
become an observable. It is however sufficient, and for technical reasons highly desir-
able, to use the bounded hermitian operators of H, i.e. the hermitian elements of the
algebra B(H) of all bounded operators acting on H.

A vector ψ describes a state by the collection of its expectation values

A 7→ < ψ, Aψ >

< ψ,ψ >
(1)

1



and for this reason two vectors describe the same state if and only if they are linearly
dependent. Excluding the zero of H and identifying two linearly dependent vectors
defines the projective space, PH, which labbels uniquely the pure states. It can hence
be considered as the space of pure states. PH can be realized either
a) as the space of 1-dimensional linear subspaces of H – the first Grassmann mani-

fold of H,
b) or as the space of rays of H. A ray is 1-dimensional linear subspace with the ex-

clusion of the zero of H,
c) or as the space of the 1-dimensional projection operators, i.e. of the operators

P = P 2 = P ∗ which project H onto an 1-dimensional subspace.
Here always exclusively PH is interpreted as the set of 1-dimensional projections.

The merit in doing so is: The points of PH appear as operators, and PH is canoni-
cally imbedded into B(H) as a subset.

An inconvenience in using case c) above is in the double role the projections of
rank one are playing: Such an operator represents as well a state as a genuine observ-
able asking with which a priori probability this state is realized.

H − {0}, the Hilbert space without its zero element, can be considered as a C×-
fibre bundle over PH. Because normalizing of vectors is a topological trivial opera-
tion it is further useful to introduce the unit sphere

S(H) = {ψ ∈ H : < ψ, ψ >= 1} (2)

of H which is a S1-bundle over PH.
Every Schrödinger equation

H(t)ψ = iψ̇ (3)

determines (not canonical) lifts from PH of the integral curves of

[H(t), P ] = iṖ (4)

Indeed, if t 7→ Pt is a solution of (4) and P0 = |ψ0 >< ψ0| then their is just one
solution t 7→ ψ(t) of (3) with ψ(0) = ψ0. Now t 7→ ψ(t) is clearly a lift of t 7→ Pt into
H− {0}. This lift sits in the sub-bundle (2) because of the conservation of the norm.

Replacing within (3)

H(t) 7→ Hnew(t) = H(t)− a(t)1 (5)

the new curve
Hnew(t)ψnew = iψ̇new, ψnew(0) = ψ0 (6)

in H− {0} is again a lift of t 7→ Pt with

ψnew(t) = exp i
∫ t

0

a(t)dt · ψ(t) (7)

This shows that the lifting may produce rather arbitrary phases. Furthermore, (3)
produce lifts only for solutions of (4), which is a rather restricted class of curves in
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the space of pure states. This explains, why the procedure above is not a canonical
lifting procedure. A canonical or natural lifting procedure should be valid for all (suf-
ficiently smooth) curves of PH, and the lifts should be uniquely determined by their
basic curves up to its initial value.

The arbitrariness mentioned above can be avoided in going to the adiabatic limit
[5] – provided this is possible. To do this one considers together with (3) the family of
Schrödinger equations

H(t/T )ψT (t) = iψ̇T (t), ψT (0) = ψ0 (8)

with T > 0 and the corresponding family of equations (4) on PH with solutions

t 7→ PT,t = |ψT (t) >< ψT (t)| (9)

One refers to adiabatic convergence if

lim
T→∞

PT,tT = P adi
t (10)

is converging towards a new curve t → P adi
t in PH.

If it is possible – after a suitable substitution (5) – to reach convergence of ψT

towards a curve ψadi in the sense of

w− lim
T→∞

T
(
ψT (tT )− ψadi(t)

)
= 0 (11)

then one may heuristically (i.e. up to the interchange of two limiting procedures) ar-
gue as following:

< ψadi, ψ̇adi > = lim
T→∞

< ψadi,
d
dt

ψT (tT ) >

= −i lim T < ψadi,H(t)ψT (tT ) >

= −i lim T < H(t)ψadi, ψT (tT ) > . (12)

Because of (11) this can become reasonable only with < H(t)ψadi, ψadi >= 0 and
vanishing right hand side.

