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Parallel Transport and Holonomy

along Density Operators

ARMIN UHLMANN
Karl-Marx-University Leipzig, Dep. Physics and NTZ

Abstract: We describe a parallel transport and "quantum”
holonomy along curves of density operators.
We present arguments to show the naturality
of our notation.

There is a rich geometric structure, though somewhat hidden, already
in the very fundamentals of Quantum Physics.

It is my intention to point at a certain corner of recent interest of
those structures. This interest has been triggered by a paper [1] of
M. BERRY and a commenting one [2] to that by B. SIMON concerning phase
transport accompanying adiabatic ("slow") changes of exterior
parameters, for instance within an Hamiltonian.

If one finds adiabatic invariants they can be typically expressed by
the help of certain path integrals, and identified with elements of
an holonomy group.

In their considerations, BERRY and SIMON arrived at a well known
parallel transport within the vector or U(1) bundle which comes
naturally with the HILBERT space and its projective structure. In [3]
WILCZEK and ZEE extended it to the natural parallel transport in the
STIEFEL manifold of m-frames which is based on the GRASSMANN manifold
of projectors of rank m . A path within the latter may be given by the
degenerated ground states of a slowly varying family of Hamiltonians.
A curve of projection operators (of finite rank) can already be
considered as a path of density operators ( up to normalization ) .
It has been pointed out [4] a rather natural generalization to curves
of ( not necessarily normalized ) density operators. Meanwhile there

is even more evidence that this is a "canonical" concept.

Let us denote by H an HILBERT space, by S the set of positive
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semidefinite trace class operators which are considered as density
operators up to normalization. (We exclude the zero operator.) Every

density operator S gives rise to a state
A > <A>g = tr.AS / tr.s (1)
Thus let us consider a smooth path
C: S = S(t) , t e [0,1] (2)

The first step is to 1ift the path (2) by adding new observables to a
curve consisting of pure vector states only. After this procedure our
original system is a subsystem of a larger system, and every state (1)
is seen as the reduction of a pure state. There is indeed a minimal
extension that purifies all possible states (1). It can be described
by the HILBERT space HS of all HILBERT SCHMIDT operators.
Let us call "amplitude of S " every element W of HS and "phase
of S " every partial isometry U satisfying

s = ww and W = sl/2y (3)
where the support of S and the left support of U coincides. Now at
every element of S (3) defines a fibre within HS and within
the set of partial isometries. Note that the fibre of the phases is
indepedent of the normalization of S , and hence it can be considred
as a fibre over the state (1). Therefore, starting with a path of
states (2), the problem is in 1lifting this path into the space HS
and then, by a polar decomposition, into the space of isometries.
Thus let us consider all smooth pathes

W = W(t) and U = U(t) (4)

where S , W, U, fulfil (8) for every t . Of course this lifting
procedure is up to now highly non-unique. Hence we need a parallel
transport mechanism. In the following we shall suppress the subsript

t wusually, and write dW = (dW/dt)dt for short as well as to handle
the case of an arbitrary parameter space.

In [4] the parallel transport condition was argued to be
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(awdt)* w = w* (dw/dt) (5a)
or, more generally,
aw*w -  waw (5b)

This requirement is the infinitesimal version of
E ]
W w, >0 (8)

a condition coming from the theory of transition probabilities for
pairs of states [5], see also [6], [7]. If (6) is valid the amplitudes
of two faithful states are called "parallel". In this case their scaler
product is not only real and positive but attains its maximally possible
value for any simultaneous purification of the two states started with.
We shall give some further characterizing properties of (5) later on,
and let us now list some general consequences of the lifting procedure
connected with (5). We introduce for any lifting (4) the forms

X = waw -waw , vy - vat (1)

and look at their transformation properties if W , U, and W' , U'
denote two liftings (4) belonging to the same path (2). Then there is

W = WV , U' = UV (8)

where the left support of the partial isometry V coincides with the
right supports of W and U . One gets

Y'Y = Y + u(vav')u* (9)
X' = VXV + V"w'wav + av* W wv (10)

Of course V generally depends on the parameter t introduced in (2).
One has to have this in mind too for the various projection operators
defined as the right (or initial) and left (or final) supports of the
isometries involved. These supports are defined as

L = vu' , R = v'uU (11)
and in the same way L' and R' wusing the isometries U' instead. By
its very definition we have
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vvt - R and V'V - R (12)
Let us call "proper” a lifted path (4) if and only if X = 0
The following statements can shown to be true [4] where the proof at
least in the case all partial isometries involved are unitaries is
straightforward.
There is, however, one further restriction: Not only the path of density
operators has to be sufficiently regular but also the path of their
supports. (This excludes certain level crossings and similar things.)
Let us call "proper” a lifted path (4) if and only if X = 0

84 X = 0 then dR = O (13)

This means: While the left support L equals the support of S and
will hence vary according to the structure of the path (2), the right
support R of W will not depend on the parameter t . This is

a strong restriction for a lifted path to be a proper one. Furthermore,

b8 4 X = X' = 0 then Y = Yy (14)

One concludes from this: Two proper liftings connected by (8) are
isometrically isomorphic one to another, i. e. V does not vary along
the path.

This allows for the following constructions:
Let C be a given path (2) of density operators, and let us select a
proper 1lift (4) . Then

ANP(C) = W(0) W(1)* and  PHASE(C) = U(0) U(1)* (15)

is independent of the choice of the proper lifting of the given path

C of density operators. The more PHASE 1is uniquely defined by

the path of states as defined by (1) with 8 = S(t) . (In [4] the
functor PHASE has been called RPF i.e. "relative phase factor".)

Let us consider the group of closed curves (2) starting and

terminating at S8° . Then C -> PHASE(C) is a group homomorphism
into the group of partial isometries the left and right support of which
are equal to the support of S° . Thus PHASE(C) is an holonomy
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invariant attached to the group of curves (2) starting and terminating
at the given S° . Of course, AMP(C) is an holonomy invariant too -

it does not, however, respect the group structure of the group of pathes.
As a matter of fact one gets by PHASE the same invariants as

discussed in [1], [2], and [8], provided the curve is a path of finite
rank projection operators. In particular, if C consists of
i-dimensional projections, i.e. of pure states, PHASE(C) is a multiple
of 8° and the multiplier is nothing than (the complex conjugate of)
BERRY's phase factor.

For general closed curves of states PHASE(C) depends not only on C
but also on the choice of the starting point. If C and C' denote
two curves differing only in the choice of their starting points then
PHASE(C) and PHASE(C') are isometrically isomorph. This includes
identical spectral properties up to the zero-eigenvalues. (The latter
can vary by selecting different proper liftings.) This means:

The spectral properties of the restriction of the operator PHASE(C)
to its support is an holonomy invariant not depending on the choice of
the starting point of the closed curve C .

If it exists

u(c)* where u(C) = tr. PHASE(C) (16)
is the correct generalization of BERRY's phase factor.

One may use (10) to obtain an expression for Y if X =0 . To do this
one chooses for W' the positive square root of S = S(t) which will
imply U' =L . By (8) we have V = U* . Thus

*

[ s¥, a(s¥) 1 - SY - Y s (17)

and a = Y + Y (18)

There are several ways to handle these equations [4]. We shall restrict
ourselves here to one simple particular case. If S = S(t) is - up to
normalization - a curve of projection operators of fixed finite rank
then L =S and the condition X = 0 reduces to W* dW =0 . It
follows
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u(t) = Jt,1><1] + ... + |t,m><nm| (19)
where |1>, ..., |m> 1is an orthonormal system of the subspace the
projection R 1is projecting on while |[t,1>, ..., |t,m> is an ortho=

normal base of L H . The condition X = 0 may now be rewritten as
<i,t| (d/dt) |[t, k> = 0 for all i, k. (20)

This is nothing else than the parallel transport condition in the
STIEFEL manifold of orthoframes based an the GRASSMANN manifold of
projection operators of rank m (of m-planes) given by H .

It has been proposed in [3] to describe the adiabatic changing of
degenerate ground states by the STIEFEL parallel transport shortly
described above.

While this transport is well described by a connection (a gauge field
structure, as remarked in [3]), there is quite another characterization.
FOCK argued in an appendix to [8] that a slow variation of a degenerate
ground state will show up in minimal phase changes: In fact, given (19)
the relation (20) is the solution of the variation principle

f tr.{ du*/dt du/dt }¥ dt = Min.! (21)

(21) 1s FOCK's proposal and it indeed generalizes to the situation
discussed in the present paper.