The question wether convergence (10) and (11) takes place is difficult and only
solved [6] using rather strong assumptions. However, in the cases one can prove adia-
batic convergence it results in

< ψadi,
d
dt

ψadi >= 0 with < ψadi, ψadi >= 1 (13)

It is perhaps better to consider (13) as a necessary condition for the convergence of
(11). It forces the vanishing of the dynamical phase by requiring a suitable shift (5)
before performing (11). It is thus a kind of renormalizing the hamiltonian in order
that adiabatic convergence (10) in the state space can imply (11).
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At this point we arrived at a natural or canonical lifting procedure which induces
indeed a well known parallel transport in the bundle S(H) respectively H − {0}. It is
reasonable to ‘forget’ the adiabatic origin of (13) and to treat this transport condition
as a concept in its own right. Let

s 7→ Ps, 0 ≤ s ≤ 1, (14)

be an arbitrary (but sufficiently regular) curve in PH. A lift

s 7→ ψ(s) with Ps = |ψ(s) >< ψ(s)| (15)

is called parallel iff it fulfills

< ψ,
d
ds

ψ >=<
d
ds

ψ, ψ > (16)

However, < ψ, ψ̇ > is purely imaginary for a curve (15) of constant norm, and (16)
reduces to

< ψ,
d
ds

ψ >= 0. (16a)

Parallel lifts are integral curves of connection 1-forms. A good choice for them is

< ψ, dψ > (17)

for the fibre bundle S(H) and

1
2

< ψ, dψ > − < dψ, ψ >

< ψ, ψ >
(18)

for the larger bundle H− {0}.
At this place I like to give a first account for an extension to curves of not nec-

essarily pure states. Let the algebra of observables be a unital ∗-subalgebra A, i.e. a
subalgebra containing the identity map and with every operator its hermitian conju-
gate. Then two linearly independent vectors may not be distinguishable by the ele-
ments of A, and the vector states of A

ω = ωψ : A 7→ ω(A) :=
< ψ, Aψ >

< ψ,ψ >
, A ∈ A, (19)

generate a foliation of H − {0}. Two vectors belong to the same leaf of this foliation
iff their vector states (19) coincide. On every leaf act the unitaries (and, in a certain
way, the partial isometries) of the commutant A′ of A.

Given a curve
s 7→ ωs, 0 ≤ s ≤ 1, (20)

of vector states of A there are i.g. many essentially different lifts

s 7→ ψ(s) with ωs = ωψ(s) (21)
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into H − {0}. It is an obviously meaningful question wether there is a natural cri-
terium distinguishing certain of these lifts, a transport condition selecting - up to the
choice of the initial vector - just one lift (21) of a given curve (20). Let me call such a
transport condition a natural parallel transport where the word natural means that the
transport depends on H and A only.

Such a natural parallel transport gives rise to an holonomy problem: A closed
curve of vector states will generally not induce a closed parallel lift. If things work
well, and (21) is a parallel lift of (20) then the linear functional

A 7→ ν(A) =< ψ(0), Aψ(1) >, A ∈ A, (22)

should depend only on the original curve (20). In particular, ν(1) then would general-
ize what is called Berry’s phase factor (see next section).

An ansatz which will be sufficient for an important class of curves (20) is the fol-
lowing preliminary definition [7]: A lift (21) of (20) is parallel if it is of constant norm
and fulfills

(ψ̇, Bψ) = (ψ, Bψ̇) for all B ∈ A′. (23)

This is, as will be shown later on, a reasonable set of conditions which are similar to
the Berry - Simon one.

If the algebra of observables is B(H), as it was assumed at the beginning, its
commutant consists of the multiples of the identity map only, and (23) means that
the lift (21) in this case satisfies (16) resp. (16a), i.e. the condition of Berry and Si-
mon.

In the setting above it is without further assumptions unclear, which states of the
algebra A can be given by vector states, and how to handle the other states. To cir-
cumvent this a more satisfying way is in performing extensions instead of reductions
of states. First of all this is nothing than inverting the point of view: One starts with
A and asks for unital embeddings of A into B(H) such that all or a reasonable part of
the states of A become reductions of pure vector states of B(H). One has to ensure,
however, that the final results do not depend on the choice of the embedding.

2. Parallel Transport

The parallel transport can be realized in rather different bundle spaces and I de-
scribe one which is embedded in B(H). Again I start with problems for pure states
before switching to a slightly larger class and to the general case.

An operator V is called a partial isometry iff V V ∗ and (consequently) V ∗V are
projection operators referred to as the left and the right support of V respectively.

Working with pure states one remains in the set of partial isometries of rank one.
A partial isometry of rank one, V , can be written as

V = |ψ(1) >< ψ(0)|, V V ∗ = P1 V ∗V = P0 (1)

with two normalized vectors, and it may be interpreted as annihilating the ‘in state’
P0 = |ψ(0) >< ψ(0)| and creating the ‘out state’ P1 = |ψ(1) >< ψ(1)|. Given the in-
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and out-states this operation is fixed up to a phase factor because every PH-invariant
for pairs of states depends 0nly on the transition probability

tprob(P0, P1) = | < ψ(0), ψ(1) > |2 = tr(P0P1) (2)

This slight arbitrariness cannot be removed without introducing a new structural ele-
ment.

This new structural element is a curve, c, connecting smoothly P0 and P1:

c : s 7→ Ps, 0 ≤ s ≤ 1, (3)

With the aid of the following construction it is possible to fix the phase factor in de-
pendence on c. One takes subdivisions

1 > s1 > s2 > . . . > sm > 0 (4)

of the parameter s of the curve and perform [8], [9],

V = V (c) := lim P1Ps1Ps2 . . . PsmP0 (5)

where the limiting procedure is taken over finer and finer subdivisions (4). To calcu-
late V one uses a lifted path

clift : s 7→ ψ(s), with Ps = |ψ(s) >< ψ(s)| (6)

of unit vectors with which (5) is converted into

V = |ψ(1) >< ψ(0)| lim < ψ(1), ψ(s1) >< ψ(s1), ψ(s2) > . . . < ψ(sm), ψ(0) > (7)

If (6) is twice differentiable one estimates by Taylor’s theorem

|1 + (t− s) < ψ̇(s), ψ(s) > − < ψ(s), ψ(t) > | ≤ (t− s)2 const.. (8)

where the constant is independent of s and t. One knows that (7) converges abso-
lutely if

lim
∑

| < ψ(sk+1), ψ(sk) > −1| (9)

is absolutely converging. But (8) guarantees that (9) converges absolutely towards

∫
| < ψ̇(s), ψ(s) > | ds. (9a)

The existence of (5) is now established.
It is convenient to require

< ψ(s), ψ̇(s) >= 0 (10)
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before performing (7). At this place the parallelity condition appears as a technical
device, and the result of (5) or (7) does not depend on it. With (10) the estimate (8)
results in

V (c) = |ψ(1) >< ψ(0)| if < ψ, ψ̇ >= 0. (11)

For an arbitrary lift (5) it follows

V (c) = |ψ(1) >< ψ(0)| exp
∫

< dψ, ψ > (11a)

because its right hand side is compatible with (10) and invariant against gauge trans-
formations

ψ(s) 7→ ε(s)ψ(s), |ε(s)| = 1 (12)

Only one eigenvalue of (11) can be different from zero, and its value is Berry’s
phase factor

Berry(c) = exp
∫

< dψ, ψ >= tr V (c) (13)

The modulus of (13) is at most one. It equals one iff c is closed, i.e. a loop.
Essential parts of what was and will be said in this section is true for projections

and partial isometries of arbitrary finite rank. A first assertion is:
If (3) is a smooth curve of projection operators of rank k then (5) converges, and

the result is a partial isometry V (c) of rank k with left support P1 and right support
P0.

It will further become evident that for these curves there is a completely invari-
ant characterization of (1-22) by

νc(A) =
1
k

tr
(
V (c)A

)
(14)

such that Berry’s phase factor is

Berry(c) =
1
k

tr
(
V (c)

)
= νc(1) (15)

To prove (3) for projections of rank k one writes

Ps =
∑

|ψj(s) >< ψj(s)| (16)

and requires for the curve of ortho-normal k-frames ψ1, · · · , ψk the auxiliary condition

< ψj , ψ̇i >= 0 for all i, j (17)

To my knowledge (17) appeared first in an appendix of Fock’s paper [10] as a con-
dition that the phases of k-frames belonging to a degenerate eigenvalue of a time-
dependent hamiltonian change as slowly as possible in the course of time. (17) is also
known as defining a parallel transport in the fibre bundle of ortho-normal k-frames
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(Stiefel manifolds). Extending Berry’s anholonomy to curves of degenerate eigenstates
and introducing the associated gauge theory is the idea of [11].