Let us consider a path C of density operators as given by (2). Then

in the family of all liftings W = W(t) of C n§ look for the minimal
solutions of

_/tr.{ dw* dw })¥ =  Min.! (22)

It turns out the minimum i8 reached just for proper liftings and the
solution of the variational problem (22) is nothing but X = 0
The prove of this is elementary (assuming differentiability) for curves
C consisting of faithful (i.e. non singular) density operators only.
Otherwise one should take care of the support problems involved. It is
indeed surprising how the additional property of the STIEFEL connection
to satisfy an extremal principle with respect to the length of the
lifted path remains true for proper liftings of curves (2).
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There is a further consequence. The minimal value of (22) with respect
to a given path C of density operators is uniquely assigned to C .

len(C) = ‘[ tr.{ dw* dw }%¥ with W* dWw = dw* W (23)

turns out to be the length of C measured by the metric discovered by
BURES [9], i.e. len(C) is the BURES length of C .

This is derived from the expression of the BURES distance of two density
operators S8 and S' given by

dist(S,8') = dinf [ tr.(W - W')®* (W - w') ¥ (24)

where the infimum runs through all the pairs of amplitudes, W , W' , of
8 , 8' . For faithful density operators, as is easily seen, the inf is
reached if W* W' is positive definite. It is always

dist(s,8') = [ tr.{(s + 8' - 2(s¥ s' %)% ) 1% (25)

To restate our assertion once more: W = W(t) is a proper lifting of
S = S(t) 1iff the length of W = W(t) measured in the HILBERT metric
of HI. equals the length of S = S(t) measured in the BURES metric.

It is amusing to see a further aspect in the construction of proper
liftings related to the "algebraic approach" which views observables and
states through the eyes of *-algebras, in particular W*-algebras.

Let M be a W*-algebra, f = f(t) a sufficiently regular path of

its states, and ¢ a *-representation with HILBERT space L.

allowing for a smooth representation of f as a curve of vector states.
Thus in L. there are normalized vectors u = u(t) with

f(t)[a] = < u(t), ¢[a] u(t) > (26)

for all elements a from M and all t .

Let us denote by N the commutator algebra of ¢[M] , i.e.

the algebra of bounded operators acting on L. anﬁ commuting with
every ¢[a] . Let us now call u(t) a "proper purification" of ¢
if and only if the following two conditions are satisfied:



1) The closure of ¢[M] u(t) does not depend on ¢t .
2) For every positive element b of N

Im < u(t), bdu(t)/dt> = 0 for all t (27)

If u=u(t) 1is a proper purification of f(t) then the BURES length
of f equals the HILBERT metric length of u = u(t) . (This can be
deduced from [6].) As is seen in the general context of the algebraic
approach, the notation of "proper purification"” replace that of
"proper 1ifting" the latter appears as a particular case.

Assume now the parameter t 1is going from 0 to 1 , and f(0) = f(1)
Then u(0) and u(l) represent the same vector state. For they are
generating the same GNS - subrepresentation in I. there is a unique
partial isometry U in IN the left and right support of which is
the closure of ¢[M] u(t) and which satisfies U u(0) = u(1) .

It is possible to show representation independence of this definition
provided the conditions 1) and 2) above are fulfilled. This unique U
replaces the definition (15) of PHASE in the W*-algebraic setting.

U 1is changing by changing in the closed curve f the starting point
of the lifting or by multiplying the properly lifted curve by an
isometry the right support of which coincides with the closure of

¢(M) u(t) . By these changes U varies within an equivalence
class given by transformations U -> V* UV where the isometries V
respect the support properties of U .(Remind that the left and right
support of U coincide by the very construction of U . If the trace
of U exists in L then it will not vary within the equivalence
class just mentioned, and tr.U will be a good canditate for defining
a phase factor a la BERRY in the context of W*-algebra theory.

The connecting with our previous considerations are such: M plays
the role of the algebra of all bounded operators of H while

HS becomes the representation space L. . ¢ denotes
multiplication of W by A from the left. The operators of IN are
given by the right multiplication of the elements W of HS by an
operator A .
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We have now seen several different possibilities to characterize or to
define the same holonomy invariannts (including BERRY's phase factor)
for closed curves of mixed ("thermal") states by an appropriate notation
of "parallel transport”. The latter one seems to be interesting for its
own because it contains a certain "non - linearity". Only for curves
consisting of multiples of projection operators this non-linearity
dissolves and the result is an "ordinary" parallel transport determined
by a well known connection.

It is possible to contact our differential geometric setting with
different aspects of the adiabatic approximation (see [10], [11], [12]).
This, however, will be reported elsewhere.
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