With (17) the right hand side of (5) decomposes into a sum of k independent
product integrals (7). But their convergence to rank one projections is already estab-
lished. Hence the assertion is proved.

For k fixed the mapping
c 7→ V (c) (18)

can be interpreted as morphism from the groupoid of curves onto the groupoid of
rank k partial isometries. The term groupoid indicates that two curves can be mul-
tiplied if and only if the end of the first coincides with the beginning of the second.
In the same spirit the multiplication of two partial isometries is allowed iff the right
support of the first equals the left support of the second. It is now plain to see from
(5)

V (c1c2) = V (c1)V (c2), (19)

V (c−1) = V (c)∗. (20)

Let me comment on (20) as follows. (5) implies that V (c) does not depend on the
way c is parameterized. But it depends on its orientation. Reversing the orientation
gives c−1.

By the help of (5) one can get a differential equation for the morphism (18) of a
curve (3) with varying endpoint. To this end one considers the curve

cs : t 7→ Pt, 0 ≤ t ≤ s (21)

and the corresponding
Vs := V (cs) (22)

to arrive at
V̇s = ṖsVs (23)

(22) as defined by (21) and (5) is the unique solution of the differential equation (23)
with initial value V0 = P0.

One can give to the solutions of (23) a special format. At first an arbitrary (suf-
ficiently regular) curve s 7→ Vs may be represented in the following way. One chooses
ortho-normal k-frames

s 7→ {ψ1(s), . . . ψk(s)} ∈ VsH with < ψj , ψ̇i >= 0 (24)

fulfilling the transport condition (17). Then, reminding P = V V ∗, there is a unique
second ortho-frame

s 7→ {ψ̃1(s), . . . ψ̃k(s)} ∈ PsH = V ∗
s H (25)

such that
Vs =

∑
|ψj >< ψ̃j |. (26)

(26) is a solution of (23) if and only if the ortho-frame (25) does not depend on s,
provided (24) is valid.
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The proof is a simple matter of calculation after inserting (26) into (23). In the
same straightforward manner one proves:

The following three condition on a curve s 7→ Vs are mutually equivalent:

V̇ = Ṗ V, V ∗V̇ = 0, V ∗V̇ = V̇ ∗V. (27)

If one - and hence all - of these conditions are fulfilled the curve s 7→ Vs is called a
parallel lift of s 7→ Ps into the space of partial isometries of rank k. Equivalently one
may characterize such parallel lifts as being integral curves of the differential 1-forms

dV − (dP )V, V ∗dV,
1
2
(
V ∗dV − dV ∗V

)
. (28)

The last one is an anti-hermitian connection form. This requires a comment and I
denote for that purpose by Ik the space of partial isometries of rank k. For any k-
dimensional projection operator, P , the fibre IP

k is the set of all V with V V ∗ = P .
Let

V 7→ V U, V ∗V ≤ UU∗ (29)

be a map with partial isometries U depending on V . Then one gets from (29)

V ∗dV − dV ∗V 7→ U
(
V ∗dV − dV ∗V

)
U∗ + U∗dU − dU∗U (30)

However, the partial isometries do not constitute a group. To get a gauge group one
has to use in (29) the unitary transformations. But then −dU∗U = U∗dU . Hence the
third expression of (28) is a connection form of the unitary group of H.

It remains to say how all this could fit to the last part of section 1. Of course
Ik is not a Hilbert space but it is elegantly embedded in the Hilbert space of Hilbert
Schmidt operators

HHS = {W ∈ B(H) : tr WW ∗ < ∞}, < W1,W2 >= tr W ∗
1 W2 (32)

To that space one applies what has been said at the end of section 1 where the *-
subalgebra A of B(HHS) is identified with the set of mappings

A = {W 7→ AW, A ∈ B(H)} (33)

A curve of projections of rank k can be understood as coming from a curve of
density operators on H of the form

s 7→ %s :=
1
k

Ps (34)

This curve will now be interpreted as the reduction of any curve

s 7→ 1√
k

Vs ∈ HHS , VsV
∗
s = Ps (35)
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In turn, every curve (35) purifies the curve of mixed states (34). Because one has in
the present setting

A′ = {W 7→ WA, A ∈ B(H)} (36)

it can be verified straightforwardly that (1-23) is equivalent to the last equation of
(27). Indeed this calculation can be done in more general terms using the fact that
every density operator % of H can be purified by decompositions

% = WW ∗, W ∈ HHS . (37)

Thus every curve of density operators of H

c : s 7→ %s (38)

can be purified, i.e. lifted into a curve of pure vector states of the Hilbert space of
Hilbert Schmidt operators, or, what is the same, can be gained by reductions of pure
states

clift : s 7→ Ws ∈ HHS , %s = WsW
∗
s (39)

Because of (36) rewriting (1-19) results in

tr Ẇ ∗(WA) = tr W ∗(ẆA)

for all bounded operators A on H. This can be valid only if

Ẇ ∗W = W ∗ Ẇ , (40)

and in this form (1-23) has been derived in [3]. It is therefore reasonable to call (39) a
parallel lift or a parallel purification of (38) if (40) is valid.

To look at the set of unit vectors of HHS as to a fibre bundle with the unitary
group of H and with the (not singular) density operators as its base space has been
stressed in [12]. See also [13] for problems of interpretation.

An ansatz
Ẇs = Gs Ws with Gs = G∗s (41)

obviously solves (40). Differentiating (37) and replacing Ẇ by (41) immediately shows

%̇ = G% + %G. (42)

That method appeared in [12], [9]. It fits very well with (23) for curves of parallel
isometries where G = Ṗ .

3. The Minimal Length Property

The inequality

< ψ̇, ψ̇ >

< ψ, ψ >
≥ < ψ̇, ψ̇ >

< ψ,ψ >
− < ψ, ψ̇ >< ψ̇, ψ >

< ψ, ψ >2
(1)
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where the right hand side is the lifted projective metric of PH, shows that Berry’s
parallelity condition results from minimizing < ψ̇, ψ̇ >. Hence parallel lifts can be
considered as those of shortest length.

Before combining this with the previously discussed scheme a historical remark is
in order. If a k-dimensional subspace (or its projection) moves smoothly through its
Hilbert space, there are numerous co-moving ortho-normal bases. How can one avoid
‘unnecessary’ rotations of these k-frames? The answer given in [10] was to require

∫
dt

∑
< ψ̇j , ψ̇j >= Min ! (2a)

This simple variational problem implies as its necessary condition (its ‘Euler equa-
tions’)

< ψj , ψ̇k >= 0. (2b)

These ideas can easily be used to produce the parallelity conditions (1-23), (2-
40), and similar ones. To prepare this let Hext be the Hilbert space of an extended
system and A a unital *-subalgebra of B(Hext).
Remark. Up to the notation ‘ext’ things are as in the last part of section 1. In section
2 the role of Hext is played by HHS.
A curve

c : s 7→ ωs with 0 ≤ s ≤ 1 (3)

of states of A can be purified by embedding A into B(Hext) with large enough Hext so
that there exists a curve

clift : s 7→ ψ(s) ∈ Hext (4)

with
ωs(A) =< ψ(s), Aψ(s) > for all A ∈ A. (5)

(4) is clearly not fixed by (3) and the arbitrariness is the larger the bigger is A′, the
commutant of A in B(Hext). Indeed, every curve of partial isometries

s 7→ Us ∈ A′ with ‖ ψ(s) ‖=‖ Usψ(s) ‖ (6)

gives a new purifying curve
s 7→ ψ′(s) = Usψ(s) (7)

The purification ambiguity can be diminished by the requirement

∫ √
< ψ̇, ψ̇ >ds = Min ! or

∫
< ψ̇, ψ̇ > ds = Min ! (8)

where the extrema are taken on the set of all lifts (4) satisfying (5). For sufficiently
regular curves this is locally equivalent to

< ψ̇, ψ̇ >= Min ! (9)
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If (4) is an admissible curve and B ∈ A′ then (6) with Us = exp isB gives rise to
another such curve. The assumption that (4) is already solving (9) or (8) will result
in

0 ≤ < Bψ,Bψ > +i[< ψ̇, Bψ > − < ψ,Bψ̇ >] (10)

This set of inequalities can valid for all B iff

< ψ̇, Bψ >=< ψ, Bψ̇ > for all B ∈ A′ (11)

(11) is proved above for hermitian B. But these operators span A′ linearly.
Because of (5) one is working with unit vectors by definition. For curves within

Hext − {0} one either requires the constancy of the vector norms explicitly, or, with
the same effect, demands

< ψ̇, ψ̇ >

< ψ,ψ >
= Min ! (12)

for parallelity of the lifts (4). However, the conditions (11) remain valid under arbi-
trary re-scaling of the vector norms.

It is highly desirable to know for what curves (3) there exists a unique holonomy,
i.e. a unique

νc(A) =< ψ(0), Aψ(1) >, A ∈ A (13)

depending on ψ(0) and ψ(1), the initial and finite vectors of an arbirary parallel lift.
This amounts to the s-independence of Us if (4) and (7) both produce the minima of
(9) or fulfil (11). See also [9] for this problem.

Here I circumvent this problem by trying to establish the correctness of (13) di-
rectly for the particular but important case

A = B(H) and Hext = HHS

already introduced in section 2. Let (3) be given as a curve of density operators on H

c : s 7→ %s with 0 ≤ s ≤ 1 (14)

and a lift
clift : s 7→ Ws, %s = WsW

∗
s (15)

of minimal length. The Bures length [14] of (14) is now the Hilbert space length of
(15). Our next task is to use a polygon approximation to the curve (15), and to ex-
press this in terms of the curve (14).

With the aid of the polar decomposition

Wj = %
1
2
j Uj (16)

one gets
W1W

∗
0 = %

1
2
1 U1U

∗
0 %

1
2
0 . (17)
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For parallel lifts this gives rise to the definitions

V (c) = U1U
∗
0 , νc(A) = tr W ∗

0 AW1 with A ∈ B(H) (18)

and the aim is to show independence from the chosen parallel lift. This will be done
for faithful (non-singular) density operators only. For every subdivision

1 > s1 > s2 > . . . > sm > 0

there is the identity

U1U
∗
0 = U1(U∗

s1
Us1)(U

∗
s2

Us2) · · · (U∗
sm

Usm
)U0

= (U1U
∗
s1

)(Us1U
∗
s2

) · · · (UsmU∗
0 )

(19)

The next step is in approximating UsU
∗
t for small s− t. Because the curve in question

is of minimal length the approximation is done by replacing two consecutive W’s by

W̃s = %
1
2
s Vs, W̃t = %

1
2
t Vt (20)

such that these two vectors are of minimal distance. This is settled by the require-
ment [3]

W̃sW̃
∗
t = %

1
2
s VsV

∗
t %

1
2
t > 0. (21)

In this and only in this case < W̃t, W̃s > is positive and attains its maximal value for
all decompositions (20). That maximal value is the root of the transition probability
[15] between the two density operators %s and %t

tprob(%s, %t) =
(
tr (%

1
2
t %s%

1
2
t )

1
2
)2 (22)

A solution of (21) is obviously

VsV
∗
t = %

− 1
2

s %
− 1

2
t (%

1
2
t %s%

1
2
t )

1
2 (23)

and the solution is unique, for otherwise one comes into conflict with the uniqueness
of the polar decomposition. Writing now

Xs,t = %
− 1

2
t (%

1
2
t %s%

1
2
t )

1
2 %

− 1
2

t (24)

(19) can be approximated by

%
− 1

2
1 X1,s1Xs1,s2 · · ·Xsm,0 %

1
2
0 . (25)

Hence
W1W

∗
0 = lim X1,s1Xs1,s2 · · ·Xsm,0 %0 (26)
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This indicates that the left hand side of the non-commutative product integral (26) is
independent from the choice of the shortest lift of (14), and the same is true with (17)
and (18). The aim, to show the correctness of the holonomy problem for parallel lifts
for curves of non-singular density operators, has been reached.

It is worthwhile to rewrite (24) and (26) by the help of the non-commutative ge-
ometric (or quadratic) mean [16] which can be defined for two positive definite opera-
tors by [17]

A#B := A
1
2 (A−

1
2 BA−

1
2 )

1
2 A

1
2 (27)

Then
Xs,t = %s # %−1

t (28)

Inserting into (26) yields

W1W
∗
0 = lim(%1#%−1

s1
)(%s1#%−1

s2
) · · · (%sm#%−1

0 ) %0 (29)

Therefore the parallel transport can be described by

W1 = V (c)W0 with V (c) = lim(%1#%−1
s1

)(%s1#%−1
s2

) · · · (%sm#%−1
0 ) (30)

A cross check is now that

G := lim
ε→0

Xt+ε,t − 1
ε

(31)

fulfils (2-42), i.e.
%̇ = %G + G% (32).

The same arguments can be applied for curves of density operators of constant
support. It should be possible to require only constant rank in order that the prod-
uct integrals above and the ones discussed in section 2 should appear as special cases.
Presently the correct format of that (hypothetical) product integral is not known to
me.

4. The Connection Form

To get parallel lifts of a curve of states one needs at first a suitable extension in
order to represent the original curve as the reduction of a curve of pure states, or,
what is the same, to allow for a purification. The arbitrariness of the lifting involved
gives rise to a gauge group (or gauge groupoid). It is the aim of the following to show
the existence of a natural connection form (respectively gauge potential) for the par-
allel transport already discussed. This can and will be done for the normal states of
B(H). Such a state is given by a density operator % of an Hilbert space H and de-
scribed by their expectation values

% : A 7→ %(A) := tr A% (1)

To achieve purification it is sufficient to consider factor extensions, the most impor-
tant one, the space of Hilbert Schmidt operators, has already be considered. It is
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convenient to represent these extensions as spaces of Hilbert Schmidt mappings of an
Hilbert space H′ into the given Hilbert space H :

Hext = L2(H′,H) (2)

consisting of all mappings

W : H′ → H with trH′ W ∗W = trHWW ∗ < ∞ (3)

Here, as usual, W ∗ is a map from H into H′ defined by

< ψ, Wψ′ >=< W ∗ψ, ψ′ > for all ψ ∈ H, ψ′ ∈ H′ (4)

so that
W ∗ ∈ L2(H,H′) iff W ∈ L2(H′,H) (5)

The scalar product of B(Hext) reads

(W1,W2) := trH′ W ∗
1 W2 = trHW2W

∗
1 (6)

where W2W
∗
1 respectively W ∗

1 W2 is in B(H) respectively B(H′). One observes that
(2) is nothing than HHS if H′ = H. Contact with previous notations is reached with

A = {W → AW, A ∈ B(H)} A′ = {W → WB, B ∈ B(H′)} (7)

With this setting a state % can be purified if and only if

rank % ≤ dimH′ (8)

The set of all states (density operators) which satisfy (7) can now be regarded as the
base space of the bundle Hext − {0} with the bundle projection

π : W 7→ % := WW ∗ / (W,W ) (9)

The bundle group is the group of unitaries of B(H′) acting as

W 7→ Ũ = WU whith U ∈ B(H′) (10)

The parallelity condition can now be written

(Ẇ ,WB) = (W, ẆB) for all B ∈ B(H′)

which results in (2-40) with vectors W of the form (3) out of (2). This can be reex-
pressed in the following way. For a curve of density operators

s 7→ %s with 0 ≤ s ≤ 1 (11)
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one looks for purifying curves

s 7→ Ws ∈ Hext = L2(H′,H) (12)

annihilating the differential 1-form

W ∗dW − (dW ∗)W. (13)

This is a form with values in B(H′) sitting on the space (2). However, it is not a con-
nection form for the gauge transformations (10). To remedy that defect I introduce
another differential 1-form A of a similar structure by [18]

W ∗dW − (dW ∗)W = W ∗W ·A + A ·W ∗W (14)

It vanishes exactly along parallel lifts, and it is a connection form for the transforma-
tions (10). If the support of W equals H′ then (14) determines A uniquely. Other-
wise one has to require additionally

< ψ′,Aψ′ >= 0 for all ψ′ ∈ H′ with Wψ′ = 0 (15)

With (14) and (15) the differential form A is completely defined up to those tangen-
tial directions Ẇ for which there does not exist a solution of (14). These directions
correspond to tangential directions at the boundary of the base space along which the
rank of the density operator is changing.

Using uniqueness it is elementary to show

A + A∗ = 0 (16)

and it is a matter of straightforward calculation that a regauging (10) results in

A 7→ Ã =: U∗AU + U∗dU (17)

It is remarkable that (17) remains valid if one exchanges the auxiliary Hilbert space
H′ by another one, say H′′, and if U in (10) is an isometry from H′′ into H′. Thus
the connection forms living on different spaces (2) appear to be ‘all the same up to
gauge transformations’.

The introduced connection form respects further scale transformations which do
not change (9): A remains invariant under scale transformations

W 7→ λW (18)

where λ may arbitrarily vary with W . Hence A can be considered directly as a con-
nection form defined on PHext.
Remark. If H′ = H and finite dimensional, and if W−1 exists, then A remains un-
changed if W is replaced by (W ∗)−1. In the base space that transformation becomes
% → (%−1)/tr(%−1).
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There is a further differential 1-form, G, defined on Hext as given by (2) but with
values in B(H) and invariant with respect to gauge transformations (10). It is implic-
itly defined by

d(WW ∗) = GWW ∗ + WW ∗G (19)

This is supplemented by

< ψ,Aψ >= 0 for all ψ ∈ H with W ∗ψ = 0 (20)

to take care of the null space of W . Again the definition (19) works up to certain di-
rections in the tangent space along which the rank (or von Neumann dimension) of
the density operator is diminishing. From the definition follows easily

G = G∗ (21)

The differential form G reflects the operator G introduced at the end of section 2,
equation (2-42), and also in section 3, (3-31) and (3-32). Namely, Gds is the pull back
of G into the base space of density operators along the curve (11).

From (2-41) it follows that dW −GW vanishes along parallel lifts. Hence

Θ := dW −WA−GW

is vanishing along every parallel lift. On the other hand, the covariant A-derivative
DW transforms with (10) like

DW := dW −WA 7→ DWU = (dW −WA)U (22)

This and because G is a gauge invariant, θ transforms covariantly with (10). Because
every (smooth enough) lift can be gauged to become a parallel lift, Θ is vanishing for
all lifts and has to be zero:

dW −WA = GW (23)

Having a connection form (a gauge potential) it is tempting to introduce its cur-
vature 2-form

F = dA + A ∧A (24)

Performing the exterior derivative of (23) one gets

W (dA + A ∧A) + (dG−G ∧G)W = 0 (25)

(dA + A ∧A)W ∗ = W ∗(dG + G ∧G) (26)

An more explicit representation of A is possible by sandwiching (14) with eigen-
states of W ∗W . This, however, demands knowledge of the eigenvectors of an arbi-
trary hermitian trace class operator. With the exception of low dimensions, particu-
lary two, this can scarcely be solved effectively. Another method, using the integral
representation (for positive definite X)

Y =
∫ ∞

0

(exp−sX)Z(exp−sX) ds if XY + Y X = Z

17



is also not easy for calculating, say, F. Therefore, with the exception of pure states,
projections, and rank two density operators, up to now, a satisfactory geometrical
interpretation of the gauge potential and the curvature remains to be given.

If dimH′ = 1 then Hext coincides with H and it follows directly from (14), see
also (1-18),

A =
1
2

< ψ, dψ > − < dψ, ψ >

< ψ, ψ >
(27)

F =
< dψ, dψ >

< ψ, ψ >
− < ψ, dψ > ∧ < dψ, ψ >

< ψ, ψ >2
(28)

If W is proportional or equal to a partial isometry, V , see (2-30), then

A =
1
2
(
V ∗dV − dV ∗V

)
(29)

An explicit expression for A in the case dimH = 2 has been given in [19]. While
the rank one case shows up monopole structures [1], with rank two one arrives at in-
stanton structures [20].

∗ ∗ ∗ ∗ ∗
A considerable fraction of the material presented is due to a manuscript version of a
lecture given at the Arnold-Sommerfeld-Institut, Clausthal 1987, which extended a
talk at 15th International Conference on Differential Geometric Methods in Theoret-
ical Physics, Clausthal 1986 [7]. For interest, help, and kind hospitality I am grateful
to H.-D. Doebner and his Colleagues.
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